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1 Project objective

The comprehensive study of climate variability and change requires the availability of homo¬

geneous, global data sets. For the documentation of climate fluctuations, WRCP/WMO pro¬

jects currently assemble a corresponding data library for the atmosphere (GCOS) and for the

ocean (GOOS). On this background, the scientific and research political objectives of PRA¬

OMS are:

Development a pre-operational system for the collection of satellite data of the global ocean

and their assimilation into a state-of-the-art ocean circulation model (Figure 1).
Assemble a library of global, homogeneous and consistent ocean data (e.g. sea-surface tem¬

peratures (SST), sea-ice coverage, ocean currents, sea-level (SSH), heat fluxes).
This library should provide a data basis for monitoring and analysing climate fluctuations and

contribute to the goals of GCOS and GOOS. Moreover, these data apply as input to seasonal

predictions.
As an option, the system's regional skill in the European seas should be tested.

After conclusion of the development phase, the system should be fitted in a separate project

(e.g. the pilot-SAFs "Climate Monitoring" (DWD) or the Meteo-France SAP "Ocean and Sea

Ice") to then operational satellite missions. It was planned, in particular, to transfer the system
to EUMETSAT or to the DWD for routine operation as ground segment in EUMETSAT sat¬

ellite missions.

The main objective ofPRAOMS is the prevention of an essentially unused archiving of novel

satellite data (namely those of EUMETSAT). The PRAOMS data processing system makes

this information accessible to various counselling- and science-centres, providing a hierarchy
ofproducts ranging from raw satellite data to global ocean state estimates.

In this joint project, MPIMET developed an assimilation system on the basis of existing ocean
circulation models and assimilation software. System development took several stages due to

restrictions in the available computing resources:

The Hamburg LSG Model was used as a preliminary numerical ocean circulation model. The

model, aht-ddv UsBd lor assimilation purposes in the German WOCE project, has a horizontal
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resolution of 3.5° and 11 layers in the vertical. In the present framework, it is used for the Ad¬

joint assimilation ofbuoyancy data.

Secondly, the GROB HOPE model with a resolution of 3° and 20 levels in the vertical was

applied in Sequential Assimilation (Kalman-filter).
Thirdly, an Adjoint version of the C-HOPE model with a horizontal resolution of 2° (and

equatorial refinement to 0.5°) and 20 layers in the vertical has been developed. However, at

the end of the project it was still in its testing phase and it has not yet been used to assimilate

data.

The paper is organized as follows: Section 2 introduces the analysed data sets. Section 3 de¬

scribes the numerical ocean circulation models while Section 4 discusses the two assimilation

techniques and their implementation. Results from these different set-ups are shown in Sec¬

tion 5, followed by a Summary (Section 6) and outlook (Section 7).
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Figure 1: Schematic diagram ofa quasi- operational data assimilation system.
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2 Datasets

2.1 Satellite Data Sets

Sea surface temperatures: NOAA AVHRR:

The NOAA/NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from
the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the NOAA-

7, -9, -11 and -14 polar orbiting satellites. The data set of sea surface temperatures with a suf¬
ficient spatial and temporal coverage is available from the Jet Propulsion Laboratory (ftp: po-
daac.jpl.nasa.gov). The global data set begins in November 1981 with a spatial resolution of

18 km. The calculation of the weekly and monthly mean is based on the Multi—Channel SST

(MCSST) algorithm. Sea surfaces temperatures are estimated with MCSST from the two

thermal channels 4 and 5 by applying the split window technique (McClain et al., 1985). This

method uses the advantage that channel 5 recognizes a higher extinction than channel 4 be¬

cause of a higher absorption of water vapour molecules. The measured emission can be de¬

scribed as a superposition of the emission of the Earth's surface and the atmosphere. There¬

fore, the sensor detects lower emission for channel 5 over the ocean. Considering a known
emission of water in the thermal spectrum, differences between radiative temperatures can be

used to estimate the sea surface temperature. This so-called skin temperature is generally
about 0.1 °C to 0.5°C lower than the temperature of the surface water masses, which is also
named bulk temperature. Monthly mean values of surface temperatures have been interpo¬
lated spatially (Figure 2) and to the model grid (Figure 3).
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(a)

Sea Surface Temperature (valid. AVHRR, Jan 1998)
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GrADS: COLA/tGCS 2000-10-20-19:38

(b)

Sea Surface Temperature (interp. AVHRR, Jan 1998)

Figure 2: Sea surface temperature (January 1998) derived from the AVHRR sensor on the

NOAA satellite with MCSST algorithm, (a) raw data, and (b) globally interpolated data.
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Figure 3: Sea surface temperature from Figure 1 interpolated to the model grid ofa large-
scale ocean general circulation model.

2.2 Reanalysis Data Sets

Sea surface temperatures and wind stress: ECMWF Reanalysis Data:

Operational analyses are affected by major changes in models, analysis technique, assimila¬

tion, and observation usage, which are an essential product of research and progress. The

ECMWF (European Centre for Medium-Range Weather Forecasts) performed a consistent re¬

analysis of atmospheric data using a "frozen" production system. The ECMWF Re-Analysis

(ERA) Project produced a new, validated 15-year data set of assimilated data for the period
12/1978-02/1994. The assimilation scheme consisted mainly of the Integrated Forecast Sys¬
tem (IFS) version of the ECMWF forecast model with T106 resolution on 31 vertical hybrid
levels. An intermittent statistical (optimum interpolation) analysis with 6-hour cycling was

performed. It includes a diabatic, non-linear normal mode initialisation (5 vertical modes).
The data sets (T106 resolution) consist of monthly means of 24h-forecast surface fields. Data

are available from the CERA data server at the German Climate Computing Centre DKRZ.

Monthly mean values of air surface temperatures and wind stress have been calculated and

interpolated to the model grid. The climatologically monthly means of these data have been

taken as prescribed surface boundary condition to generate the model climatology hereafter

named reference run.
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Figure 4: (a) Annual mean climatology ofsea surface temperature ofmarine in situ observa¬
tions from WOCE special analysis centre (SAC). Temperature ranges from —1.8 °C (dark
blue) to 29.5 °C (red), (b) Data interpolated to the model grid ofa large-scale ocean general
circulation model.

2.3 Hydrographie Data Sets

Temperature, Salinity, and Oxygen: WHP Special Analysis Center:

The World Ocean Circulation Experiment (WOCE) Hydrographie Program (WHP) Special
Analysis Center in Hamburg has prepared a climatology for the world ocean with objectively
analysed mean fields of temperature, salinity and oxygen (Gouretski and Jancke, 1998). Data
base, quality control procedure, optimal interpolation method, vertical and horizontal resolu¬
tion of this climatology differ from the previous World Ocean climatology produced by the
NODC Ocean Climate Laboratory (Levitus et al, 1994; Levitus, 1994). Important differences
between the World Ocean Atlas 1994 and the climatology used here include
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a more elaborate quality control method resulting in a more reliable identification of errone¬

ous and untypical data;

an optimal interpolation on neutral surfaces, thus avoiding production of artificial water mas¬

ses

a better vertical resolution.

No information from data close to the bottom is lost. Further, more high-quality data (both
WOCE and non-WOCE) were added to the NODC data set to substantially improve data cov¬

erage in areas of sparse data and in the deepest layers. Also, a more accurate representation of

the deep-water patterns and ofthe temperature/parameter relationships is achieved.

The annual mean climatological database has been interpolated to the model grid (Figure 4).
Future work will include a seasonal cycle and consideration of WOCE single profiles
(Gouretski, pers. com.).

3 The ocean models

3.1 The Large-scale geostrophic (LSG) ocean model

A description of the current version of the Hamburg large-scale geostrophic OGCM (LSG)
(Maier-Reimer et al., 1993) is given by Winguth et al. (1999). The Hamburg LSG uses a 72 x

72 E-grid (Arakawa and Lamb, 1977) (approximately 3.5° x 3.5° horizontal resolution), 11

vertical layers, and has a time step of one month. The temperature and salinity in the surface

layer were computed by a Newtonian coupling to prescribed ECMWF Reanalysis air tempera¬

tures (Section 2.2) and surface salinities of Levitus et al. (1982). The sea ice model is a simple
thermodynamic model including a wind-dependent ice advection. Further details are found in

Mikolajewicz (1996) and Winguth et al. (2002). Coupling coefficients of 40 W m"2 K"1 for

temperature and 1.5 x 10"5 m s"1 for salinity yield with a 50-m thick top layer) time constants

for both properties of approximately 60 and 40 days, respectively.

3.2 The Hamburg Ocean Primitive Equation Model HOPE-C

During the course of the project, a new model version of the Hamburg Ocean Primitive Equa¬
tion Model (HOPE) model became available. Its earlier versions had been tested in many sen¬

sitivity studies of the ocean-atmosphere system (Drijfhout et al., 1996; Stoessel et al., 1998)
and it's coupling to the atmosphere (Latif et al., 1994; Latif and Barnett, 1996; Stockdale et

al., 1994; Groetzner et al., 1998; Legutke and Voss, 1999; Venzke et al., 2000).
The quantitative estimates of the sensitivity require a mathematical model of the phenomena
or relationship. The studies above have used the HOPE to determine impacts of the perturba¬
tions and thereby to estimate the sensitivity. A more efficient, revealing and direct way is to

use the model's adjoint (e.g. Tziperman et al., 1992, Giering, 1996; Winguth, 1997; van

Oldenburgh et al., 1997; Müller et al., 1998; Marotzke et al., 1999; Giering, 2000; Winguth et

al., 2000; Stammer et al., 2000, Wenzel et al., 2001).

C-HOPE, the Arakawa C-grid version of HOPE, is an improved version of the HOPE-E

documented by Wolff et al. (1997) and HOPE-G (Legutke and Maier-Reimer, 1999). A de-
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tailed description of C-HOPE can be also found in Marsland et al. (2002). It is a global Primi¬

tive Equation model of the general ocean circulation using depths as vertical coordinate (Fig¬
ure 5). It contains a free surface and a dynamic-thermodynamic sea ice model with viscous-

plastic rheology and snow. C-HOPE uses a horizontal curvilinear grid (conformai mapping of

geographical coordinates, Figure 6) to accommodate increased resolution in regions of inter¬

est without the interior boundary problems of nested models. The standard grid set-up used

for climate studies has a horizontal spatial resolution ranging from 8 km to 250 km. The North

Pole is placed in Greenland to avoid distorted physics in the Arctic Ocean, as shown below in

Figure 6. The South Pole, while remaining over land, is moved to an equivalent distance a-

long the same longitude line to keep the zero-latitude line along the equator. The standard grid
set-up also contains enhanced meridional resolution in the tropics. The vertical resolution is

23 levels with increasing thicknesses.
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Figure 5: Configuration ofthe vertical model grid. The thickness ofthe layers increases with

depthfrom 20 m at the surface to 1400 m in the bottom layer. The thickness of the lowest box

in each column is adapted to the local bathymetry. Filled circles denote location ofhorizontal

vectors (e.g. velocities). Vertical velocities (open circles) are calculated at points that are

shifted horizontally and vertically relative to the location ofhorizontal velocities on the grid.
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Figure 6: Configuration ofthe horizontal model grid.

3.2.1 Model Physics

The model is based on the non-linear balance equation for momentum, the continuity equation
and conservation equations for heat and salt for an incompressible, hydrostatic Boussinesq-
fluid on a rotating sphere. Prognostic variables of C-HOPE are horizontal velocities v, poten¬
tial temperature 0 and salinity S, and sea-surface elevation Ç. The internal pressure

p~g\pàz is calculated by using the hydrostatic equation with a non-linear polynomial

equation of state (Fofonoff and Millard Jr., 1983). The horizontal momentum equation is

given by

dv 1 - -

— + f(k x Î?) = -—(Vu(p+p0gÇ))+FH+Fv
dt p0

(1)

where v is the horizontal velocity vector, f the Coriolis parameter, k the upward vertical unit

vector, p0 the constant reference density, g the gravitational acceleration on earth. The friction

terms FH and Fy are parameterisations of the horizontal and vertical eddy viscosity, respec¬

tively.

The vertical velocity is calculated diagnostically from the incompressibility condition

—

= V„V
oz

(2)

The sea surface elevation is calculatedfrom the internal linearized kinematic boundary con¬

dition:
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ot

The kinematic boundary condition at the surface is specified by

*=A>Av^Uo (4)
oz

The conservation equationsforpotential temperature 6 and salinity S are given by
d& =. ô ÔQ
— =^HVH0+—Kv— (5)
dt oz oz

dS
T,

-

„

o
„

oS
.,.

— =KHVHS+-Kr— (6)
dt œ oz

The horizontal eddy diffusivity coefficient Ku is grid-size dependent with a value of Kn=l.Q
103 m2 s"1 at 400 km grid distance. The current version of C-HOPE includes isopycnal diffu¬

sion and a Gent-McWilliams type eddy parameterisation (Gent and McWilliams, 1990) to im¬

prove the mixing along isopycnals observed from tracer distributions.

The vertical eddy diffusivity depends on the local Richardson number and additional wind

mixing. In case of unstable density stratification, increased vertical diffusivity adjusts the den¬

sity of the water column until it reaches a neutral or stable stratification. The current version

includes a bottom boundary layer slope convection scheme for a better representation of the

flow of relatively dense water over sills and at the continental slope.

Sea ice motion is determined by a two-dimensional momentum balance equation

7 +fM v.) = -gVH^+-^+-^ + VH-ö-mn (7)
at hiß hiß\

The ice motion with sea ice thickness h, and density of the ice p, responds to wind stress ta

and ocean current stress i>, and internal ice stress represented by the two-dimensional stress

tensor omn for sea ice rheology according to Hibler (1979).
The flow chart of the models time loop is shown in Figure 7. For a detailed description of the

subroutines, we refer to Wolff et al. (1997) and Marsland et al. (2002).

3.2.2 Surface Boundary Condition for Heat

The net surface heat flux from the atmosphere Qa is balanced by the net surface flux from the

ocean Q0 or from sea ice Q, with a fractional sea ice coverage A per grid cell:

Qa=(l-A)Q0 + AQI (8)

with
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QSJ denotes the incident short-wave radiation reduced by the albedo (reflectivity) of the sur¬

face, Q1 >l downward long-wave radiation, Q1 Î the upward long-wave radiation propor¬

tional to the 4-th power of the surface temperature, gma the latent heat flux which is propor¬

tional to the evaporation, and Q5^ the sensible heat flux which is proportional to the tempera¬

ture gradient between the surface and the air in the surface boundary layer.
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FLOW CHART OF OCEAN MODEL C-HOPE (FORWARD MODEL)

INITIAL CONDITION

OF OCEAN MODEL

INMODEL

BAROCLINIC PRESSURE

THERMOHALINE FORCING
BOTTOM BOUNDARY

LAYER TRANSPORT
WIND FORCING

OCTHER SLOPETRANS OCWIND

SEA ICE MODEL

OCICE

ICE GROWTH

GROWTH

POTENTIAL

TEMPERATURE

ADISIT

VELOCITY

TRANSFORMATION

OCTIMF

MODE DECOM-

POSITIQN (MOM)

OCMODMOM

DENSITY

RHOF1

ICE GROWTH RATES

OPEN WATER

OBUDGET

ICE GROWTH RATES

ICE COVERED AREA

BUDGET

INPUT ON BAROCLI

VELOCITY

ITERATION OF

BAROCLI VELOCITY

OCBARP OCCLIT

DRAG COEF. MOMENTUM,

SENS AND LAT. HEAT

VARDRAG
BAROTROPIC

VELOCITIES

OCVTRO

TOTAL VELOCITIES

OCVTOT

DIRECT BAROTROP

SOL OF SEA LEVEL

BARTIM

ITERAT BAROTROP.

SOL OF SEA LEVEL

TRONEU

UPWIND 3D ADVECTION

U-COMPONENT

UPWIND 3D ADVECTION

V-COMPONENT

ADVECTION OF

TRACER

OCUAD OCVAD OCADPO

Y

GENT&MCWILLIAMS

PARAMETRIZATION

DIFFUSION OF

TEMP AND SALT

HOR DIFFUSION OF

MOMENTUM

OCJITR OCTDIFF OCSCHEP

VERT DIFFUSION OF

MOMENTUM

OCVISC

COST FUNCTION

OCCOST

Figure 7. Flow Chart ofthe C-HOPE time loop.

3.3 The Hamburg Ocean Primitive Equation Coarse resolution

Model GROB HOPE
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The present study utilizes GROB HOPE, a coarse version of the HOPE-C model. It has 20

layers in the vertical with high resolution of 10 layers in the upper 500m. In the horizontal, the
model uses a spatially inhomogeneous grid obtained from a conformai transformation of the

geographical coordinates. At the present stage of model development and availability of com¬

puter capacities, the disadvantages of an inhomogeneous horizontal grid are easily out¬

weighed by its advantages. For one, polar singularities are avoided by transformation of the

model poles to a continental site. Secondly, the spatial inhomogeneity of the horizontal grid
allows high resolution in regions of interest (up to 25 km for the Arctic Ocean in the present
case) while low resolution is accepted for remote regions (300 km near the equator in the pre¬

sent case). This design avoids well-known open boundary problems of fine-resolution re¬

gional or nested models.

While the low-resolution regions provide a model-consistent climatology, the high-resolution
regions admit even the study of mesoscale processes. In spite of this versatility, the machine

requirements for GROB HOPE are those of a global model with a spatially homogeneous 3° x

3° grid. This design permits a time step of 2.4 hours. With its coarse spatial resolution in the

tropics, the GROB version of HOPE does not especially qualify for El Nino simulation. It is
here to be shown that assimilation of observations is able to offset these design limitations.

Success in this framework provides a demonstration of the capacities of sequential assimila¬
tion. For operational purposes, on the other hand, data will always be assimilated into the best
model available.

In long term experiments (integration time: 1000 years) with climatological forcing resolving
the annual cycle, the model assumes an essentially drift-free cyclostationary state after a few
centuries which reproduces the major water masses and gyre structures of the global ocean

circulation as well as the sea ice cover and its seasonal variation at high latitudes. While this
model circulation exhibits the characteristic degree of realism of state-of-the-art simulations it
also displays a number of typical deficits. The model fails to maintain the observed Pacific
Intermediate Waters. Furthermore, while the pole ward Atlantic heat transport is certainly of

the observed order ofmagnitude, its maximum of 0.8 PW is still somewhat lower than the 1.1
PW suggested by observations. On the other hand, the mass transport by the Antarctic Cir-

cumpolar Current with 180 Sverdrup in the Drake Passage is higher than the observed 140

Sverdrup. The path of the Gulf Stream, which is crucial for the European climate and weather,
turns out to be quite sensitive to the details of the atmospheric forcing and the chosen parame-
terisation of subscale transports. For an extensive discussion of the strengths and weaknesses

of the GROB HOPE circulation see Marsland et al. (2002).
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4 The assimilation methods

4.1 Variational methods

Variational assimilation, namely the Adjoint Method, is based on an application of inverse

modelling techniques to the estimation problem. Variation of control parameters minimizes a

cost function formed by the model-data misfit. This approach lends itself particularly to the

estimation of equilibrium states and processes of finite duration. Computation of the cost gra¬

dient with respect to the controls calls for what is often referred to as the temporally backward

integration of the adjoint model (see Figure 8). For complex models, coding of the model ad¬

joint is a substantial task, well comparable to coding the model itself. The practical relevance

of adjoint assimilation in Earth System Modelling therefore arose only after the advent ofthe

theory of automatic differentiation (Talagrand, 1991) and the subsequent development of

automatic adjoint code compilers (Giering, 1996). Application of the Adjoint Method in state

estimation with global circulation models is extensively discussed in (Ghil and Malanotte-

Rizzoli, 1991; Malanotte-Rizzoli, 1996 and Ghil et al, 1997, see also Wunsch, 1997, and

Giering, 2000, for a review).
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Figure 8: Schematic diagram ofthe Adjoint technique

4.1.1 Control Variables and Cost Function

The variational problem is to find a solution of the model equations and control variables X

that minimizes the total cost function Jtot over some temporal and spatial domain. Jtot is de¬

fined by a summation of the data cost function Jd and the penalty cost functions Jp and Jw at

time t and grid location ijk. The data cost function describes the distance between the space-
based data Ysat and the simulated model values Y. Penalty terms Jp are introduced to penalize
differences between the first guess Yp and current model values Y of sea surface temperature,
differences from the SAC climatalogy Ych,
differences from the first guess vertical velocities wf.

If model equations are assumed to be perfect, i.e. no model error is included, then the opti¬
mised trajectory simulated by the model depends only on the initial conditions at time t=t0, on
the boundary conditions, and on the observations. Jtot can thus be written:
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Jtot - Jd + Jp

Jd = ZÄj i Rsa y (Yt>iji — Ysa t,iji)

Jp - 1/2 ZtSijk Rc 'ijk (Yt,ijk—Yp t,ijk ) + 1/2 StZyk Rc 1yjc (Yt,ijk— Y° \\^ )
+ EtEijk Pljk (wF t,ijk -w t,ijk)2

with weights

ij
~~

»^ijl ^ sat

Rcuijk - Wyk a" cu

Pijk = Wyk a" w

Rsatii =Wtilo-
>cli _^ir ^--2

We decided to modify effective air temperature T* and effective surface salinity S* to gener¬
ate a synthesis of dynamically interpolated climatological and space-based observations. The

air temperature T*air describes the heat exchange as a function of wind stress and surface air

temperature (see Maier Reimer et al, 1993). The effective surface salinity S*air is essential

related to the freshwater flux (precipitation minus evaporation). This assumption is derived

from previous experiments with the inverse model (Mueller et al., 1998; Wenzel et al, 2001).
The weighting matrix Rsat denotes the observation error covariance matrix, which we assume

to be diagonal, i.e., that the data are independent and normally distributed. For the standard

deviation of satellite data c"sat we used a value of ±0.125°C consistent to the 8-bit resolution

ofthe space-based observations.

90 °N
Error in situ Temperature (°C)

90 °E 90 °W120 °E 180° 120 °W

Longitude

Figure 9: Standard deviation <jch of the annual mean climatology ofsea surface temperature

ofmarine in situ observations from WOCE special analysis center (SAC). Color ranges from
0.05 °C (dark blue) to 1 °C (red).

Values of covariance matrix for Rdl with standard deviation c"cü have been taken from Gou-

retski and Jahncke (1998) (Figure 9). The matrix P contains the standard deviation of the
vertical velocity a"w and is calculated from the seasonal variance for modern times. The

weight Wyk is the ratio of the volume on the location ijk of the misfit between model value
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and observation and the correlation volume over which individual ocean measurement can be

considered as representative.

4.1.2 Minimization Algorithm

A descending algorithm, the M1QN3-Module from Gilbert and Lemarechal (1989), which is a

limited-memory quasi-Newton-Method (QN), has been used to calculate the corrected control

variables - the new guess. With this guess a new cost function and gradient can be calculated.

The descending procedure is successively continued until a minimum is found. The M1QN3-

Module computes a local approximate Hessian matrix from the gradients of the cost function.

Thus, a much higher convergence rate in finding a minimum can be reached in comparison
with the conventional conjugate gradient method.

One of the major problems in applying the optimization technique to an OGCM is the suc¬

cessful search for a global minimum of the cost function. Thus, it is desirable to produce a

first guess to be close to the global minimum to reduce the likelihood for a convergence in a

local minimum. There are systematic methods to reduce the possibility of a convergence in a

local minimum like simulated annealing (Barth and Wunsch, 1990; Krueger, 1993) or the use

of different initial conditions to confirm the finding of a global minimum (see e.g. Schiller

and Willebrand (1995)). However, these methods are currently too expensive in numerical

and computational costs to allow an application to our adjoint model and there is no general

guarantee in a complex nonlinear system that the absolute minimum will be found. Including
these methods can be a future task to improve the performance of the assimilation scheme.

4.1.3 The Adjoint LSG-Model

The adjoint model has been constructed by inversion of the computer code of the forward

model, a common technique for GCMs demonstrated by Talagrand (1991). With this method

the statements of the forward model are transformed using the chain rule into a tangent-linear

statement (the linearized code) and inverted into an adjoint statement. The structure of this

inversion is generally systematic and thus automatic procedures can be applied. The adjoint

Hamburg LSG has partly been generated by the tangent-linear and adjoint model compiler

(TAMC) (Giering and Kaminsky, 1996).
The direct inversion of the model code presented here has some major differences to an earlier

version of the adjoint LSG compiled by Giering (1996) due to further development of the

forward model (e.g. different treatment of the calculation of the baroclinic velocities, changes
in the ice model, and incorporation of tracers and biogeochemistry) as well as different treat¬

ment for implicit loops in the adjoint model code.

The correctness of the gradients produced by the adjoint model can be tested by a finite-

difference estimate by a perturbation of the boundary and initial conditions of the forward

model (Long, pers. comm.; Winguth, 1997). In addition, identical twin experiments provide
information about the solution of the inverse approach.

4.1.4 The Adjoint C-HOPE
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The purpose of our study is to develop an-state-of-the-art inverse high resolution primitive

equation ocean model for climate monitoring to compute climatic variability and trends on the

interannual and decadal time scale with an optimal fit to the hydrographical and remote sens¬

ing data. For operational monitoring of the climate system and detection of climate change, it

is necessary to optimize:
the parameterisations,
the initial conditions

the forcing boundary conditions of the ocean general circulation model suitable for climate

prediction.
The adjoint C-HOPE is suitable to accomplish all three improvements simultaneously, assum¬

ing that the computational resources are available. In this chapter we will describe the devel¬

opment ofthe adjoint C-HOPE.

4.1.4.1 Practical Coding ofthe Adjoint Model

It is useful for the understanding of practical coding of an adjoint model to explain the tech¬

nique on a general example (Talagrand, 1991; Winguth, 1997).
The model equations (l)-(8) described as finite-dimensional algebraic cases in section 3.1.

can be written as a dynamical system

^ = F(x) (10)
at

where we assume that x belongs to the R4
,
the 3 spatial dimensions and one temporal dimen¬

sion. The input is the initial condition x (to), while x (tj) is the output of the integration of (10)
at a given time ti > to. For a given solution x(t) of (10), the corresponding tangent linear equa¬

tion for a perturbation ôx(t0) is given by

*r=nt)& (id
at

where F'(f) denotes for any t the Jacobian of the function F, taken at point x(t).
The adjoint equations can be described as an integration from the final condition

<5'x(r, )= VJ, the gradient of the cost function, of the adjoint equation

d&x
T

dt
= -F1 (OS'x . (12)

The description below requires the availability of both the numerical model of the ocean cir¬

culation model and of the adjoint model. The complexity of the adjoint C-HOPE (Figure 5) is

comparable with the one of the direct (forward) model (Figure 3). The latter is under perma¬

nent evolution and constantly a subject of modification. Two principles have to be considered

to develop the adjoint code, the principle of locality and readability: First, whenever a local

modification is made on the direct code, the corresponding modification must be made in the

adjoint code, and second, the first requires readability, meaning that when a local modifica¬

tion is made on a direct code, it must be easy to locate the place where the corresponding
modification is to be made in the adjoint code.
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These two principles require that the adjoint code must be generated directly from the direct

code (and not, for example, from the partial differential equations on which the direct code is

built). We shall illustrate these principles on an example FORTRAN statement from the sub¬

routine BUDGET in C-HOPE, e.g. the computation of the incoming heat flux by solar radia¬

tion:

Q2 (N) = (l.-ALBl(N)) * SLN1(N) (13)

The input to this statement is made up ofALB1(N) and SLN1(N), while its output is made up

not only of Q2 (N) but also of ALB1(N) and SLN1(N).
The corresponding "tangent linear statement," analogous to (13) reads

DQ2 (N) = (l.-ALBl(N)) f DSLN1(N) - DALB1(N) *SLN1(N) (14)

which, for given ALB1(N) and SLN1(N) (i.e., for a given basic solution), defines a linear op¬

erator with input (DALB1(N),DSLN1(N))T, and (DQ2(N),DALBl(N),aSLNl(N))T .The cor¬

responding matrix is the 3 x 2 matrix

-SLN1(N) (l.-ALBl(N))

1 0

0 1

The corresponding adjoint computation, from a 3-vector (D'Q2(N),D ALB1(N),D*SLN1(N))T
to a 2-vector (D"ALB1(N),D"SLN1(N))T will therefore read

D"ALB1(N)= DALB1(N)- D'Q2(N)*SLN1(N)

D"SLN1(N) = D'SLN1(N) + D'Q2(N)*(1. - ALB1(N)) (15)

ô'Q2(N),5ALBl(N), and 5'SLN1(N) are the partial dérivâtes of the output function of the

direct code with respect to the variables contained in the respective addresses

Q2(N),ALB1(N), and SLN1(N) after statement (13) has been executed, while 8"ALB1(N) and

5"SLN1(N) are the partial derivatives of the same output function with respect to the vari¬

ables contained in addresses ALB1(N) and SLN1(N) before statement (13) has been executed.

Experience shows that it is more convenient to use the same variable name for a variable of

the direct code. According to simple transparent rule by adding an AD in front of the vari¬

ables, equation (15) will be transformed into

ADALB1(N) = ADALB1(N) - ADQ2(N)*SLN1(N)

ADSLN1(N) = ADSLN1(N) + ADQ2(N)*(1. - ALB1(N))

ADQ2(N) = 0. (16)

The structure of this inversion is generally systematic and thus automatic procedures can be

applied. A more detailed discussion on how to generate an adjoint computer code and its au-
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automation by the Tangent-linear and Adjoint Model Compiler (TAMC) is given in Giering

and Kaminski (1996). The statements of the forward model are transformed using the chain

rule into a tangent-linear statement (the linearized code) and inverted into an adjoint state¬

ment. Here, we modified C-HOPE to be readable for the TAMC (e.g. remove non ANSI

FORTRAN statements). In a second step, we compiled the subroutines of the time loop of C-

HOPE with the TAMC. In a third step we optimised the code produced by TAMC to be com¬

putationally efficient. The flow chart of the adjoint model's time loop is shown in Figure 5.

An example program is given in Appendix A.

The correctness of the gradients produced by the adjoint model can be tested by a finite-

difference estimate by a perturbation of the boundary and initial conditions of the forward

model (Appendix B). In addition, identical twin experiments provide information about the

solution of the inverse approach and will be the subject of future tasks.
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Figure 10. Flow Chart ofthe adjoint C-HOPE time loop.
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4.2 The Kalman-Filter-Method

Sequential methods such as the Kaiman Filter are specifically tailored to the needs of moni¬

toring and prediction (Jazwinski, 1970). These updating schemes emerge from the application
ofthe theory of stochastic processes to estimation and yield an estimate of minimum variance.

On update, the relative weight of model and data is determined by the Kaiman Gain which is

computed from data and model error dynamics (see Figure 11). To this end, the model error is

considered as a stochastic process. The dynamics of such processes can be equivalently for¬

mulated in the Langevin (or Heisenberg) representation and in the Fokker-Planck (or Schrö-

dinger) representation (van Kampen, 1981) The Langevin picture addresses the space-time
behaviour of the process in terms of its moments. In practice, this refers generally to the

covariance only. Formally, the temporal development of the covariance is uniquely deter¬

mined by the model dynamics. However, the practical derivation of the covariance dynamics
for a complex model such as a global ocean circulation model readily becomes everything but

straightforward.
This applies particularly to non-linear models, the issue ofboundary and initial conditions for

the covariance, stability questions and the problem oftemporally backward assimilation. Nev¬

ertheless, at this time the literature on Kaiman Filter assimilation in Earth System Modelling
and other branches of engineering is almost exclusively dominated by the Langevin approach
(Ghil et al, 1997).

Integration

Integration

Observation

Model Model

Dynamics Dynamics

1 r y f 1 '

Error

Dynamics
Gain Update

Error

Dynamics

J k i k i k

D?tQ
W-

Figure 11: Flow Chart ofSequential Assimilation
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Alternatively, a stochastic process may be considered in phase-space in terms of its probabil¬

ity density. Provided the process is Markovian and jumps remain small in an appropriate

sense (van Kampen, 1981) the dynamics of this probability density are governed by the Fok-

ker-Planck Equation. The advection- and diffusion-coefficients of this linear parabolic differ¬

ential equation are determined by model dynamics and observational error statistics. In gen¬

eral, these coefficients are also difficult to obtain from a complex model. However, for suffi¬

ciently short update intervals, phase-space advection and diffusion can be determined phe-
nomenologically from the model output by histogram techniques.
In this framework, the assimilation method provides practical answers to the issues of phase-

space reduction, model nonlinearity, initial and boundary conditions for higher moment dy¬
namics as well as stability. Moreover, the existence of the Backward Fokker-Planck Equation
(van Kampen, 1981) will permit the generalization of sequential assimilation to include the

temporally backward extrapolation of data information. The mathematical aspects of the Fok¬

ker-Planck representation of sequential Kaiman Filter assimilation have been developed in

detail by Belyaev et al (2001).

With the typical volume of model output and observational record in Earth System Modelling,

computational demands for assimilation with least-square optimality are always quite high.
For a reduction of the computational burden, the present estimation utilizes a combination of

Kaiman Filter assimilation and simple "nudging". While subsurface temperatures from the

TAO/TRITON array will be assimilated sequentially, observations of global sea-surface tem¬

peratures are essentially inserted into the model at daily intervals. The feasibility of this sim¬

plistic technique is by no means trivial. Older model generations were generally unable to

"digest" essentially unprocessed data and model-data inconsistencies would readily emerge in

various regions of space-time and phase space. It will here be shown that the quality of con¬

temporary models and data sets is sufficiently high for nudging to be beneficial for the ocean

state estimate.

5 Results

5.1 Experiments with the LSG-Adjoint model

Based on observed radiocarbon differences between the surface and the deep-sea, OGCMs are

generally spun up a couple of thousand years to simulate the steady state of the ocean circula¬

tion. However, past computational capacities limited the integration of inverse OGCMs to a

length in the integration times of less than a few decades. Marotzke and Wunsch (1993)
discussed the quality of the assimilation as a function of integration time of the inverse

OGCM and concluded that an increase in the integration interval would considerably improve
the reconstruction of non-linear processes such as convective mixing, sea ice formation, and

biogeochemistry and would hence improve the quality of the deep-sea circulation and tracer

distribution. Results from identical twin experiments (Winguth, 1997) suggest that the decline

of the cost function is strongly dependent on the length of the integration time for the inverse

ocean model because longer time scales in the ocean circulation are more adequately repre¬
sented with increasing integration time.
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5.1.1 Climatological Reference Run

In order to create a reference for the data assimilation, a reference and first guess experiment

has been carried out by restoring the surface layer to monthly mean ECMWF reanalysis air

temperatures and wind stress annual mean surface salinities (Levitus, 1982). Here, we have

taken the flow field of the interglacial first guess (IFG) experiment of Winguth et al. (1999) as

an initial condition. The model has been integrated for about 4000 years into a cyclo-

stationary steady state. The Atlantic overturning circulation at 30 °S is about 3-5 Sv weaker

than in experiment ATOS1 (Atmospheric Temperature, Ocean Salt and atmospheric tempera¬
ture advection with reference factor 1) produced by Maier-Reimer et al. (1993) or the BFG run

carried out by Winguth et al. (2000). These findings are consistent to recent tracer-based es¬

timates of Broecker et al. (1998) and also to previous assimilation experiments of Winguth et

al. (1998) in which active tracers (temperature and salinity), radiocarbon and P04* have been

assimilated into a large-scale geostrophic model. Here, an increase in surface temperature

relative to IFG in the North Atlantic causes a decrease in convective overturning, a decrease

in the North Atlantic deep circulation (Figure 12), and an increase of the inflow of Antarctic

Bottom Water.

POTENTIAL TEMPERATURE

MERIDIONAL CIRCULATION [SV]

Figure 12: Climatological reference run with a large-scale ocean circulation model as a re¬

sponse to ECMWF-reanalysis boundary conditions, (a) Sea surface temperatures and (b) me¬

ridional overturning circulation ofthe Atlantic Ocean.
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5.1.2 Identical Twin Experiment

Two assimilation experiments are required for this study: An identical twin experiment to

validate the inverse model and an assimilation experiment with the data sets described above.

An identical twin experiment is carried out by running the inverse model with "data" gener¬

ated from model experiments by perturbations in the forcing surface boundary conditions. It

represents the best possible solution for the adjoint approach because the "data" generated by

a perturbation experiment with the forward model are compatible with the optimised model

results. A detailed description of the validation ofthe inverse model is described for example

in Thacker and Long (1988), and for the inverse LSG in Giering (1996) and Winguth (1997).

Effective air temperature T*air is perturbed by an anomaly, which consists of a spatial pattern

orthogonal to the model topography with randomly generated amplitudes (Figure 7a; see also

Winguth, 1997) and is used together with salinity and wind stress from the reference run as a

perturbed forcing boundary condition.

The model has been integrated with these forcing fields for 10 years to generate a perturbed

distribution oftemperature and salinity. The reproduction of the forcing anomalies by assimi¬

lation of the hydrography generated by the perturbation experiment into the adjoint model is

documented by a significant reduction of the cost function (Figure 13).
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Figure 13: Identical twin experiment with an adjoint large-scale ocean circulation model, (a)

Randomly generated anomaly ofeffective air surface temperature (T*aJ for year 10 and (b)

normalized costfunction by assimilation ofthe SSTof(a) into the adjoint model.

5.1.3 Satellite Data Assimilation Experiment

We used the adjoint LSG with the data sets described above: MCSST satellite data were taken

for the El Nino year 1998 to test the response to extreme natural variability with an extreme

event. Constraints on the solution were given by the use of SAC climatology (section 2.3.)
and the first guess flow field in response to ECMWF-Reanalysis surface climatological wind

stress and surface temperatures from Section 2.2. The optimised circulation is displayed in

Figure 8a. The optimisation procedure has been applied 13 times until changes in the different

contributions ofthe cost function were smaller than 1%

26 06 09 2002



(a)
MERIDIONAL CIRCULATION [SV]

(b)
NORMALIZED COSTFUNCTION J/J(0)

ASSIMILATION OF WATER MASS TRACERS

5 6 7 8

ITERATIONS

9 10 11 12 13 14

— ^(O)total
— ^(O)SALMTY

J/J(0)TEMPERATUnE
— ^(OJpHospM^STAf,

J/J(0)RADOCATOON

Figure 14: (a) Optimised overturning circulation of the Atlantic Ocean from assimilation of

space-based and in situ observations into an adjoint large-scale ocean circulation model, (b)
Normalized total cost function and changes of the model-data differences of the tracers

(salinity, temperature, P04* and radiocarbon).

(Figure 14). The optimised modern circulation and buoyancy fluxes reproduce the general
features of pronounced anomalies during the El Nino Year 1998 with a strong sea surface

temperature anomaly of about 4°C in the Eastern Equatorial Pacific. Simulated amplitudes are

somewhat lower than the satellite data related to climatological first guess forcing fields. The

results suggest an export flux of about 15 Sv from the North Atlantic Deep Water into the

Southern Ocean. Our results are in agreement with the interpretation ofthe distributions of the

carbon-14/carbon-12 ratio and a quasi-conservative property, P04*, in the deep sea (Broecker
et al., 1998). A major reduction in Southern Ocean deep-water production during the 20th

century (from high rates during the Little Ice Age) may explain an apparent discordance of

P04* and radiocarbon measurements to recent CFC-12 measurements (Broecker et al., 1999).
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The positive buoyancy anomaly in the North Atlantic causes an increase in convective over¬

turning, and an increase in the North Atlantic deep circulation (Figure 8a). However, recent

coupled experiments with a climate model (Banks et al., 2000) indicate a large internal vari¬

ability in northern hemisphere oceans, and a signal of anthropogenic climate change is not

detectable within in the next 20 years of future projections. These simulations suggest that

southern hemisphere changes in turn are potentially a sensitive indicator of anthropogenic
climate change and, together with the North Atlantic, might be an important part of climate

monitoring network.

5.1.4 Cyclostationary Global Circulation Estimation

The adjoint approach is also used to estimate the cyclostationary global ocean circulation by

synthesizing the dynamics of the Hamburg LSG Model with temperature and salinity.
The database for the present state estimation are the unprocessed station data of the World

Ocean Atlas (Levitus et al, 1998)} for the period from 1970 to 1993. These data are discre-

tized on a 2° x 2° grid with 29 levels in the vertical and monthly means are taken at each data

grid point. Monthly mean temperature- and salinity-profiles are checked for static stability
and discarded if unstable. Additional smoothing or filtering is not applied. These data provide
a statically stable, mean annual cycle of the global oceanic buoyancy field at a time step of

one month. Data variances are calculated from the raw data and the atlas-average is substi¬

tuted where only one datum is available. Model-data misfit and cost function are calculated by
projection of the model hydrography onto the data grid to minimize the corruption of data in¬

formation in the essential link of model and data.

Figure 15 shows the result of the state estimation for an annual mean cross section ofthe den¬

sity variable sigma-theta through the Pacific. Figure 15a depicts the data of the World Ocean

Atlas. The data show a well-stratified body of fluid with the characteristic upwelling signature
near the equator. The simulation of this density field by the LSG Model without assimilation

is shown in Figure 15b. Obviously, the model captures the basic stratification together with

the upwelling signature near the equator quite realistically. However, it fails to produce the

very heavy bottom water that is produced in high Southern latitudes. In combination with the

data, the LSG Model is seen in Figure 15c to be able to produce this water mass in realistic

quantity and distribution

Figure 16 shows the annual mean surface heat flux before (Figure 16a) and after (Figure 16b)
the assimilation. Warm colours indicate the heating of the ocean by the atmosphere and cold

colours a heat loss of the ocean to the atmosphere. Particularly in the North Atlantic, the heat

flux distribution is significantly more realistic after the assimilation.

28 06 09 2002



WOA RAW DATA

Fig. 15a)

LSG BEFORE ASSIMILATION

Fig. 15b) stt.v* wr*

LSG AFTER ASSIMILATION

Fig. 15c) 't^V.A TllOV

DO v ***

29 06.09.2002



Figure 15: The state estimation for an annual mean cross section of the density variable

sigma-theta through the Pacific, a) data of the World Ocean Atlas, b) the simulation of this

densityfield by the LSG Model without assimilation; and c) after assimilation.
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Figure. 16: The annual mean surface heatflux before (a) and after (b) the assimilation. Warm

colours indicate the heating of the ocean by the atmosphere and cold colours a heat loss of
the ocean to the atmosphere.

5.2 Kalman-Filter assimilation with the GROB-HOPE model

The key idea of sequential assimilation is to integrate the model until an observation becomes

available. At this time, model integration is halted and the state of the system is updated by an

appropriate combination of model prediction and observation. Subsequently, this update pro¬

vides the initial value for the continued model integration. Hence, the main task in sequential
data assimilation is the determination of the temporal development of the relative weight of

model prediction and observation. In the phase space representation ofthe Kaiman Filter, this

problem is solved by integrating (a large number of) simple, 2+1 dimensional Fokker-Planck

equations which account for model dynamics in terms ofphase space advection and diffusion.

Determination of these parameters by an elementary histogram technique circumvents a num¬

ber of quite complex, but essentially technical issues of the stochastics of non-linear systems.
In numerical applications, the method proves efficient and reliable (Belyaev et al, 2000,

2001).

The feasibility of operational global ocean state estimation will here be demonstrated by com¬

bining simulations of the numerical circulation model GROB-HOPE with observations of

global sea-surface temperatures (SST) and observed subsurface temperatures from the

TAO/TRITON array for the El Nino year 1997. Besides a globally realistic mean state, the

objective ofthe estimate is the improvement ofthe model's El Nino simulation.

After an initial spin-up period of 2 years with restoring to the 3-dimensional buoyancy clima¬

tology ofWOA the model is integrated from 1948 to the present with surface forcing derived

from the NCEP reanalysis (Kalnay et al, 1996). Atmospheric data are interpolated onto the

GROB HOPE grid and surface buoyancy- and momentum-fluxes are calculated by bulk for¬

mulae (Marsland et al., 2002) depending on both, the atmosphere and the ocean. Hence, the

eventual ocean forcing is determined by the particular realization of the ocean state by the

model while the present ocean-only set-up is unable to account for a feedback of the ocean on

the atmosphere. For a reduction oftrends in the deep ocean, integration over the NCEP period
is repeated. Furthermore, model surface salinities are nudged to a mean annual cycle taken

from WOA with a time constant of a little over a year (385d). Use of a mean annual cycle ra¬

ther than an annual mean accounts for the seasonal variation in the hemispheric distribution of

convective activity. With this forcing the model is integrated to 31 December 1997. The peri¬
od from 1 January 1997 to 31 December 1997 is taken as the control run in the present
experiment and the model state at 31 December 1996 provides the initial condition for the as¬

similation. It is noted that model runs considered here do not address the prediction problem.
Surface data transfer external El Nino information to the ocean model.

Figure 17 shows the monthly mean of the net surface heat flux of the control configuration for

December 1997. This heat flux is determined by atmospheric data from the NCEP reanalysis
and oceanic data from GROB HOPE. The main feature is the characteristic seasonal separa¬
tion of the (southern) summer- and (northern) winter-hemisphere: the ocean gains heat in

summer and loses heat during winter. A particular detail in the North Atlantic is associated

with model problems in simulating a realistic Gulf Stream path: off the American east coast,
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the ocean is unrealistically warm leading to a pronounced heat loss while the ocean is unreal-

îstically cold in the region of the so-called North West Corner leading in turn to a pronounced
heat gain by the ocean. Similar aberrations are seen in the Kuroshio region, the confluence of

the Malvinas and Brazil Currents off the South American east coast and for the Agulhas Cur¬

rent near the Cape of Good Hope. The paths of these currents are essentially determined by

vorticity dynamics and mismatches of NCEP derived forcing and model simulation is due to

ambiguities in the vorticity dynamics of the Primitive Equations. Given the NECP fluxes,

GROB HOPE fails to simulate meso-scale details of the state of the underlying ocean surface

realistically.

70 10
-

00 1997 1231 LAYER 12

Figure 17: The Monthly Mean Surface Heat flux for December 1997 [Wm2] of the CON¬

TROL experiment
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Figure 18: The Monthly Mean Surface Heatfluxfor December 1997 [Wm2] ofthe NUDGE

experiment

It is shown that nudging of observed SST into the model improves the state estimate consid¬

erably. To this end, GROB HOPE is restarted from 31 December 1996 and daily mean Rey¬

nolds SST of the NCEP data set are inserted into the model's top layer at a time constant of

one day. During this one-year integration, model-data incompatibilities do not develop. This

is also true for GROB HOPE runs with SST nudging over the foil NCEP period (not shown).

Figure 18 depicts the monthly mean net surface heat flux for December 1997 with SST nudg¬

ing. In comparison to Figure 17, it is seen that aberrations of the major current systems are

significantly reduced and the estimate of meso-scale features of the state of the sea surface

improves without penalty.
Nudging effects are not confined to the upper ocean alone. In convectively active regions sur¬

face temperature information is rapidly communicated to the abyss. For the present integra¬
tion period of one year the deep ocean remains of course unable to adjust to the "injected"
information. Nevertheless, with these data and for this model, nudging becomes a practical

option of ocean state estimation by an efficient and yet robust model-data combination. Other

presently available observations are of similar quality: sea-level data from space-borne altime¬

ters and space-based observations of sea-ice cover. By nudging observations of this type into

a global ocean circulation model, it is currently possible to arrive efficiently at a comprehen¬
sive and realistic estimate ofthe global state of the sea surface at meso-scale resolution.

For the assessment of the state of the interior ocean consider the equatorial temperature field

during the El Nino episode of 1997/98. Figure 20 shows the temperature difference NUDGE-

WOA along the equator for December 1997 where "NUDGE" refers here to the GROB HO-

34 06 09.2002



HOPE simulation of the global ocean circulation with NCEP forcing and nudging of daily

SST observations, i.e. the run also portrayed in Figure 19.

In the abyssal Pacific, simulation and observation are seen to differ by typically less than half

a degree. While the simulation is systematically colder than WOA, structural mismatches do

not emerge. The agreement is less satisfactory in the abyssal Indie and Atlantic. In the near-

surface Pacific, the model clearly exhibits the characteristic El Nino pattern. Relative to the

WOA climatology, the eastern and central Pacific are colder while the West is anomalously

warm. Comparison with observed subsurface temperatures

(www.pmel.noaa.gov/tao/jsdisplay) shows that the model simulates the phase of the process

quite realistically. Since phase information is directly provided by forcing data, this model

response is primarily indicative of the consistency ofthe simulation ofnear-surface wave pro¬

pagation with surface boundary conditions.

Other features of Figure 19 exhibit a lesser degree ofrealism. The warm anomaly in the sur¬

face waters of the central Pacific cannot be found in the observational record

(www.pmel.noaa.gov/tao/jsdisplay)
Here, the mixed-layer model of GROB HOPE fails to mix the heat supplied at the surface,

sufficiently deep into the upper ocean. In the model, heat mainly penetrates to greater depth

by slow diffusion processes. In the ocean, however, these transfers are dominated by turbulent

mixing. As another consequence of the mixing parameterisation, GROB HOPE underesti¬

mates mixed-layer depths throughout the year and thus fails to account for Kelvin wave

downwelling during El Nino. Thermocline temperatures beneath the mixed layer are about 2°

Celsius too warm. Here, the model diffuses too much heat to depths of approximately 500m in

the eastern equatorial Pacific, which penetrates westward at approximately 250m. This mis¬

match is the result of unrealistically strong downward diffusion of heat and unrealistically

weak upwelling of cold waters.

For Primitive Equation models, non-hydrostatic mixing processes have to be parameterised

and such parameterisations are by no means trivial. The mixed-layer model ofGROB HOPE

is tuned to yield realistic mixing depths at moderate latitudes and compromises for the equato¬

rial mixed layer are accepted. The alternative would be a far more complex and machine-

intensive mixed-layer model. Moreover, vertical velocities are determined from mass conser¬

vation, independent ofthe momentum budget. Possible problems and ambiguities are smeared

out by diffusion. Hence, models have a tendency to use diffusion where space-time- and pha¬

se-space-characteristics ofthe real ocean are determined by advection and propagation.

Sequential assimilation of subsurface temperatures improves this state estimate significantly.

Subsurface temperature data are taken from the TAO/TRITON array, which consists of ap¬

proximately 70 moorings in the tropical Pacific between 8° S and 8 N. The buoys record a

number of atmospheric parameters, sea surface temperatures and subsurface temperatures at

10 irregularly spaced depths in the upper 500m. Records are transmitted to shore in real-time

via the ARGOS satellite system. TAO/TRITON has become one of the most successful

ground-based ocean observatories.

Figure 20 shows the monthly mean temperature difference Assimilation-Nudge along the e-

quator for December 1997. The data are seen to have three major effects on the estimate: the

surface becomes colder, the mixed layer warmer and the thermocline colder. These modifica-
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tions lead to a significantly higher degree of realism for the estimate. Assimilation ensures

that heat supplied at the surface, is uniformly mixed into the upper layer and cold water is

upwelled into the thermocline. In response to the data information, the model replaces diffu¬

sion-dominated dynamics with mixing and advection.

61 121 181 240 300 360

Figure 19 The Monthly Mean Temperature Differences on the Equator. December 1997.

NUDGE-WOA
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Figure 20: The Monthly Mean Temperatures differences on the Equatorfor December 1997.

Assimilation—NUDGE

However, it is also seen that the assimilation still exhibits some pockets of warm water below

500m although far less than Figure 4. Primarily, these pockets are a consequence ofthe lower

boundary condition chosen for vertical transition probabilities: the model is assumed to be

true at 500m. Obviously, there is room for improvement.
A different view of these data effects is given in Figure 21. The figure shows a time series of

monthly mean temperature profiles at a location in the eastern equatorial Pacific for 1997.

Simulated (black) and assimilated (red) profiles are compared. The simulation is clearly diffu¬

sion dominated, unable to produce a mixed layer and leaking too much heat into the thermo¬

cline. The assimilation also fails to produce well-defined mixed layers during the first part of

1997. Before the arrival of the downwelling Kelvin wave in the eastern Pacific, mixed layers
here are shallow (typically 25m). Their absence in the assimilation during the first part of the

year is a consequence ofthe poor vertical resolution ofGROB HOPE. With the arrival of the

Kelvin wave, assimilation produces the characteristic signature of turbulent mixing in the up¬

per ocean with realistic mixed-layer depth. At the same time, the thermocline is cooled by

upwelling of colder water and temperature gradients at the mixed-layer base increase.
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Figure 21: Time-Series (At=2months) of Temperature Profiles in the Eastern Pacific during

1997. NUDGE (black), Assimilation (Red).

6 Summary

Ocean state estimation draws its wider societal as well as scientific significance from the cen¬

tral role of the oceans in Earth's climate system. At a time when the impact of climate vari¬

ability on societal infrastructures is increasingly felt, the need for comprehensive climate

monitoring is generally accepted. While mankind is primarily affected by meteorological
manifestations of climate variability, large-amplitude weather fluctuations often screen the

atmospheric climate signal. In practice, atmospheric climate observation proves prohibitively
intricate. Alternatively, estimates of the state of the ocean interior with its enormous capacity
to store and distribute water, heat and radiatively active trace substances (such as carbon diox¬

ide) provide direct evidence of the climate signal. As the dominating climate component, the

ocean acts as a Markov Integrator of atmospheric noise, provides the memory of the climate

system and sets time-scales of climate processes by (at least partly) predictable transport
mechanisms. Thus, practical climate monitoring anchors on operational ocean state estima¬

tion.

Novel ocean observation techniques provide a global data base for such estimates. For a num¬

ber of parameters, these observations are available almost in real-time and at mesoscale reso¬

lution. Assimilators utilize numerical circulation models to dynamically extrapolate ocean ob¬

servations in space-time and phase space and, at the same time, constrain model uncertainties.

In a pre-operational study, PRAOMS assimilated successfully a combination of data sets from

different sources (space-based observations, hydrographical data, re-analysis values) with the

adjoint version of the LSG-model and a sequential Kaiman Filter of the GROB HOPE model.
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Moreover, an adjoint version of the HOPE-C model had also been developed, but could not

yet be tested. Assimilation experiments produced an optimal synthesis of different data sets

consistent with the model representation of the laws of dynamics. Model-data differences be¬

tween the initial model state and the observations have been substantially reduced. In an op¬

erational framework, the tested assimilators improve future climate and weather forecast qual¬

ity.

Remaining residuals between model and data are related to the following uncertainties, which

also determine the challenges for future work in the field:

Model equations are assumed to be perfect and an explicit model error is not consid¬

ered in the inverse formulation. The results strongly depend on the way the model is

parameterised (e.g., internal friction, parameterisation of deep water formation, choice

of numerical scheme, model resolution, formulation of the boundary conditions

(Mikolajewicz and Maier-Reimer, 1994; Rahmstorf and England, 1997), or topogra¬

phy (McDermott, 1996)).
Uncertainties within the space-based and in situ observations, the sparse spatial distri¬

bution especially in the Southern Ocean, and the assumption of the observational dis¬

tribution function and variance influence adversely the quality of the assimilation ap¬

proach. Variability of property distributions in the deep sea ranges typically compara¬

ble with the magnitude of observational errors bars. Uncertainties of space-based ob¬

servations may be caused by errors related to cloud coverage or extraordinary aerosol

loadings e.g. due to volcanic eruptions which can bias nighttime retrievals up to 2-4 °C

(McClainetal.,1985).
Residuals might also be related to the approximations for non-linear processes due to a

limited integration time, a local minimum, weight of the penalty terms and/or the

choice of the first guess.

7 Outlook

Future experiments will also be carried out with the adjoint HOPE-C model. Special emphasis
could be placed on a systematic investigation of the sensitivity of the model's parameterisa-
tions (e.g., internal friction, parameterisation of deep water formation, choice of numerical

scheme, model resolution, formulation of the boundary conditions) by identical twin experi¬
ments. These improved parameterisations could be used for future data assimilation experi¬
ments including already available data such as space-based observations (e.g. EUMETSAT

http:
'

\s ww.cumetsat.de', MODIS, hup:
'

mndis-ocean.gsfc.nasa.gov/), reanalysis data from

the National Center for Environmental Prediction (NCEP), and data of sea ice coverage into

our assimilation scheme.

Efforts are made to develop a more detailed in situ observational monitoring system, which

will cover large parts of the world ocean in the near future. The Tropical Atmosphere Ocean

project (TAO) in the Equatorial Pacific (http://www.pmel.noaa.gov/tao/) is a successful ex¬

ample for such a continuous observing system. Other projects like the ARGO project
(http://www.noaa.gov) with more than 3,000 observation buoys will deliver large data sets of

temperature and salinity of the oceans. The computational efficiency of the adjoint C-HOPE
would allow us to use these data and the historical database to simulate the long-term trend in

the deep-sea circulation (Broecker, 1998).
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Tasks in the far future would be coupling of the inverse model to other climate subsystems
like the atmosphere (adjoint ECHO) and consideration of biogeochemical processes in the

model (currently developed at the Max-Planck-Institute for Meteorology).
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11 Appendix A: Example ofan Adjoint Program

Computer code from C-HOPE: subroutine RHOF1 (equation of state):

SUBROUTINE RH01(T,S,P,RH)
#include"PARAMl.h"

C ZUSTANDSGLEICHUNG

C UNTERPROGRAMM NACH ADRIAN GILL (ANHANG)
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c

DIMENSION S(IEJE),T(IEJE),RH(IEJE),S3H(IEJE)
DATAB0,Bl,B2,B3,B4/8.24493E-l,-4.0899E-3,7.6438E-5,

,-8.2467E-7,5.3875E-9/
DATAC0,C1,C2/-5.72466E-3,1.0227E-4,-1.6546E-6/
DATAD0/4.8314E-4/

DATAA0,Al,A2,A3,A4,A5/999.842594,6.793952E-2,
,-9.095290E-3,1.001685E-4,-1.120083E-6,6.536332E-9/
DATAF0,Fl,F2,F3/54.6746,-0.603459,

,1.09987E-2,-6.1670E-5/
DATAG0,Gl,G2/7.944E-2,1.6483E-2,-5.3009E-4/
DATAAI0,AIl,AI2/2.2838E-3,-1.0981E-5,-1.6078E-6/
DATAAJ0/1.91075E-4/

DATAAM0,AM1,AM2/-9.9348E-7,2.0816E-8,9.1697E-10/
DATA E0,E1,E2,E3,E4/19652.21,148.4206,-2.327105,
,1.360477E-2,-5.155288E-5/

DATAH0,Hl,H2,H3/3.239908,1.43713E-3,
,1.16092E-4,-5.77905E-7/

DATAAK0,AKl,AK2/8.50935E-5,-6.12293E-6,5.2787E-8/
C

A0=999.8426

F0=54.6746

E0=19652.21

El=148.4206

E2=-2.327105

NH=IEJE

C

C
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DO100N=l,NH

S(N)=MAX(S(N),28.)
S3H(N)=SQRT(S(N)**3)

100 CONTINUE

DO200N=l,NH

RH(N)=(A0+T(N)*(A1+T(N)
1 *(A2+T(N)*(A3+T(N)*(A4+T(N)*A5))))
1 +S(N)*(B0+T(N)*(B1+T(N)
1 *(B2+T(N)*(B3+T(N)*B4))))+D0*S(N)**2
++S3H(N)*(C0+T(N)*(C1+C2*T(N))) )

1 /(l.-P/(P*(
1 H0+T(N)*(H1+T(N)*(H2+T(N)*H3))
1 +S(N)*(AI0+T(N)*(AI1+AI2*T(N)))+AJ0*S3H(N)
1 +(AK0+T(N)*(AK1+T(N)*AK2)
1 +S(N)*(AM0+T(N)*(AM1+T(N)*AM2)))*P)+
1 E0+T(N)*(E1+T(N)*(E2+T(N)*(E3+T(N)*E4)))
1 +S(N)*(F0+T(N)*(F1+T(N)*(F2+T(N)*F3)))
1 +S3H(N)*(G0+T(N)*(G1+G2*T(N)))))

200 CONTINUE

RETURN

END

Adjoint computer code from C-HOPE: subroutine ADRHOF1

subroutine adrhofl( t, s, p, adt, ads, adp, adrh )

#include"PARAMl.h"

C ADJOINT BY A. WINGUTH 06/2001

C ZUSTANDSGLEICHUNG

C UNTERPROGRAMM NACH ADRIAN GILL (ANHANG)
C

C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.0 **

0============================================

C define arguments
C==========================================

real adrh(ieje)
real ads(ieje)
real adt(ieje)
real s(ieje)
real t(ieje)

C define local variables

0================================
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real ads3h(ieje)
real s3h(ieje)
real sh(ieje)

C define data

C==—

datab0,bl,b2,b3,b4/8.24493e-l,-4.0899e-3,7.6438e-5,-8.2467e-7,
$5.3875e-9/

data cO,c1 ,c2/-5.72466e-3,1.0227e-4,-1.6546e-6/
datad0/4.8314e-4/

dataa0,al,a2,a3,a4,a5/999.842594,6.793952e-2,-9.095290e-3,
$1.001685e-4,-1.120083e-6,6.536332e-9/
data fO,fl ,f2,f3/54.6746,-0.603459,1.09987e-2,-6.1670e-5/
datag0,gl,g2/7.944e-2,1.6483e-2,-5.3009e-4/
dataaiO,ail,ai2/2.2838e-3,-1.0981e-5,-1.6078e-6/
dataaj0/1.91075e-4/
dataam0,aml,am2/-9.9348e-7,2.0816e-8,9.1697e-10/
datae0,el,e2,e3,e4/19652.21,148.4206,-2.327105,1.360477e-2,-
$5.155288e-5/

datah0,hl,h2,h3/3.239908,1.43713e-3,1.16092e-4,-5.77905e-7/
dataakO,akl,ak2/8.50935e-5,-6.12293e-6,5.2787e-8/

C

C SAVE ARGUMENTS

C

do ipl = 1, ieje
sh(ipl) = s(ipl)
end do

C

C RESET LOCAL ADJOINT VARIABLES

C

do ipl = 1, ieje
ads3h(ipl) = 0.

end do

C

C ROUTINE BODY

C

aO = 999.8426

fO = 54.6746

e0= 19652.21

el = 148.4206

e2 = -2.327105

nh = ieje
don= Lnh
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s(n) = max(s(n),28.)

s3h(n) = sqrt(s(n)**3)
end do

do n = 1, nh

adp = adp+adrh(n)*((a0+t(n)*(al+t(n)*(a2+t(n)*(a3+t(n)*(a4+t(n)*
Sa5))))+s(n)*(b0+t(n)*(bl+t(n)*(b2+t(n)*(b3+t(n)*b4))))+d0*s(n)**2+
$s3h(n)*(c0+t(n)*(cl+c2*t(n))))*(l/(p*(h0+t(n)*(hl+t(n)*(h2+t(n)*
$h3))+s(n)*(aiO+t(n)*(ail+ai2*t(n)))+ajO*s3h(n)+(akO+t(n)*(akl+t(n)
$*ak2)+s(n)*(am0+t(n)*(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)*(e2+t(n)
$*(e3+t(n)*e4)))+s(n)*(fO+t(n)*(fl+t(n)*(f2+t(n)*ß)))+s3h(n)*(gO+
$t(n)*(gl+g2*t(n))))-p*(p*(ak0+t(n)*(akl+t(n)*ak2)+s(n)*(am0+t(n)*
$(aml+t(n)*am2)))+h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(ai0+t(n)*
$(ail+ai2*t(n)))+ajO*s3h(n)+(akO+t(n)*(akl+t(n)*ak2)+s(n)*(amO+t(n)
$*(aml+t(n)*am2)))*p)/((p*(h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*
S(aiO+t(n)*(ail+ai2*t(n)))+ajO*s3h(n)+(akO+t(n)*(akl+t(n)*ak2)+s(n)
$*(am0+t(n)*(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*
$e4)))+s(n)*(fO+t(n)*(fl+t(n)*(f2+t(n)*f3)))+s3h(n)*(gO+t(n)*(gl+
$g2*t(n))))*(p*(h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(ai0+t(n)*(ail+
$ai2*t(n)))+aj0*s3h(n)+(ak0+t(n)*(akl+t(n)*ak2)+s(n)*(am0+t(n)*
$(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*
$(f0+t(n)*(fl+t(n)*(f2+t(n)*f3)))+s3h(n)*(g0+t(n)*(gl+g2*t(n))))))/
$((L-p/(p*(hO+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(aiO+t(n)*(ail+ai2*
$t(n)))+ajO*s3h(n)+(akO+t(n)*(akl+t(n)*ak2)+s(n)*(amO+t(n)*(aml+
$t(n)*am2)))*p)+eO+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(fO+
$t(n)*(fl+t(n)*(f2+t(n)*O)))+s3h(n)*(g0+t(n)*(gl+g2*t(n)))))*(l.-
$p/(p*(h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(ai0+t(n)*(ail+ai2*t(n))
$)+ajO*s3h(n)+(akO+t(n)*(akl+t(n)*ak2)+s(n)*(amO+t(n)*(aml+t(n)*
$am2)))*p)+eO+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(fO+t(n)*
$(fl+t(n)*(f2+t(n)*f3)))+s3h(n)*(g0+t(n)*(gl+g2*t(n)))))))
ads(n) = ads(n)+adrh(n)*((b0+t(n)*(bl+t(n)*(b2+t(n)*(b3+t(n)*b4)

$))+2*d0*s(n))/(l.-p/(p*(h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(ai0+
$t(n)*(ail+ai2*t(n)))+aj0*s3h(n)+(ak0+t(n)*(akl+t(n)*ak2)+s(n)*
$(am0+t(n)*(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*
$e4)))+s(n)*(f0+t(n)*(fl+t(n)*(f2+t(n)*f3)))+s3h(n)*(g0+t(n)*(gl+
$g2*t(n)))))-(a0+t(n)*(al+t(n)*(a2+t(n)*(a3+t(n)*(a4+t(n)*a5))))+
$s(n)*(b0+t(n)*(bl+t(n)*(b2+t(n)*(b3+t(n)*b4))))+d0*s(n)**2+s3h(n)*
$(cO+t(n)*(cl+c2*t(n))))*(p*(p*(aiO+t(n)*(ail+ai2*t(n))+(amO+t(n)*
$(aml+t(n)*am2))*p)+fO+t(n)*(fl+t(n)*(f2+t(n)*f3)))/((p*(hO+t(n)*
$(hl+t(n)*(h2+t(n)*h3))+s(n)*(ai0+t(n)*(ail+ai2*t(n)))+aj0*s3h(n)+
$(akO+t(n)*(akl+t(n)*ak2)+s(n)*(amO+t(n)*(aml+t(n)*am2)))*p)+eO+
$t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(f0+t(n)*(fl+t(n)*(f2+
$t(n)*O)))+s3h(n)*(g0+t(n)*(gl+g2*t(n))))*(p*(h0+t(n)*(hl+t(n)*
$(h2+t(n)*h3))+s(n)*(aiO+t(n)*(ail+ai2*t(n)))+ajO*s3h(n)+(akO+t(n)*
$(ak1+t(n)*ak2)+s(n)*(am0+t(n)*(am 1+t(n)*am2)))*p)+e0+t(n)*(e1+t(n)
$*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(f0+t(n)*(n+t(n)*(f2+t(n)*f3)))+
$s3h(n)*(g0+t(n)*(gl+g2*t(n))))))/((l.-p/(p*(h0+t(n)*(hl+t(n)*(h2+
St(n)*h3))+s(n)*(ai0+t(n)*(ail+ai2*t(n)))+aj0*s3h(n)+(ak0+t(n)*
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$(akl+t(n)*ak2)+s(n)*(am0+t(n)*(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)
$*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(f0+t(n)*(fl+t(n)*(f2+t(n)*f3)))+
$s3h(n)*(g0+t(n)*(gl+g2*t(n)))))*(l.-p/(p*(h0+t(n)*(hl+t(n)*(h2+
$t(n)*h3))+s(n)*(ai0+t(n)*(ail+ai2*t(n)))+ajO*s3h(n)+(ak0+t(n)*
$(akl+t(n)*ak2)+s(n)*(am0+t(n)*(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)
$*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(fO+t(n)*(fl+t(n)*(f2+t(n)*f3)))+
$s3h(n)*(g0+t(n)*(gl+g2*t(n)))))))
ads3h(n) = ads3h(n)+adrh(n)*((cO+t(n)*(cl+c2*t(n)))/(l.-p/(p*

$(hO+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(aiO+t(n)*(ail+ai2*t(n)))+
$ajO*s3h(n)+(akO+t(n)*(akl+t(n)*ak2)+s(n)*(amO+t(n)*(aml+t(n)*am2))
$)*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(f0+t(n)*(fl+
$t(n)*(f2+t(n)*f3)))+s3h(n)*(g0+t(n)*(gl+g2*t(n)))))-(a0+t(n)*(al+
$t(n)*(a2+t(n)*(a3+t(n)*(a4+t(n)*a5))))+s(n)*(b0+t(n)*(bl+t(n)*(b2+
$t(n)*(b3+t(n)*b4))))+d0*s(n)**2+s3h(n)*(c0+t(n)*(cl+c2*t(n))))*(p*
$(p*aj0+g0+t(n)*(gl+g2*t(n)))/((p*(h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+
$s(n)*(ai0+t(n)*(ail+ai2*t(n)))+aj0*s3h(n)+(ak0+t(n)*(akl+t(n)*ak2)
$+s(n)*(amO+t(n)*(aml+t(n)*am2)))*p)+eO+t(n)*(el+t(n)*(e2+t(n)*(e3+
$t(n)*e4)))+s(n)*(fD+t(n)*(fl+t(n)*(f2+t(n)*f3)))+s3h(n)*(gO+t(n)*
S(gl+g2*t(n))))*(p*(h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(ai0+t(n)*
$(ail+ai2*t(n)))+aj0*s3h(n)+(ak0+t(n)*(akl+t(n)*ak2)+s(n)*(am0+t(n)
$*(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)
$*(fO+t(n)*(fl+t(n)*(f2+t(n)*f3)))+s3h(n)*(gO+t(n)*(gl+g2*t(n))))))
$/((L-p/(p*(hO+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(aiO+t(n)*(ail+
$ai2*t(n)))+ajO*s3h(n)+(akO+t(n)*(akl+t(n)*ak2)+s(n)*(amO+t(n)*
$(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*
$(f0+t(n)*(fl+t(n)*(f2+t(n)*ß)))+s3h(n)*(g0+t(n)*(gl+g2*t(n)))))*
$(L-p/(p*(hO+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(aiO+t(n)*(ail+ai2*
$t(n)))+ajO*s3h(n)+(akO+t(n)*(akl+t(n)*ak2)+s(n)*(amO+t(n)*(aml+
$t(n)*am2)))*p)+eO+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(fD+
$t(n)*(fl+t(n)*(f2+t(n)*f3)))+s3h(n)*(g0+t(n)*(gl+g2*t(n)))))))
adt(n) = adt(n)+adrh(n)*((t(n)*(t(n)*(t(n)*(t(n)*a5+a4+t(n)*a5)+

$a3+t(n)*(a4+t(n)*a5))+a2+t(n)*(a3+t(n)*(a4+t(n)*a5)))+al+t(n)*(a2+
$t(n)*(a3+t(n)*(a4+t(n)*a5)))+s(n)*(t(n)*(t(n)*(t(n)*b4+b3+t(n)*b4)
$+b2+t(n)*(b3+t(n)*b4))+bl+t(n)*(b2+t(n)*(b3+t(n)*b4)))+s3h(n)*
$(t(n)*c2+cl+c2*t(n)))/(l.-p/(p*(h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+
$s(n)*(ai0+t(n)*(ail+ai2*t(n)))+aj0*s3h(n)+(ak0+t(n)*(akl+t(n)*ak2)
$+s(n)*(am0+t(n)*(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+
$t(n)*e4)))+s(n)*(f0+t(n)*(fl+t(n)*(f2+t(n)*f3)))+s3h(n)*(g0+t(n)*
$(gl+g2*t(n)))))-(a0+t(n)*(al+t(n)*(a2+t(n)*(a3+t(n)*(a4+t(n)*a5)))
$)+s(n)*(b0+t(n)*(bl+t(n)*(b2+t(n)*(b3+t(n)*b4))))+d0*s(n)**2+
$s3h(n)*(c0+t(n)*(cl+c2*t(n))))*(p*(p*(t(n)*(t(n)*h3+h2+t(n)*h3)+
$hl+t(n)*(h2+t(n)*h3)+s(n)*(t(n)*ai2+ail+ai2*t(n))+(t(n)*ak2+akl+
$t(n)*ak2+s(n)*(t(n)*am2+aml+t(n)*am2))*p)+t(n)*(t(n)*(t(n)*e4+e3+
$t(n)*e4)+e2+t(n)*(e3+t(n)*e4))+el+t(n)*(e2+t(n)*(e3+t(n)*e4))+s(n)
$*(t(n)*(t(n)*f3+f2+t(n)*f3)+fl+t(n)*(f2+t(n)*D))+s3h(n)*(t(n)*g2+
$gl+g2*t(n)))/((p*(h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(ai0+t(n)*
$(ail+ai2*t(n)))+aj0*s3h(n)+(ak0+t(n)*(akl+t(n)*ak2)+s(n)*(am0+t(n)
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$*(aml+t(n)*am2)))*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)
$*(fD+t(n)*(fl+t(n)*(f2+t(n)*f3)))+s3h(n)*(gO+t(n)*(gl+g2!l!t(n))))*
S(p*(h0+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(ai0+t(n)*(ail+ai2*t(n)))+
$aj0*s3h(n)+(ak0+t(n)*(akl+t(n)*ak2)+s(n)*(am0+t(n)*(aml+t(n)*am2))
$)*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(f0+t(n)*(n+
$t(n)*(f2+t(n)*f3)))+s3h(n)*(g0+t(n)*(gl+g2*t(n))))))/((l.-p/(p*
$(hO+t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(aiO+t(n)*(ail+ai2*t(n)))+
$ajO*s3h(n)+(akO+t(n)*(akl+t(n)*ak2)+s(n)*(amO+t(n)*(aml+t(n)*am2))
$)*p)+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(f0+t(n)*(fl+
$t(n)*(f2+t(n)*f3)))+s3h(n)*(gO+t(n)*(gl+g2*t(n)))))*(l.-p/(p*(hO+
$t(n)*(hl+t(n)*(h2+t(n)*h3))+s(n)*(ai0+t(n)*(ail+ai2*t(n)))+aj0*
$s3h(n)+(ak0+t(n)*(akl+t(n)*ak2)+s(n)*(am0+t(n)*(aml+t(n)*am2)))*p)
$+e0+t(n)*(el+t(n)*(e2+t(n)*(e3+t(n)*e4)))+s(n)*(f0+t(n)*(fl+t(n)*
$(f2+t(n)*f3)))+s3h(n)*(g0+t(n)*(gl+g2*t(n)))))))
adrh(n) = 0.

end do

do ipl = 1, ieje

s(ipl) = sh(ipl)
end do

don= l,nh

s(n) = max(s(n),28.)

ads(n) = ads(n)+3*ads3h(n)*l./(2.*sqrt(s(n)**3))*s(n)**2
ads3h(n) = 0.

do ipl = l,ieje

s(ipl) = sh(ipl)
end do

ads(n) = ads(n)*(0.5+sign(0.5,s(n)-28.))
end do

end

12 Appendix B: Algorithm for Testing Cost Gradient Produced by

the Adjoint Code

The cost gradient produced by the adjoint code can be tested by a taylor series expansion. The

gradient of the cost function can be in first order finite difference

dJr M

ity'Ty
<17)

Here we use the testing algorithm developed by Long (pers. comm.):

1. Run a control simulation Ro with unperturbed control variables 5b to produce a set of

"observations".
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2. Generate a first guess by perturbation of the control variables yr= 1.1 y0 and calcula¬

tion of the norm of \\yr ||= \Ly^ This defines the reference state at which the directional gra¬

dient will be computed, first with the adjoint then by finite differences.

3. Run the model with the reference initial conditions to get the reference cost Jr.

4. Run the adjoint model to get the reference gradient vector VJr by "backward" integra¬

tion ofthe adjoint model. Computation ofthe component in direction of yr :

dJr
_

y,VJ,

dy \\yX

(18)
5. Perturbation of the control variables yt

= at yr, with at = 1 +10 (2+,), i = 1,...,«. The

index i denotes the z-th perturbation of the reference state and the perturbation factor b, is a

number slightly larger than 1 (e.g. 1.001 for z'=l). The size of the perturbation is

A^lyJl2-|l^ll2=(0,-l)IIJU-
6. Run the model to get the corresponding value of the cost /,

J'~Jr (19)
(a,-l)\\yr\\2

should be 1 if truncation errors are neclected. Including7. The ratio ofl—^ /te^
dy)

truncation error, the ratio should converge linearly to 1 as dx gets very small until round-off

error becomes a problem.
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Top 18 Abstract

Novel observation techniques provide an essentially continuous stream of ocean

data of previously unknown detail. Scientific and operational exploitation
of this wealth requires a close linkage with numerical models of the global ocean

circulation. Such models yield the foundations for: simulation/assimilation and

ultimately understanding of the observational record, dynamical extrapolation of



data in space-time and phase space, quality assessment of models and data, reducing
observational expenditure. This model-data combination opens wide and new fields for

climate monitoring, oceanography and marine industries such as shipping, fisheries,

coastal industry etc.

PRAOMS tested and established software packages in simulation, assimilation and data

management for global ocean state estimation. As model components, the Hamburg LSG
Model and the GROB version of the Hamburg Ocean Primitive Equation Model HOPE were

considered for estimation. The LSG Model is taylored to the needs of global long-term

integrations in biogeochemistry and paleoceanography, while the HOPE Model with its

high-resolution regions allows even the study of mesoscale dynamics.

Advanced assimilation algorithms come as variational Adjoint Method and as sequential
Kaiman Filter. Both approaches were successfully tested and applied. For the LSG

Model, the adjoint code was developed and implemented. The LSG Adjoint was used to

assimilate buoyancy data of the World Ocean Atlas resulting in a significant
improvement of the representation of the water mass distribution, particularly in the

abyssal ocean. For GROB HOPE, the Fokker-Planck representation of the Kaiman Filter

was developed. This estimator was applied to the assimilation of daily global
sea-surface temperatures together with monthly subsurface temperatures from the

TAO/TRITON array in the equatorial Pacific for the El Nino year 1997. The model-data

combination significantly improves the representation of oceanic transport processes
associated with El Nino such as wave propagation, mixing and up- and down-welling.
The role of numerically induced diffusion is reduced to a realistic measure. The

estimate provides the basis for practically relevant short-term climate predictions.
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