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Abstract

Issues related to the implementation of dynamic programming for optimal
control of a three-dimensional dynamic model (the fish populations man-
agement problem) are presented. They belong to a class of models called
Lotka-Volterra models. The existence of bionomic equilibria will be consid-
ered. The problem of optimal harvest policy is then solved for the control of
various classes of its behaviour. Therefore the focus will be the optimality
conditions by using the Bellman principle. Moreover, we consider a differ-
ent form for the optimal value of the control vector, namely the feedback or
closed-loop form of the control. Academic examples are studied in order to
demonstrate the proposed methods.
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1. The problem

Currently the fish populations in the Baltic Sea have many problems,
which are mainly caused by human influence. Some fish species are catched
too much. The fundamental risk of overfishing is that a stock (occurrence
of species in a given region) is so decimated that the natural regeneration
ability is not given and at worst the species die out. The Living Planet Index
for marine species of the WWF shows an average decrease of 14 % between
1970 and 2005 (see Living Planet Report 2008). The overfishing is the main
cause apart from possible environmental factors (climate change, pollutants,
etc).

Therefore, the goal of the Baltic Sea fishermen must be conscientious, by
the policy prescribed regulations and the advance (such as from International
Council for the Exploration of the Sea) to protect the Baltic Sea fauna deal.
A responsible management must reduce the fishing effort to an environmen-
tally acceptable level and call for the cooperation among the participating
countries. This is of utmost importance, since the economic value of the
catches depend on the stock and the biodiversity of the Baltic Sea.

Several interacting species are modeled, which inhabit in a common habi-
tat with limited resources. So, a dynamic system is to be studied, which
depends on several states and controls (e.g. the number of fishing boats).
A typical question for such systems is to find a controller that regulates the
system in a desired target. In many applications a cost functional is to be
optimized, this is usually a functional of the state trajectory and the con-
trols of the system. The profit of a sustainable fishing industry should be
maximized without disappearance of the species.

In this paper necessary (and sometimes sufficient) optimality conditions
are derived. Numerical methods are obtained from the optimality conditions
in order to calculate (approximately) optimal controls.

2. Optimal control problems

Whenever a state function depending on the time is described by an ordi-
nary differential equation which depends on the control variable, it is called a
control system of ordinary differential equations. Optimal control is related
to the development of space flight and military researches beginning from
the 1950s. We can find the applications of the control theorie in economics,
in chemistry or even in population dynamics. The general task of optimal
control is defined as follows:
Let Ω ⊂ Rm be a nonempty (often convex and closed) control region. Let
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g, q, f be given smooth functions:

q : Rn+1 → R
f : R× Rn × Ω→ Rn

g : R× Rn × Ω→ R.

A continuous and piecewise continuously differentiable function x(·) : R →
Rn (state function) as well as a piecewise continuous (or piecewise constant)
function u(·) : R→ Ω (control function) are called admissible, if the ODE

ẋ(t) = f(t, x(t), u(t)), t0 ≤ t ≤ T

x(t0) = x0

is valid. We are looking for admissible pairs (x(·), u(·)), which maximize an
objective (cost) functional of Bolza type:

J(u(·)) =

T∫
t0

g (t, x(t), u(t)) dt+ q(T, x(T ))→ max
u(·)

(1)

Often the optimal control can be calculated by methods using the Pontryagin
maximum principle or by solving the Hamilton-Jacobi-Bellman equation.

3. Extended Lotka-Volterra models with m populations

A logistic model of development for a two-population system can be writ-
ten in the following form (see [13]). Let be ε1, ε2 growth coefficients, γ1, γ2

the phagos coefficients and K1, K2 given numbers (capacities or logistical
terms). We denote the population sizes as x1 and x2.
The differential equations for the development of the populations are

ẋ1(t) = x1

[
ε1

(
1− x1(t)

K1

)
− γ1x2

]
ẋ2(t) = −x2

[
ε2

(
1− x2(t)

K2

)
− γ2x1

] .

We denote generally:
εi are growth coefficients, γij are the phagos coefficients of the population i
with respect to the population j and Ki are logistical terms.
We denote the control of the fish populations ui(t) (it can be a regulation
of the fishing, e.g. the number of the fishing boats if ui(t) ∈ N), pi are fish
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prices (per ton), ri are catch proportionalities. Therefore, the development
of m populations can be described by a generalized system

ẋi(t) = εixi(t) ·
(

1− xi(t)

Ki

)
−

m∑
j=1

γij
xi(t)

Ki

xj(t)

Kj

− ui (t) rid ·
xi(t)

Ki

,

where xi(0) = xi0 are given for i = 1, . . . ,m.
The objective function (the profit) is to be maximized:

J (u) =

T∫
0

{
m∑
i=1

piui(t)rid ·
xi(t)

Ki

− cd ·
m∑
i=1

ui(t)

}
e−δtdt→ max

u(·)

under the restrictions 0 ≤ ui(t) ≤ umax
i , i = 1, . . .m, 0 ≤ t ≤ T.

c are the cutter costs per day and d is the number of days in which we catch.
If we calculate the present value of future profits, we consider a discount rate
e−δt. This plays an important role in economic models.

4. Bellman’s principle

A key aspect of dynamic programming is the Bellman principle. The
basic idea is to calculate the optimal solutions of many small subproblems
and then to compose these subsolutions to a suitable global optimal solution.
It was formulated in 1957 by Bellman.

”
An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must be an optimal policy with
regard to the state resulting from the first decision.“[15, 370-371]

This idea can be used to derive a necessary and sufficient condition.
We consider here two forms of the optimal controls of (1), namely the

open-loop form and the closed-loop form. The closed-loop form û(t, x) gives
the optimal value of the control vector as a function of the time and the
current state.

The form of the optimal control vector derived via the necessary condi-
tions is called open-loop. However, even though the closed-loop û(·, ·) and
open-loop u∗(·) controls differ in form, they yield identical values for the opti-
mal control at each date of the planning horizon. It follows û(t, x∗(t)) = u∗(t).
The open-loop form gives the optimal value of the control vector as a func-
tion of the time and the initial values of the state vector. The closed-loop
form of the optimal control is a decision rule, for it gives the optimal value
of the control for any current period and any admissible state in the current
period that may arise. In contrast, the open-loop form of the optimal control
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is a curve, for it gives the optimal values of the control as the independent
variable time over the planning horizon.

We consider an optimal control problem (1) under the control condition

u(t) ∈ Ω ⊂ Rm, ∀t ∈ [t0, T ], u(·) is piecewise continuous .

The cost function V (t, x) : [t0, T ]× Rn → R is defined as:

V (t, x) = max
u(·)

T∫
t

g(τ, x(τ), u(τ))dτ + q(T, x(T )), (2)

where u(·) : [t, T ] → Rm is admissible in [t, T ] and x(·) is the corresponding
trajectory with x(t) = x.

V (t, x) gives the optimal value of the objective function starting from the
time t ∈ [t0, T ] and the starting point x, following the ODE.

We define the Hamiltonian H as

H(t, x, u, Vx(t, x)) = g(t, x, u) + Vx(t, x) · f(t, x, u).

Necessary condition

Assume there exists the value function V (t, x) to the problem (1) in
[t0, T ]× Rn and this function is continuously differentiable.
Let u∗(·) be an open-loop optimal solution of (1). Then the corresponding
closed-loop solution û(·, ·) satisfies the condition

û(t, x) = arg max
u∈Ω

H(t, x, u, Vx(t, x)), ∀x ∈ Rn and ∀t ∈ [t0, T ]

and V (t, x) is a solution of the PDE:

−Vt(t, x) = max
u∈Ω

H(t, x, u, Vx(t, x)), t ∈ [t0, T ]

V (T, x(T )) = q(T, x(T )).

Proof:
V (t + ∆t, x(t + ∆t)) is the cost function for the part of the solution, that
begins at the time t+ ∆t with state x(t+ ∆t).
Then for 0 < ∆t < T − t it is:

V (t, x) = max
u(·) admissible


t+∆t∫
t

g(τ, x(τ), u(τ))dτ + V (t+ ∆t, x(t+ ∆t))

 .
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Since V is assumed to be continuous differentiable and g to be continuous,
t+∆t∫
t

g(τ, x(τ), u(τ))dτ can be approximated for every continuity point t of

u(·) as g(t, x(t), u(t))∆t+ o(∆t), where ∆t is sufficiently small.
It follows

V (t, x) = max
u(·) admissible

{
g(t, x(t), u(t))∆t+ V (t+ ∆t, x(t+ ∆t))

}
+ o(∆t).

where o(∆t) represents the higher order terms, that means lim
∆t→0

o(∆t)

∆t
= 0.

According to Taylor’s theorem it is:

V (t+ ∆t, x(t+ ∆t)) = V (t, x(t)) + Vt(t, x(t))∆t

+ Vx(t, x(t))ẋ(t)∆t+ o(∆t)

Substituting this result into the previous equation and using ẋ = f(t, x, u),
it follows for ∆t→ 0 the partial differential equation

0 = max
u∈Ω

{
g(t, x(t), u) + Vt(t, x(t)) + Vx(t, x(t))f(t, x(t), u)

}
. (3)

We can write the PDE (3) as

−Vt(t, x) = max
u∈Ω

H(t, x, u, Vx(t, x)), (4)

because V (t, x(t)) does not depend on u. The boundary condition V (T, x(T ))
= q(T, x(T )) follows immediately.
The PDE (4) is the Hamilton-Jacobi-Bellman equation. It is an evolution
equation with a final condition. The global solvability, assumed in the first
definition, is not assured in general. 1

Sufficient condition

If it’s given on [t0, T ] × Rn a real, continuously differentiable function
V (t, x), which satisfies the Hamilton-Jacobi-Bellman equation

−Vt(t, x) = max
u∈Ω

H(t, x, u, Vx(t, x)), (5)

V (T, x(T )) = q(T, x(T )

1The name refers to William Rowan Hamilton (1805-1865), who contributed to the
development of the calculus of variations, to Carl Gustav Jacobi (1804-1851), who studied
the theory of sufficient conditions in the calculus of variations, and to Richard Bellman
(1920-1984), who brought the dynamic programming on the way. By the way, this equation
comes from Constantin Carathéodory (1873-1950), whose name was not mentioned.
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and if the control

û(t, x) = arg max
u∈Ω

H(t, x, u, Vx(t, x)) (6)

(depending on t and x) is admissible, then the corresponding open-loop con-
trol u∗(·) with the corresponding state trajectory x∗(·) is an optimal solution
of (1).

Proof:
Since the left-hand side is independent from u, (5) can be transformed into:

max
u∈Ω

[Vt(t, x) +H(t, x, u, Vx(t, x))] = 0. (7)

We choose admissible open-loop controls u∗(·) and u−(·) on [t0, T ].
Let x∗(·) and x−(·) be the unique state trajectory, which are generated by
u∗(·) and u−(·) in [t0, T ], so that x∗(t0) = x−(t0) = x0. Then it follows from
(6) and (7):

0 = Vt(t, x
∗) +H(t, x∗(t), u∗(t), V ∗x (t, x∗))

≥ Vt(t, x
−) +H(t, x−(t), u−(t), Vx(t, x

−)).

With the definition of the Hamiltonian H = g+Vx ·f and taking into account
that

dV (t, x)

dt
=
∂V (t, x)

∂t
+
∂V (t, x)

∂x
f(t, x, u),

this inequality can be written as

0 = g(t, x∗(t), u∗(t)) +
dV (t, x∗)

dt
≥ g(t, x−(t), u−(t)) +

dV (t, x−)

dt
.

We integrate this inequality over the interval [t0, T ] and obtain

V (t0, x0) =

T∫
t0

g(t, x∗(t), u∗(t))dt+ q(T, x∗(T ))

≥
T∫

t0

g(t, x−(t), u−(t))dt+ q(T, x−(T )),

by using

T∫
t0

dV

dt
= V (T, x(T ))− V (t0, x0), V (T, x(T )) = q(T, x(T )).

V (t0, x0) was added on both sides. Since u−(·) is arbitrary the value of the
objective functional is then maximized by the control u∗(·).
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5. Algorithm

Now we can use this theorem and formulate a constructive algorithm:

1. Identify f(t, x, u), g(t, x, u), q(x, t) with the functions of a specific prob-
lem.

2. Write down the corresponding Bellman equation.

3. Calculate û as function of t, x, Vx : û(t, x, Vx).

4. Add the maximizing value from û(t, x, Vx) in the right-hand side of the
Bellman equation. (PDE)

5. Solve the Bellman equation. (analytically or numerically)

6. Compute x∗(t), u∗(t) for t0 ≤ t ≤ T by using 3.

6. An example. The comparison with methods using the maximum
principle

We want to compare this method with known methods based on the
Pontryagin maximum principle.

Let us consider the problem:

ẋ(t) = −x(t) + u(t), x(0) = x0, u(·) piecewise continuous

J =
1

2

1∫
0

u(t)2dt+
1

2
x2(1)→ min (8)

A necessary optimality condition for (8) is the maximum principle. The nec-
essary conditions were developed by Pontryagin and his co-workers in Moscow
in the 1950s. They introduced the idea of adjoint functions to append the
differential equation to the objective functional.

Note that, the adjoint functions have a similar purpose as Lagrange mul-
tipliers in multivariate calculus, which append constraints to the functions of
several variables to be maximized or minimized. Thus, one begins by finding
appropriate conditions that the adjoint function should satisfy.

Let x∗(·), u∗(·) be optimal, then there is a nontrivial solution of the adjoint

equation λ̇(t) = − ∂

∂x
H(t, x∗(t), u∗(t), λ(t)), so that for almost all t

H(t, x∗(t), u∗(t), λ(t)) = max
u∈Ω

H(t, x∗(t), u, λ(t)),

and the transversality condition λ(T ) = −∂q
∂x

(T ) is satisfied.

In our example it is

H(t, x, u, λ) = −1

2
u2 + λ(−x+ u)
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and consequently
∂

∂u
H(t, x, u, λ) = 0⇔ u = λ.

That means u∗(t) = λ(t) for almost all t.
Replacing this in the process equation, we obtain a two-point boundary value
problem:

ẋ(t) = −x(t) + λ(t), λ̇(t) = − ∂

∂x
H(t, x, u, λ) = λ(t),

x(0) = x0, λ(1) = −x(1).

The solutions of these equations are:

λ(t) = C1 · et, x(t) = C2e
−t +

1

2
C1e

t, 0 ≤ t ≤ 1.

The initial condition C2 +
1

2
C1 = x0 and the final condition

−λ(1) = C2e
−1 +

1

2
C1e = −C1e give the constants C1, C2:

C1 =
2x0

1− 3e2
, C2 = − 3x0e

2

1− 3e2
.

Therefore, it follows the open-loop-solution

x∗(t) =
x0e

t − 3x0e
2−t

1− 3e2
, u∗(t) =

2x0e
t

1− 3e2
. (9)

The Bellman principle provides the same solution in another way:
Find the function V (t, x), such that

V (T, x) = V (1, x) = −q(x(1)) = −1

2
x2(1)

−Vt(t, x) = max
u∈Ω

H(t, x, u, Vx(t, x)).

Due to H(t, x, u, Vx) = −1

2
u2 + Vx(−x + u) the necessary condition for a

maximum of H in u ∈ R is
∂H

∂u
(t, x, u, Vx) = 0. This is exactly satisfied when

u = Vx, that means û(t, x, Vx) = Vx. We have in mind U = R. Therefore,

Ĥ = H(t, x, û, Vx) = −1

2
Vx

2 + Vx(−x+ Vx).

The Hamilton-Jacobi-Bellman equation for this task has the form:

−Vt = −x · Vx +
1

2
Vx

2.
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We use the ansatz V (t, x) = A(t) · x2, because the objective function,
as well as the process equation with respect to u are polynomial. Then it
follows

V (t, x) =
x2

1− 3e2−2t
.

Therefore,

û(t, x) = Vx(t, x) =
2x

1− 3e2−2t
.

By using the differential equation the open-loop solution can be calcu-
lated. It is

ẋ(t) = −x(t) +
2x(t)

1− 3e2−2t
, x(0) = x0.

and this initial value problem has the solution x∗(t) =
x0e

t − 3x0e
2−t

1− 3e2
.

With respect to u∗(t) = û(t, x∗) we obtain the optimal control u∗(t) =
2x0e

t

1− 3e2
as a function of the time t.

7. Closed-loop optimality conditions for control problems with
piecewise constant controls

Now we consider problem (1) with piecewise constant controls. If
the length of the interval is fixed, the Pontryagin maximum principle in the
classical form is not applicable.
There is an alternate Pontryagin-like-way. Let u∗(t) = uk = u(tk) be optimal
on [tk, tk+1]. Then it follows:

tk+1∫
tk

Hu(t, x
∗(t), u(tk), λ(t)) dt = 0, (10)

Using the Bellman principle we can also win optimality conditions. Let be
t0 < t1 < . . . < tn predetermined time points and x(·) absolutely continuous.
The problem is now:

J(u) =
n−1∑
k=0

 tk+1∫
tk

g(t, x(t), u(tk)) dt

+ q(tn, x(tn))→ max
u

(11)

The process equation is:
ẋ(t) = f(t, x(t), u(tk)), if t ∈ Tk = [tk, tk+1), k = 0, 1, . . . , n−1. The optimal
control u∗(t) = uk is to be found.
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At first we consider the special case n = 1 (one control interval).
We denote u(t0) = v and define the new value function

W (t, x, v) =

t1∫
t

g(τ, x(τ), v)dτ + q(t1, x(t1))

for the process, which starts at time t with the vector x(t) = x and is
performed with the constant control v ∈ Ω.
This function W is continuously differentiable in t and x. It is not to be
confused with the function V (chapter 4), since here is no maximum operator.
We can formulate new necessary conditions (see [14]).

Necessary condition

Let W (t, x, v) be continuously differentiable in t and x. Let û(t, x) be an
optimal constant control that leads the process

ẋ(t) = f(t, x(t), u(t, x)), x(t) = x

from x on [t, t1]. The control û is constant also in [t0, t1]. Then this control
û(t, x) satisfies for all t ∈ [t0, t1] the condition

û(t, x) = û(t0, x0) = arg max
v∈Ω

W (t0, x0, v)

where W (t, x, v) satisfies the partial differential equation:

−∂W (t, x, v)

∂t
=
∂W (t, x, v)

∂x
f(t, x, v) + g(t, x, v), ∀v ∈ Ω.

in other words,

−∂W (t, x, v)

∂t
=

n∑
i=1

∂W (t, x, v)

∂xi
fi(t, x, v) + g(t, x, v),

∀(t, x, v) ∈ [t0, t1)× Rn × Ω

and

W (t1, x, v) = q(t1, x(t1)), ∀v ∈ Ω.

Proof:
The proof is similar to the previous one. W (t+ ∆t, x(t+ ∆t), v) is the cost
function for the part of the solution, that starts at the time t+ ∆t with state
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x(t+ ∆t) under the influence of the control v. It is obviously:

W (t, x, v) =

t+∆t∫
t

g(τ, x(τ), v)dτ +W (t+ ∆t, x(t+ ∆t), v), ∀v ∈ Ω.

Since W is assumed to be continuous differentiable and g to be continuous,
t+∆t∫
t

g(τ, x(τ), v)dτ can be approximated as g(t, x(t), v)∆t+o(∆t). It follows:

W (t, x, v) =
{
g(t, x(t), v)∆t+W (t+ ∆t, x(t+ ∆t), v)

}
+ o(∆t).

o(∆t) represented the higher order terms, that means, lim
∆t→0

o(∆t)

∆t
= 0.

According to Taylor’s theorem we obtain:

W (t+ ∆t, x(t+ ∆t), v) = W (t, x(t), v) +Wt(t, x(t), v)∆t

+Wx(t, x(t), v)ẋ(t)∆t+ o(∆t).

Substituting this result into the previous equation, it follows with ẋ =
f(t, x, v) the PDE

0 = g(t, x(t), v) +Wt(t, x(t), v) +Wx(t, x(t), v)f(t, x(t), v),

or in another form

−∂W (t, x, v)

∂t
=
∂W (t, x, v)

∂x
f(t, x, v) + g(t, x, v).

In the special problem it is J(v) = W (t0, x, v), v ∈ Ω, so the optimal control
vector can be obtained by

û(t0, x0) = arg max
v∈Ω

W (t0, x0, v).

The boundary condition W (t1, x, v) = q(t1, x(t1)) follows immediately.
In case of n control intervals the definition of necessary conditions is analo-
gous.
Let be u(t) = ~v = (v0, v1, . . . , vn−1) with vk ∈ Ω, k = 0, . . . , n − 1. The
function W (t, x, v) is for all t ∈ [tk−1; tk], 1 < k < n defined as:

W (t, x, v) =

tk∫
t

g(τ, x(τ), v)dτ
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and for all t ∈ [tn−1; tn] as:

W (t, x, v) =

tn∫
t

g(τ, x(τ), v)dτ + q(tn, x(tn)).

It follows for all t ∈ [tk−1; tk], 1 < k ≤ n:

û(t, x) = û(tk−1, x(tk−1)) = arg max
v∈Ω

W (tk−1, x(tk−1), v),

−∂W (t, x, v)

∂t
=
∂W (t, x, v)

∂x
f(t, x, v) + g(t, x, v),

W (tk − 0, x, v) = W (tk, x, û(tk, x)), 1 ≤ k < n,

W (tn − 0, x, v) = q(tn, x), ∀v ∈ Ω.

8. Open-loop optimality conditions for control problems with
piecewise constant controls

We can also formulate the optimality conditions for the problem (11) in
open-loop form. Let x(t, v) be a solution of the process equation

∂x(t, v)

∂t
= f(t, x(t, v), v), ∀(t, v) ∈ [tk, tk+1)× Ω,

with x(tk, v) = x(tk) for k = 0, . . . n− 1, for all v ∈ Ω and x(t0) = x0.
The Hamiltonian is: H(t, x, v, λ) = g(t, x, v) + λ · f(t, x, v). We consider the
special case n = 1 (one control interval).

Necessary condition in open-loop form

Let u∗(·), x∗(·) be optimal with u∗(t) = u∗(t0), x∗(t) = x(t, u∗(t0)), then
it is

u∗(t0) = arg max
v∈Ω

{
S(t0, v) + λ(t0, v) · x(t0)

}
,

where λ(t, v) is a solution of

λ̇(t, v) = − ∂

∂x
H(t, x(t, v), v, λ(t, v)), ∀(t, v) ∈ [t0, t1)× Ω, (12)

and S(t, v) is a solution of

−∂S(t, v)

∂t
= H(t, x(t, v), v, λ(t, v))− ∂H(t, x(t, v), v, λ(t, v))

∂x
x(t, v) (13)
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with x(t0, v) = x(t0) = x0 and the transversality conditions

λ(t1, v) =
∂q(t1, x(t1))

∂x
and

S(t1, v) = −∂q(t1, x(t1))

∂x
· x(t1, v) + q(t1, x(t1)) are satisfied for all v ∈ Ω.

Proof:
We consider the equation (13):

−∂S(t, v)

∂t
= H(t, x(t, v), v, λ(t, v))− ∂H(t, x(t, v), v, λ(t, v))

∂x
x(t, v)

is equivalent to

−∂S(t, v)

∂t
= g(t, x, v) + λ(t, v) · f(t, x, v)− ∂H(t, x(t, v), v, λ(t, v))

∂x
x(t, v).

It follows from (12)

−∂S(t, v)

∂t
= g(t, x, v) + λ(t, v) · ẋ(t, v) + λ̇(t, v) · x(t, v).

We integrate this equation over [t, t1]:

−S(t1, v) + S(t, v) =

t1∫
t

g(t, x(t), v) dt+ λ(t1, v) · x(t1, v)− λ(t, v) · x(t, v).

From the previous we obtain
t1∫
t

g(t, x(t), v) dt = W (t, x, v) − q(t1, x(t1)) and

from the transversality conditions

−S(t1, v) =
∂q(t1, x(t1))

∂x
· x(t1, v)− q(t1, x(t1))

= λ(t1, v) · x(t1, v)− q(t1, x(t1))

It follows:

S(t, v) = W (t, x, v)− λ(t, v) · x(t, v)

⇔ W (t, x, v) = S(t, v) + λ(t, v) · x(t, v).

As shown in the previous chapter it is

û(t, x) = û(t0, x0) = arg max
v∈Ω

W (t0, x0, v),
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because û(t, x) is constant. It follows with x(t0, v) = x(t0):

û(t0, x0) = arg max
v∈Ω

{
S(t0, v) + λ(t0, v) · x(t0)

}
.

The term on the right side of the equation is the function of t0. We obtain
the open-loop form:

u∗(t0) = arg max
v∈Ω

{
S(t0, v) + λ(t0, v) · x(t0)

}
.

In case of n control intervals the definition of necessary conditions is analo-
gous. We have to maximize:

J(u) =
n−1∑
k=0

tk+1∫
tk

g(t, x(t), u(tk))dt+ q(tn, x(tn))

under the constraint:

ẋ(t) = f(t, x(t), u(tk)), tk ≤ t < tk+1, x(t0) = x0, u(tk) ∈ Ω.

Let u∗(·), x∗(·) be optimal with u∗(t) = u∗(tk), x∗(t) = x(t, u∗(tk)), for
k = 0, . . . , n− 1, then it is

u∗(tk) = arg max
u∈Ω

{
S(tk, u) + λ(tk, u) · x(tk)

}
,

where S(t, v) is a solution of

−∂S(t, v)

∂t
= H(t, x(t, v), v, λ(t, v))− ∂H(t, x(t, v), v, λ(t, v))

∂x
x(t, v) (14)

and λ(t, v) is a solution of

λ̇(t, v) = − ∂

∂x
H(t, x(t, v), v, λ(t, v)), ∀(t, v) ∈ [tk, tk+1)× Ω, (15)

with

x(t0, v) = x(t0) = x0, x(tk, v) = x(tk) = x(tk − 0, u∗(tk−1)),

λ(tk − 0, v) = λ(tk, u
∗(tk)), S(tk − 0, v) = S(tk, u

∗(tk)),

and the transversality conditions

λ(tn, v) =
∂q(tn, x(tn))

∂x
,

S(tn, v) = −∂q(tn, x(tn))

∂x
· x(tn) + q(tn, x(tn))

are satisfied. �
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9. An example. The multistage open-loop control

We want to solve a two stages-optimal control problem. Let be t ∈ [0, 1]
and t0 = 0, t1 = 0.5. We obtain two time intervals: T0 = [0; 0.5), T1 =
[0.5, 1). The process equation is:

ẋ(t) = −x(t) + u(tk), k = 0, 1; x(0) = x0, (16)

u(·) piecewise constant:

u(t) = (u(t0), u(t1)) = (v0, v1) = ~v,

u(t) = u(0), t ∈ T0,

u(t) = u(0.5), t ∈ T1,

J(~v) =
1

2

1∑
k=0

tk+1∫
tk

v2
kdt+

1

2
x2(1)→ min

~v

⇔ J̄(~v) = −1

2

1∑
k=0

tk+1∫
tk

v2
kdt−

1

2
x2(1)→ max

~v
(17)

The Hamiltonian is H(t, x, v, λ) = λ · (−x+ v)− 1

2
v2.

The necessary conditions for the problem (17) are:

u∗(0.5) = u∗1 = arg max
v∈Ω

{
S(0.5, v) + λ(0.5, v) · x(0.5, v)

}
, (18)

u∗(0) = u∗0 = arg max
v∈Ω

{
S(0, v) + λ(0, v) · x0

}
, (19)

and it is

λ(1, v1) = −x(1, ~v), ∀v1 ∈ Ω,

S(1, v1) =
1

2
x2(1, ~v), ∀v1 ∈ Ω.

It follows for i = 0, 1:

λ̇(t, vi) = λ(t, vi),

−Ṡ(t, vi) = λ(t, vi) · vi −
1

2
v2
i

and

ẋ(t, vi) = −x(t, vi) + vi,

x(0, v0) = x0, x(0.5, v1) = x(0.5− 0, v0). (20)
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The transition conditions are:

λ(0.5− 0, v0) = λ(0.5, u∗1), S(0.5− 0, v0) = S(0.5, u∗1).

The solutions of the ODE ẋ(t, vi) = −x(t, vi) + vi, i = 0, 1 are

x(t, v0) = A1 · e−t + v0, t ∈ T0,

x(t, v1) = A2 · e−t + v1, t ∈ T1.

According to x(0) = x0 we obtain A1 = x0 − v0 and with (20)
A2 = (x0 − v0) + (v0 − v1)e0.5. Therefore,

x(t, v1) =
(
(x0 − v0) + (v0 − v1)e0.5

)
e−t + v1, t ∈ T1,

x(1, v1) = (x0 − v0)e−1 + (v0 − v1)e−0.5 + v1,

x(0.5, v1) = (x0 − v0)e−0.5 + v0

and λ(t, vi) = C1e
t, i = 0, 1.

The final condition for t = 1 delivers

λ(1, v1) = C1e = −x(1, ~v) = −
(
(x0 − v0)e−1 + (v0 − v1)e−0.5 + v1

)
and gives us the constant C1. Therefore,

λ(t, vi) = −
(
(x0 − v0)e−2 + (v0 − v1)e−1.5 + v1e

−1
)
et, i = 0, 1.

It follows for t ∈ T1:

Ṡ(t, v1) = −λ(t, v1) · v1 +
1

2
v1

2

=
(
(x0 − v0)e−2 + (v0 − v1)e−1.5 + v1e

−1
)
v1e

t +
1

2
v1

2.

The solution of this equation is:

S(t, v1) =
(
(x0 − v0)e−2 + (v0 − v1)e−1.5 + v1e

−1
)
v1e

t +
1

2
v1

2t+ C2.

We obtain C2 from the final condition:

S(1, v1) =
(
(x0 − v0)e−1 + (v0 − v1)e−0.5 + v1

)
v1 +

1

2
v1

2t+ C2

=
1

2
x2(1− 0, ~v) =

1

2

[
(x0 − v0)e−1 + (v0 − v1)e−0.5 + v1

]2
.
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Due to (18):

u∗(0.5) = u∗1 = arg max
v∈Ω

{
S(0.5, v) + λ(0.5, v) · x(0.5, v)

}
= arg max

v∈Ω

{
(x0 − v0)ve−1.5 + (v0 − v)ve−1 + v2e−0.5 +

1

4
v2

−1

2
v2 +

1

2

{
(x0 − v0)e−1 + (v0 − v)e−0.5 + v

}2

−
{

(x0 − v0)ve−1 + (v0 − v)ve−0.5 + v2
}

−
{

(x0 − v0)e−1.5 + (v0 − v)e−1 + ve−0.5
}

·
{

(x0 − v0)e−0.5 + v0

}}
.

This is exactly satisfied when (with differentiation over v and substitution
v0 = u∗0):

2x0(e0.5 − 1) + 2u∗0(1− 2e0.5 + e) = u∗1(4e1 − 2e0.5 − 3e1.5). (21)

Analogically, we obtain for t ∈ T0:

Ṡ(t, v0) = −λ(t, v0) · v0 +
1

2
v0

2

=
(
(x0 − v0)e−2 + (v0 − u∗1)e−1.5 + u∗1e

−1
)
v0e

t +
1

2
v0

2.

That ODE has the following solution on T0:

S(t, v0) =
(
(x0 − v0)e−2 + (v0 − u∗1)e−1.5 + u∗1e

−1
)
v0e

t +
1

2
v0

2t+ C3.

We obtain C3 from the final condition:

S(0.5− 0, v0) =
(
(x0 − v0)v0e

−1.5 + (v0 − u∗1)v0e
−1 + u∗1v0e

−0.5
)

+
1

4
v0

2 + C3

= S(0.5, u∗1)

=
{

(x0 − v0)u∗1e
−1.5 + (v0 − u∗1)u∗1e

−1 + u∗1
2e−0.5 +

1

4
u∗1

2

−1

2
u∗1

2 +
1

2

{
(x0 − v0)e−1 + (v0 − u∗1)e−0.5 + u∗1

}2

−
{

(x0 − v0)u∗1e
−1 + (v0 − u∗1)u∗1e

−0.5 + u∗1
2
}}
.
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Therefore,

u∗(0) = u∗0 = arg max
v∈Ω

{
S(0, v) + λ(0, v) · x(0)

}
= arg max

v∈Ω

{
(x0 − v)ve−2 + (v − u∗1)ve−1.5 + u∗1ve

−1

+(x0 − v)u∗1e
−1.5 + (v − u∗1)u∗1e

−1 + u∗1
2e−0.5 +

1

4
u∗1

2

−1

2
u∗1

2 +
1

2

{
(x0 − v)e−1 + (v − u∗1)e−0.5 + u∗1

}2

−
{

(x0 − v)u∗1e
−1 + (v − u∗1)u∗1e

−0.5 + u∗1
2
}

−(x0 − v)ve−1.5 − (v − u∗1)ve−1 − u∗1ve−0.5 − 1

4
v2

−
{

(x0 − v)e−2 + (v − u∗1)e−1.5 + u∗1e
−1
}
x0

}
.

It follows:

2x0(e0.5 − 1) = 2u∗1(−e1.5 + 2e− e0.5) + u∗0(−e2 + 4e0.5 − 2e− 2); (22)

and from (21) and (22):

u∗(0) = u∗0 =
2(1− e0.5)

3e2 − 4e1.5 + 4e− 4e0.5 + 2
· x0,

u∗(0.5) = u∗1 =
2(e0.5 − e)

3e2 − 4e1.5 + 4e− 4e0.5 + 2
· x0.

The optimal trajectory is:

x∗(t) = (x0 − u∗0) · e−t + u∗0, t ∈ T0,

x∗(t) =
(
(x0 − u∗0) + (u∗0 − u∗1) · e0.5

)
· e−t + u∗1, t ∈ T1

and λ(t) = −
(
(x0 − u∗0)e−2 + (u∗0 − u∗1)e−1.5 + u∗1e

−1
)
et.

This solution can be confirmed by substituting these values into the integral
maximum principle. It is:

0.5∫
0

Hu(t, x
∗(t), u∗0, λ(t)) dt =

0.5∫
0

(λ(t)− u∗0) dt = 0

1∫
0.5

Hu(t, x
∗(t), u∗1, λ(t)) dt =

1∫
0.5

(λ(t)− u∗1) dt = 0



Some Applications of Optimal Control
in Sustainable Fishing in the Baltic Sea 20

Figure 1: Optimal trajectory and optimal control of (17) for x0 = 1
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10. Various types of control functions

Now we can compare the three types of tasks.

a) Piecewise continuous or measurable control functions: Here we can
apply the Pontryagin maximum principle and the Bellman principle.

b) Piecewise constant functions and fixed tk: In this case we can use the
Bellman principle (in terms of [14]) and condition (10) ([18])).

c) Integer valued control: u(tk) = uk ∈ Z : the Pontryagin maximum
principle is not applicable.
In this case we can use the Bellman principle (in terms of [14]) and an

additional constraint of the form
k∏
i=1

(u− ui) = 0.

The following application areas are currently offered: (PMP is the Pontrya-
gin’s Maximum Principle)

Control functions PMP Bellman Other methods
Piecewise continuous classical

X
reduction to

or measurable controls form
”
direct methods“[8]

Piecewise constant integral
X

reduction to
and fixed tk form [15]

”
direct methods“[1],[8]

Integer valued doesn’t
X –

controls and fixed tk work
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11. Numerical solution using standard software

For a concrete example of (cod-herring-sprat) we choose:

ẋ1(t) = 0.4x1(t) · (1− x1(t))− 1.5 · 250 · u1(t) · x1(t)
106

−0.02 · x1(t)x2(t)
1.2

− 0.02 · x1(t)x3(t)
1.3

ẋ2(t) = 0.6x2(t) ·
(

1− x2(t)
1.2

)
− 6.4 · 250 · u2(t) · x2(t)

1.2·106

−0.0125 · x1(t)x2(t)
1.2

− 0.01 · x1(t)x3(t)
1.56

ẋ3(t) = 0.6x3(t) ·
(

1− x3(t)
1.3

)
− 6.4 · 250 · u3(t) · x3(t)

1.3·106

−0.0125 · x1(t)x3(t)
1.3

− 0.01 · x2(t)x3(t)
1.56

J (u) =

T∫
0

{
1130 · u1 (t) · 1.5 · 250 · x1(t)

1
+ 270 · u2 (t) · 6.4 · 250 · x2(t)

1.2

+460u3 (t) · 6.4 · 250 · x3(t)
1.3
− 500 · 250 ·

3∑
i=1

ui (t)

}
e−0.06tdt

J (u)→ max
u

0 ≤ u1(t) + u2(t) + u3(t) ≤ 1900, 0 ≤ t ≤ 20.

The growth rates and interaction coefficients are arbitrarily choosen. It is
assumed that the fishing can not be reduced to zero. The only exception is
the cod fishery in the early stages. Since their population in the Baltic Sea
is currently too low, it is proposed in this strategy to fish for cod only after
3 years.

Matthias Gerdts developed the Fortran 77 package OC-ODE (Optimal
Control of Ordinary Differential Equations) for the numerical solution of
optimal control problems (see [8]). The program is a direct discretization and
provides a numerical estimation of the controls. The controls are declared as
piecewise continuous or piecewise constant functions.

The optimal strategy for catching a 3-population system cod (x1)-herring
(x2)- sprat (x3) for a time interval of 20 years was calculated with this soft-
ware. u1 is the number of cod cutters in any given year. u2 and u3 are the
herring and sprat cutters. The data for the 0th year are based on the state
of fish stocks in the Baltic Sea (see [6]).
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Year x1 x2 x3 u1 u2 u3

0 0.2500000 0.8000000 1.0000000 0.000000 263.6494 531.3586
1 0.3244954 0.7006421 0.6495999 0.000000 154.1460 150.5292
2 0.4088918 0.7221604 0.7120884 0.000000 185.2492 240.4183
3 0.4974498 0.7117310 0.6920001 0.000000 180.4876 218.8285
4 0.5843451 0.7077763 0.6928961 417.7087 176.9903 220.8658
5 0.5778183 0.7075602 0.6918569 381.3450 176.7343 219.4632
10 0.5792128 0.7076102 0.6920774 389.0092 176.7938 219.7610
15 0.5792109 0.7076101 0.6920771 388.9998 176.7938 219.7610
20 0.5791999 0.7076000 0.6919999 389.0686 176.8090 219.8855

The profit of the fishing industry in the beginning of the respective years are
the following amounts (in million Euro):

Time(year) Profit
1 206.10840
2 260.51788
3 338.06707
4 404.54111

Time(year) Profit
5 505.68780
10 916.03505
15 1220.4939
20 1446.0516

The system tends toward an equilibrium. The proposed fishing strat-
egy achieves the largest profit with respect to sustainability. The fishing
capacities for the Baltic Sea have been estimated from statistical data. A
sustainable fishery can be achieved by converting the cod fishery on long lines
(see [6]).
The number of fishing cutters that were used in the optimal case is certainly
underestimated for the Baltic Sea. The maximum stock of herring and sprat
in our model was taken far below the actual biomass.
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Figure 2: A potential profit of the fisheries of a 3-population system in million
euro
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Figure 3: 3-population system: Cod. Development of the population (left),
piecewise continuous control (middle), piecewise constant control (right)
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Figure 4: 3-Populationen-System: Herring. Development of the popula-
tion (left), piecewise continuous control (middle), piecewise constant control
(right)
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Figure 5: 3-Populationen-System: Sprat. Development of the popula-
tion (left), piecewise continuous control (middle), piecewise constant control
(right)
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12. Comments

• The value function V (t, x) is globally continuously differentiable only
in exceptional cases (for example, in the linear-quadratic problems).

• The Bellman principle can operate even if the value function is only
piecewise differentiable. This happens when the set of the points of
discontinuity of V is composed of smooth surfaces.

• Useful general principles that guarantee a C1-solution of the HJB equa-
tion are not known. In general, the value function is not smooth. Even
if the value function is smooth, then the solution can be not expressed
in explicit formulas.

• There is a possibility of introducing a generalized solution concept,
which is also obtained in the case of non-differentiability of a value
function.

• This solution concept should be so general that it can also be applied
when the derivative Dv(x) does not exist for all x ∈ Rn. On the other
hand, it should be taken so that one does not get too many possible
solutions of the HJB equation - in the ideal case, the optimal value
function is the unique solution (see [10]). This generalized solution is
called a viscosity solution.
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gen — eine Einführung. Presentation at seminar “Numerical dynamics
of control systems”, 2004.

[11] S. Lenhart; John T. Workman. Optimal Control Applied to Biological
Models. Chapman & Hall, Boca Raton, 2007.

[12] P. Lions. On the Hamilton-Jacobi-Bellman Equations. Acta Applicandae
Mathematicae 1, 17-41, 1983.

[13] A. J. Lotka. Elements of Mathematical Biology. Dover, New York, 1956.

[14] A. Pantelejew; A. Bortakovskij. Control Theory in Examples and Prac-
tices.

”
Vysshaya shkola“, 2003.

[15] M. Papageorgiou. Optimierung. R. Oldenbourg Verlag, München, 1996.

[16] O. Rechlin. Fischbestände der Ostsee, ihre Entwicklung in den Jahren
seit 1970 und Schlussfolgerungen für ihre Nutzung. Rostock, 1999.

[17] S. Sager. Numerical Methods for Mixed-integer Optimal Control Prob-
lems. Publisher: Der andere Verlag, Tönning, 2005.

[18] W.H.Schmidt. Durch Integralgleichungen beschriebene optimale Prozesse
mit Nebenbedingungen in Banachräumen - notwendige Optimalitätsbe-
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