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Abstract

Regional hyperthermia, a dinicd cancer therapy, is the main topic of the Sonderfor-
schungsbereich “Hyperthermia: Scientific Methods and Clinicd Applicaions’ at Berlin. In
recent yeas, technologicd improvements towards a better concentration of hea to the de-
sired target region have been achieved. These include a rather sophisticaed integrated
software environment for therapy planning and a new hyperthermia goplicaor. In a next
step, a detailed closed loop monitoring of the adual treament is to be developed. For this
purpaose the hyperthermia goplicator is combined with an MRI system, which will alow to
ched the positioning of the patients and to measure individual blood perfusion as well as
the 3D temperature distribution.

The basic ideais to use temperature measurements direaly for an on-line mntrol of the
whole treament. In this intended setting, new fast feedbad control algorithms will come
into play.
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1. Present Status of Hyperthermia Treatment Planning

Hyperthermia treatment planning has readed some first level of sophistication by the devel-
opment of HyperPlan from ZIB — for a short survey see[1]. For a convenient use in hospitals
the integrated software environment has been carefully designed and implemented (roughly
300.000ines of code & present) [2]. Stepsto be performed within HyperPlan are:

(a) Image acquisition— presently the inpu isin terms of 2D computer tomograms.

(b) Image segmentation — detail s of the individual patient's body must be segmented, which is
still a dall enging task.

(c) From the segmented 2D input a 3D grid petient is automaticaly generated, using dedi-
caed todsfor grid generation, parts of which have been espedally designed.

(d) On this grid petient as a so-cdl ed coarse grid adaptive multil evel finite dement methods
are gplied to solve bath Maxwell’ s equations (in the radio wave regime) and the biohea
transfer equation (linear and nonlinear). Detail s of these rather sophisticated recent nu-
mericd algorithms are givenin [3,4].

(e) The compational results are displayed by means of modern visuali zation tools which also
permit aflexible 3D interadion with the virtual models at each stage of the planning proc-
€ss

The paradigm underlying the treatment planning system is as foll ows. map the esentia fea
tures of an individual patient onto avirtual patient (s. Fig. 1), optimize the atenna parameters
in the virtual situation, apply the thus obtained optimal parametersin the real situation.



Fig.la Red patient during treament. Fig.1b Virtual patient for therapy planning.

2. Technological Developments

Even though the partial differential equation model isin parts far from being perfect, it never-
thelessalready serves the purpose of giving aredistic assessment of the possbiliti es of hyper-
thermia treament for an individual patient within a given applicator. In cases where Hyper-
Plan predicted insufficient hea concentration in the tumor, temperature measurements along
caheters have confirmed numericd simulations to an acaracy of 0.5 ! On this rather firm
basis our virtual lab HyperPlan can be directly applied for the tedindogical development
process

2.1. Design of New Applicators

The applicator shown in Fig.1 is the BSD Sigma 60 charaderized by a drcular cross £dion
and a set of 8 antennas which are cuped in pairs (k = 4 channels). On the basis of ealier
simulations by HyperPlan the new applicaor BSD Sigma Eye has been developed, which is
characterized by an eye-shaped cross ction and a set of 24 antennas, once again couged in
pairs (k=12). Typical therapy planning times on a Sun UltraSPARC workstation are:

old (k=4) \ new (k=12)
segmentation 2-4 h (semi-automatic)
grid generation 15 min
electric field calculation 80 min 120 min
temperature calcul ation 2min 20 min
temperature optimization 6 sec 1min

With our present algorithm the CPU time for the finite element calculation of the electric field
is proportional to k, whereas the temperature calculation is proportional to k2. Additionaly the
new applicator leads to a reduction of the number of necessary nodes due to a smaller cross
section. In passing we note that our Maxwell solver for the E-field calculation is presently
also used in the design of specialized antennas for hyperthermia




2.2 Frequency Studies

Within ou virtual lab all kinds of parameter studies are, of course, easy to perform. In view of
the MR frequency of 63 MHz at 1.5 Tedla (seeSection 2.3 the question d how to choase the
radio frequency once again deserves careful consideration. Recently Paulsen [5], on the basis
of electricd power depasition cdculations, has pointed ou that frequencies beyond 100MHz
might be preferable. His numericd computations were done using an agorithm based on
nodal tetrahedral finite dements for the magnetic field H — which may in rare, bu unpredict-
able caes introduce unphysicd spurious lutions. From this the dedric field E ~ rot H is
ohtained by differencing the linear tetrahedral elements — a procedure which loses one order
of acaracy in terms of the mesh size.

Therefore, we performed numericd simulations to study the frequency dependence of the
optimized temperature distributions for a set of virtual patients. Our first calculations clealy
badk the suggestions of Paulsen: frequencies around 200MHz leal to better tumor heding
together with a better suppresson d hat spatsin hedthy tissue.

2.3 Combined MRI / Hyperther mia Systems

Combined systems using MR imaging and radio wave hedaing have been developed recently.
Within Germany, a cmmbined system including an open field MR device has been install ed at
the university hospital Grof3hedern, Munich, in the group of Issels. Another system, using
conventional MRI, will be set up at the university hospital Charité, Berlin, in the group d
Felix and Wust.

Fig. 22 Hyperthermia gpli cator combined with a conventional MR system.

One avantage of the conventional version is that stronger magnetic fields can be used (1.5
Tesla ommpared to 0.2Tesla), which implies a better signal-to-noise ratio. Moreover the @n-
ventional setting leals to a more desirable homogeneous magnetic field. On the other hand,
the open field system permits an easier accessto petient and applicator, and is preferable in
view of electromagnetic compatibility (EMC).

The main expedations conneded with any such system are (a) an even more reaistic map-
ping of individual patients onto virtual patients, since MRI is known to give abetter resolu-
tion d soft tisaue, and (b) the avail ability of additional information, which can be exploited
for feadback control of the whale treament for individual patients in situ. Relevant informa-
tion oldainable from MRI is:



(a) Patient positioning: During a CT scan patients lie stretched on a couch, whereas during
treament they lie in adlightly bent pasition in a hammock.

(b) Eledric properties of different tisaues, which presently enter only as averages, can be
measured during the treament. Frankly spe&king, however, sensitivity considerations
sean to indicate that these wefficients do nd enter crucially into the mathematicd model.

(c) Blood perfusion, however, may be of crucial importance for the distribution o heat within
the patient's body — ignoring up to now the local effects of strong blood \vessEls. MRI
permits a rough measurement of this quantity as afunction d position and locd tempera-
ture.

(d) 3D temperature distribution: The general experimental ideais to measure temperature
dependent quantities via MR, such as the T1 relaxation time [6], diffusion[7], or the fre-
quency shift of proton resonance [8] and deduce from these the temperature. The &soci-
ated error tolerances are 2.0 €, 0.8 €, and 0.6°C, respedively. Currently we regard the
latter method as the most promising one.

With fast measurements of that kind avail able, we plan to construct closed feedback loops:
on-line measurement, on-line insertion d actual parameters into the mathematicd models,
computation d feadback control for optimal therapy, and, finally, adaptation o parametersin
the red therapy. These feadback techniques shoud be ale to improve both ou therapy plan-
ning and aur therapy for ead individual patient during eadh treament.
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