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Abstract. The effect of observational constraint on the
ranges of uncertain physical and chemical process param-
eters was explored in a global aerosol–climate model. The
study uses 1 million variants of the Hadley Centre General
Environment Model version 3 (HadGEM3) that sample 26
sources of uncertainty, together with over 9000 monthly ag-
gregated grid-box measurements of aerosol optical depth,
PM2.5, particle number concentrations, sulfate and organic
mass concentrations. Despite many compensating effects in
the model, the procedure constrains the probability distribu-
tions of parameters related to secondary organic aerosol, an-
thropogenic SO2 emissions, residential emissions, sea spray
emissions, dry deposition rates of SO2 and aerosols, new par-
ticle formation, cloud droplet pH and the diameter of pri-
mary combustion particles. Observational constraint rules

out nearly 98 % of the model variants. On constraint, the
±1σ (standard deviation) range of global annual mean di-
rect radiative forcing (RFari) is reduced by 33 % to −0.14
to −0.26 Wm−2, and the 95 % credible interval (CI) is re-
duced by 34 % to −0.1 to −0.32 Wm−2. For the global an-
nual mean aerosol–cloud radiative forcing, RFaci, the ±1σ
range is reduced by 7 % to −1.66 to −2.48 Wm−2, and the
95 % CI by 6 % to −1.28 to −2.88 Wm−2. The tightness
of the constraint is limited by parameter cancellation effects
(model equifinality) as well as the large and poorly defined
“representativeness error” associated with comparing point
measurements with a global model. The constraint could also
be narrowed if model structural errors that prevent simultane-
ous agreement with different measurement types in multiple
locations and seasons could be improved. For example, con-
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straints using either sulfate or PM2.5 measurements individ-
ually result in RFari±1σ ranges that only just overlap, which
shows that emergent constraints based on one measurement
type may be overconfident.

1 Introduction

Global model simulations of aerosols and their climatic ef-
fects are very uncertain. Different global aerosol models have
large spread in their simulations of aerosol microphysics, ra-
diation and forcing (Mann et al., 2014; Myhre et al., 2013;
Shindell et al., 2013; Tsigaridis et al., 2014). This multi-
model spread can be due to different model structures, miss-
ing processes, parameter settings, algorithms or coding er-
rors. Individual climate models are also very uncertain be-
cause the values of parameters related to physical processes
and emissions are often poorly defined (Johnson et al., 2018;
L. A. Lee et al., 2011, 2013; Regayre et al., 2018). The un-
certainty in the aerosol effective radiative forcing (ERF) over
the industrial period caused by aerosol processes, physical
atmosphere model processes and emissions could be as large
as the multi-model spread (Johnson et al., 2018; Regayre et
al., 2014, 2018).

There are two main methods to reduce model uncer-
tainty, often called bottom-up and top-down approaches. The
bottom-up approach involves improving the representation of
model processes and refining estimates of the associated pa-
rameter values through experiment and theory. This approach
is necessary to improve model fidelity, but it does not provide
an estimate of the model uncertainty, and the uncertainty may
grow if the increase in model complexity requires a large
number of new and poorly defined parameters. To reduce
model uncertainty, bottom-up model development needs to
be combined with top-down approaches in which numerous
uncertain process-related parameters and emissions are ad-
justed to improve the agreement of models with measure-
ments.

The difficulty with top-down model adjustments (in its
simplest form, model tuning) is that the uncertainty stems
from large combinations of uncertain model input parame-
ters. This means that the adjustment of small sets of parame-
ters to improve model agreement with measurements will not
produce robust results (Carslaw et al., 2018). For example,
a model simulation of particle concentrations could be im-
proved by adjusting particle formation rates, but many other
combinations of parameters related to emissions, chemistry
or deposition might be able to achieve similar model skill
(Carslaw et al., 2013b). Models that are narrowly tuned in
this way can therefore produce a wide range of results when
used to make predictions outside the range of conditions un-
der which they were tuned. This is likely to be a cause of
the large uncertainty in aerosol radiative forcing, which is a
predicted rather than observable quantity.

If other aerosol–climate models are comparable with our
own model, then they contain at least 20 important uncer-
tain parameters related to emissions and processes, although
fewer than about 10 parameters will dominate the uncertainty
in a particular model variable in any one environment and
time of year (Lee et al., 2016; Regayre et al., 2014, 2018).
Therefore, to define and reduce the model uncertainty, it
is necessary to find from within 10 dimensions of parame-
ter space all the parameter combinations that produce plau-
sible agreement with different aerosol properties observed
across all seasons and global environments. A single well-
configured version of a model produced by parameter tun-
ing tells us nothing about the combinations of parameter val-
ues that can achieve consistency with measurements within
their uncertainty range, nor does it tell us anything about the
model output uncertainty.

In this paper, we address the following question: to what
extent do extensive and diverse aerosol measurements enable
the plausible range of model parameters to be constrained
if the full range of their compensating effects is accounted
for? By “constrain”, we mean a narrowing of the probabil-
ity distribution of a parameter (and potentially the absolute
range) compared to the uncertainty range that was assumed
when the model was built. We also quantify how the identi-
fication of observationally plausible parameter ranges feeds
through to a reduction in the uncertainty in predictions of
aerosol radiative forcing over the industrial period. The study
focuses on model constraint using measurements of aerosol
properties rather than cloud properties; therefore, we empha-
sise the effect on aerosol–radiation interaction forcing rather
than aerosol–cloud interaction.

2 Methods

2.1 The HadGEM3-UKCA climate model

We use the Global Atmosphere 4 (GA 4.0; Walters et al.,
2014) configuration of the Hadley Centre General Environ-
ment Model version 3 (HadGEM3) (Hewitt et al., 2011),
which incorporates the United Kingdom Chemistry and
Aerosol (UKCA) model at version 8.4 of the UK Met Of-
fice’s Unified Model (UM). UKCA simulates trace gas chem-
istry and the evolution of the aerosol particle size distribu-
tion and chemical composition using the GLObal Model of
Aerosol Processes (GLOMAP-mode; Mann et al., 2010) and
a whole-atmosphere chemistry scheme (Morgenstern et al.,
2009; O’Connor et al., 2014). The model has a horizontal
resolution of 1.25× 1.875◦ and 85 vertical levels.

The aerosol size distribution is defined by seven log-
normal modes: one soluble nucleation mode as well as sol-
uble and insoluble Aitken, accumulation and coarse modes.
The aerosol chemical components are sulfate, sea salt, black
carbon (BC), organic carbon (OC) and dust. The model does
not include any representation of nitrate aerosols. Secondary
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organic aerosol (SOA) material is produced from the first-
stage oxidation products of biogenic monoterpenes under the
assumption of zero vapour pressure. SOA is combined with
primary particulate organic matter after kinetic condensation.

GLOMAP simulates new particle formation, coagulation,
gas-to-particle transfer, cloud processing and deposition of
gases and aerosols. The activation of aerosols into cloud
droplets is calculated using globally prescribed distribu-
tions of subgrid vertical velocities (West et al., 2014) and
the removal of cloud droplets by autoconversion to rain is
calculated by the host model. Aerosols are also removed
by impaction scavenging of falling raindrops according to
the parameterisation of clouds and precipitation collocation
(Boutle et al., 2014; Lebsock et al., 2013). Aerosol water
uptake efficiency is determined by κ-Kohler theory (Petters
and Kreidenweis, 2007) using composition-dependent hy-
groscopicity factors.

Anthropogenic emission scenarios prepared for the At-
mospheric Chemistry and Climate Model Intercomparison
Project (ACCMIP) and prescribed in some of the CMIP
phase 5 experiments are used here. Biomass burning emis-
sions for recent decades were prescribed using a 10-year av-
erage of 2002 to 2011 monthly mean data from the Global
Fire and Emissions Database (GFED3; van der Werf et al.,
2010) and according to Lamarque et al. (2010) for 1850. Vol-
canic SO2 emissions are prescribed in the model by combin-
ing emissions from the Andres and Kasgnoc (1998) dataset
for continuously erupting and sporadically erupting volca-
noes and the Halmer et al. (2002) dataset for explosive vol-
canoes.

A full description of the set-up for our model simulations
can be found in Yoshioka et al. (2019), which we summarise
here. The base model simulation was subject to a multi-year
spin-up period. Parameter perturbations were then applied
distinctly to individual ensemble members (which branch
from the base model) and spun up for a further month. We
then ran each simulation for a further 12 months to pro-
duce the data used here. Horizontal winds and temperatures
in the simulations are nudged towards European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-Interim
reanalyses for 2008 between approximately 1.2 and 80 km
using a 6 h relaxation timescale. Nudging means that pairs
of simulations have identical synoptic-scale features, which
enables the effects of perturbations to aerosol and chemical
processes to be quantified using single-year simulations, al-
though the magnitude of forcing will vary with the chosen
year (Fiedler et al., 2019; Yoshioka et al., 2019).

2.2 Creation of perturbed parameter model variants

Our method to determine observational constraint on the
model parameters and radiative forcings involves producing
a very large set of “model variants”, each with a different
combination of parameter values, and then ruling out model
variants for which a set of model outputs are judged to be

implausible against measurements (see Sect. 2.4). The model
variants were generated using a perturbed parameter ensem-
ble (PPE) of 235 model simulations of HadGEM3-UKCA
(the “AER PPE” detailed in Yoshioka et al., 2019) that sam-
ples 26 sources of uncertainty in the aerosol model (Carslaw
et al., 2017; Yoshioka et al., 2019); see Table A1 in Ap-
pendix A.

A set of 235 simulations alone is much too small to allow
statistical analysis of model performance across 26 dimen-
sions of parameter space. We therefore built Gaussian pro-
cess emulators (surrogate models) using the PPE simulations
as training data (L. A. Lee et al., 2011), which define how
the model outputs vary continuously over the 26-dimensional
parameter space and enable dense sampling over parame-
ter uncertainty. Separate emulators were built describing the
monthly mean value of each model output in each model grid
cell. We then used Monte Carlo sampling from these emula-
tors to produce output for a set of 1 million model variants
(parameter input combinations). Uniform distributions were
assumed for each parameter in this sampling. The emulator
is not a perfect representation of a model output, but its un-
certainty can be estimated and accounted for in the model–
measurement comparison. In the rest of this paper, we refer
to the emulator-derived values of model outputs at each sam-
pled 26 d input combination as a “model variant”.

The AER PPE samples only uncertainties in the aerosol
component of the model and the radiative forcing does not
account for atmospheric and cloud adjustments; i.e. it is
a radiative forcing (RF) rather than an effective radiative
forcing, which we analysed in previous papers (Johnson et
al., 2018; Regayre et al., 2018). The prior (unconstrained)
95 % credible interval (CI) of global mean aerosol RF is
−2.23±0.94 Wm−2. However, because of the way that mul-
tiple parameters compensate (Lee et al., 2016; Regayre et al.,
2018), the forcing uncertainty in this PPE is similar to the
aerosol–atmosphere (AER-ATM) PPE in which additional
physical atmosphere model parameters were perturbed and
cloud adjustments accounted for (Yoshioka et al., 2019). Be-
cause the AER PPE analysed here samples only aerosol un-
certainties, we restrict the constraints to measurements of
aerosol properties. In future work, we will extend the anal-
ysis to radiation, precipitation and cloud measurements that
are relevant to the wider range of parameters in the AER-
ATM PPE.

The choice of the 26 perturbed parameters and their un-
certainty ranges were defined using expert elicitation (Yosh-
ioka et al., 2019). The parameters (Table A1; full descriptions
are given in Yoshioka et al., 2019) relate to natural and an-
thropogenic emission fluxes of aerosol precursor gases and
primary particles, the properties of primary particles (size),
aerosol processes, aerosol hygroscopicity, removal rates and
cloud droplet formation (updraft speed). The list of parame-
ters is not exhaustive, but one-at-a-time parameter perturba-
tion tests were used to show that any other parameters have
a smaller effect regionally and globally in our model than
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the set we chose. Finally, we note that the evaluated uncer-
tainty in global annual mean RF in this study differs from
that shown in Yoshioka et al. (2019) as we have used uni-
form parameter distributions when sampling over the param-
eter uncertainty space, while elicited parameter distributions
were used in Yoshioka et al. (2019). Our choice to use uni-
form distributions here means that the constraint can be fully
attributed to the model–measurement comparison.

2.3 Measurements

We use aerosol measurements from ground stations, ship
campaigns and aircraft campaigns covering the follow-
ing aerosol properties: aerosol optical depth (AOD), PM2.5
concentrations, sulfate mass concentrations, organic carbon
mass concentrations and number concentrations of particles
larger than 3 nm dry diameter (N3) and 50 nm dry diame-
ter (N50); see Appendix B and Table S1 in the Supplement.
All measurements used are from within the boundary layer,
which we define to be at an atmospheric pressure greater than
800 hPa. We do not attempt to constrain aerosol properties
above the boundary layer.

The measurements were all made at specific locations and
times (i.e. they are “point measurements”) in the period from
October 1995 to December 2015, and we use measurements
from all years within this period regardless of whether the
year of the measurement matches the year of the PPE model
simulations. (We take account of the interannual differences
by incorporating an error term in the constraint process; see
Sect. 2.4.) The measurements were aggregated to monthly
mean values in grid cells of size 2.50◦ longitude by 3.75◦

latitude (four model grid boxes of the N96 model grid). In
cases where there is more than one measurement in a model
grid cell, the observed values were averaged. This processing
resulted in 9464 monthly aggregated grid-box measurements
(over six aerosol properties and 12 months). Figure 1 shows
the global spatial coverage of the gridded measurements for
each aerosol property, along with the monthly temporal cov-
erage for each measurement, which is indicated by the colour
scale. Table 1 shows the breakdown of the number of grid-
box measurements by variable and month.

The AOD data are level-2.0 (quality assured) monthly
mean data at 440 nm wavelength from the AERONET
(Aerosol Robotic Network) network (Giles et al., 2019; Hol-
ben et al., 1998). Our dataset includes an average of 312
aggregated grid-box measurements for comparison in each
month. Figure 1 shows that the measurements are well dis-
tributed across all continental regions except Antarctica. The
coverage at high northern latitudes is relatively sparse, and
there are only a small number of island measurement that are
representative of marine aerosol environments. The temporal
coverage is very good, with the majority of stations providing
measurements in all months of the year.

The PM2.5 and sulfate concentration data come from
multiple large networks. The sulfate concentration data are

Table 1. The number of monthly aggregated grid-box measure-
ments for each variable in each month. The total number over all
months and all variables is 9464.

AOD Sulfate PM2.5 OC N3 N50

Jan 294 149 168 6 13 77
Feb 301 148 168 14 13 90
Mar 309 151 170 82 13 148
Apr 316 151 170 74 12 199
May 322 149 167 23 12 64
Jun 320 150 170 23 12 96
Jul 323 148 172 23 13 115
Aug 326 148 169 23 13 109
Sep 321 147 166 22 13 133
Oct 315 147 165 41 13 119
Nov 309 146 168 37 13 155
Dec 298 147 169 15 12 67

Total 3754 1781 2022 383 152 1372

from the Interagency Monitoring of Protected Visual Envi-
ronments (IMPROVE) network (USA), the European Mon-
itoring and Evaluation Programme (EMEP) network and
the Acid Deposition Monitoring Network in East Asia
(EANET). For PM2.5, we use data from the IMPROVE net-
work, the World Data Centre for Aerosols (WDCA) (Eu-
ropean sites), the Asia-Pacific Aerosol Database (A-PAD)
and the Canadian National Air Pollution Surveillance Pro-
gram (NAPS). Other PM2.5 measurements are included from
smaller networks and individual stations in Australia, South
America, Taiwan and South Africa, as well as sulfate and
PM2.5 data recorded at the Station for Observing Regional
Processes of the Earth System (SORPES) in Nanjing, East
China. The PM2.5 data (except for the SORPES site) were
obtained, processed and gridded to the N96 model grid as
described in Browse et al. (2019). Figure 1 shows that these
PM2.5 and sulfate measurements are highly clustered over
polluted land areas of the Northern Hemisphere, mostly in
North America and Europe with limited coverage elsewhere,
especially in remote and marine areas. Nearly all stations in
these datasets have full temporal coverage, leading to ap-
prox. 150 and 170 aggregated grid-box measurements for
comparison in each month for PM2.5 and sulfate, respectively
(Table 1).

For N50 particle concentrations and OC concentrations,
we have a mixture of measurements from a small number of
land-based ground stations along with measurements taken
over marine environments from ship and aircraft campaigns
(see Appendix B and Table S1 in the Supplement). The N50
concentration data were mainly derived from size distribu-
tion measurements and gridded to the N96 model grid as
described in Browse et al. (2019). The amount of campaign
data, and hence global spatial coverage in the gridded data,
is greater forN50 than for OC (Fig. 1), and the number of ag-
gregated grid-box measurements is variable between months
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Figure 1. The distribution of measurements used in the constraint. The colours indicate the number of months covered by the measurements
(although the data may not cover all days within a month).

(Table 1). Due to the nature of field campaigns, the temporal
coverage is much sparser for these variables, with each cam-
paign only measuring for 1–3 months of the year, shown by
the blue colours for the data of these variables in Fig. 1.

The measurement data for N3 particle concentration have
the smallest number of grid-box measurements over the year
and spatially is the sparsest dataset included here. The data
for this aerosol property come from only 13 ground stations
(ACTRIS; Asmi et al., 2013), which are mostly located in
Europe, with one in the Arctic, one in Antarctica and one in
northern India. The N3 concentrations at each site were de-
rived directly by integrating size distribution measurements.
These data were then averaged over multiple years for each
month and location by the authors.

2.4 Constraint methodology

We apply the statistical methodology of history matching,
which has been applied to complex models in a range of
fields, including epidemiological modelling of virus trans-
mission (Andrianakis et al., 2017), risk assessment for oil
field developments (Craig et al., 1997), modelling galaxy for-
mation (Rodrigues et al., 2017) and climate modelling (Ed-
wards et al., 2011; McNeall et al., 2016; Williamson et al.,
2013). The methodology is described in detail in previous pa-
pers (Johnson et al., 2018; Regayre et al., 2018), which built
upon our earlier study (Lee et al., 2016). We therefore de-
scribe the overall methodology only briefly here but present
a full description of the new aspects related to using real mea-
surements rather than “synthetic” measurements (Johnson et
al., 2018).

In the comparison of the model and measurements, we ac-
count for emulator uncertainty, measurement uncertainty (in-
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strument error), representativeness uncertainties (caused by
spatial and temporal mismatches in resolution and sampling
between model and measurements) and potential structural
model uncertainty. The model–measurement difference to-
gether with these measures of uncertainty is incorporated into
an “implausibility measure” and our model constraint proce-
dure in order to identify implausible parts of parameter space
(model variants).

2.4.1 Implausibility measure

The implausibility metric I (x) is calculated for each of the
1 million model variants x, for each gridded measurement.
I (x)weights the difference between the model and measure-
ments by the uncertainties associated with the comparison
(Craig et al., 1996; Williamson et al., 2013)

I (x)=
|M −O |

√
[Var(M)+Var(O)+Var(R)+Var(S)]

, (1)

whereM is the estimate of model output calculated using the
emulator and O is the observed value (the measurement). In
the denominator, Var(M) is the variance in the model esti-
mate (associated with replacing the model with the emula-
tor), Var(O) is the variance in the measurement (i.e. instru-
ment or retrieval uncertainty), Var(R) is the variance asso-
ciated with the comparison of the model with the measure-
ments, called the representativeness error (Schutgens et al.,
2017, 2016a, b), and Var(S) is a model structural error term.

A low value of the implausibility metric indicates either
the model–measurement difference is small (i.e. the model is
skilful) or that the uncertainty in the denominator is large
(i.e. we cannot tell whether the model is skilful because
the uncertainties are too large). Therefore, the implausibility
metric allows model variants to be ruled out if the model–
measurement difference is large and we can be confident that
it is large.

The representativeness error Var(R) has three compo-
nents. Var

(
Rsp

)
(sp: spatial) accounts for uncertainty associ-

ated with spatial variability below the grid scale of the model,
which means that a point measurement may not be repre-
sentative of the grid-box mean (Schutgens et al., 2016b).
Var

(
Rtemp

)
(temp: temporal) accounts for the temporal sam-

pling of a measurement, which may not match the temporal
sampling of the model (e.g. a ship track through the grid box
over a short time period which is compared with a monthly
mean model value (Schutgens et al., 2016a). Var(Riav) (iav:
interannual variability) accounts for the fact that we some-
times match measurements and the model for the correct cal-
endar month but not for the correct year. This is necessary in
cases where we use measurements from years for which we
have not run the model. We assume that

Var(R)= Var
(
Rsp

)
+Var

(
Rtemp

)
+Var(Riav) . (2)

The magnitude of these errors is discussed in Sect. 2.4.2.

The structural error term Var(S) has been included in pre-
vious studies using the implausibility metric. It is intended to
represent an estimate of the potential structural error in the
model. Practically, however, we have no way to estimate this
term for all variables at all times and geographical locations.
We therefore set it to zero and instead use very large val-
ues of implausibility to point us towards potential structural
errors in the model–observation comparison and constraint
procedure, as described in Sect. 2.4.3.

2.4.2 Estimation of uncertainty terms

Our estimates of the uncertainty terms in Eq. (1) are prelim-
inary and are designed to test our approach. We discuss in
the conclusions the need to refine our understanding of these
uncertainty terms.

For all aerosol properties, we assume an instrument un-
certainty of 10 %, a spatial co-location uncertainty of 20 %
and a temporal sampling uncertainty of 10 % on the mea-
sured value. The spatial sampling uncertainty for monthly
mean aerosol properties is estimated based on Schutgens et
al. (2017, 2016b). These studies examined a typical spatially
heterogeneous continental environment where the sampling
error is dominated mainly by local aerosol sources that are
not resolved by the global model. The magnitude of uncer-
tainty is likely to vary globally (especially between land and
ocean), with surface measurements typically having larger
errors than column measurements and the magnitude of error
also depending on the location of a ground site with respect
to the grid-box centre, but we do not account for these varia-
tions. We base our estimate of the temporal sampling uncer-
tainty on Schutgens et al. (2016a), who quantified the error
associated with the different temporal sampling of models
and measurements (daily measurements or temporally spo-
radic measurements versus monthly mean model, etc.). The
emulator uncertainty is taken from the Gaussian error on the
emulator mean prediction, which is known for every param-
eter combination (i.e. each of the 1 million model variants).

The interannual uncertainty was defined to be the standard
deviation of monthly mean aerosol properties in each grid
cell over a 30-year period. We take information from an anal-
ysis of the trend and variation of gridded aerosol properties
in a HadGEM3-UKCA hindcast simulation over the period
of 1980–2009 (Turnock et al., 2015). For each month and
grid box, the monthly mean output of the aerosol variable of
interest for each year of the simulation was obtained. These
values were de-trended using linear regression and the result-
ing residuals were then analysed. We use a relative measure
of monthly mean uncertainty defined by the standard devia-
tion of these residuals divided by the de-trended mean. As an
example, Fig. 2 shows the relative standard deviation for the
surface-level N50 concentration in July.
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Figure 2. The relative standard deviation for surface-levelN50 con-
centration in July, used in the estimation of the interannual variabil-
ity component of representativeness error Riav.

2.4.3 Methodology for ruling out observationally
implausible parts of parameter space

There is an element of subjectivity involved in comparing a
model with point measurements and reaching a conclusion
about the fidelity of the model. The comparison may indicate
either (a) the model seems to be structurally adequate, but
the parameters need to be adjusted to optimise agreement,
or (b) the model is structurally deficient (i.e. there are miss-
ing or incorrect process representations in the model). Struc-
tural deficiencies may be apparent, for example, because the
model skill is particularly poor in one region or at one time of
year, or it is not possible to obtain good skill across multiple
variables simultaneously.

Our use of 1 million model variants and more than 9000
monthly aggregated grid-box measurements means that we
need to automate the model–measurement comparison pro-
cesses and detection of potential structural errors while also
using the measurements to rule out implausible parts of pa-
rameter space. The difficulties for us in detecting structural
errors are as follows: (a) we cannot inspect each of the 1 mil-
lion model variants individually, so we need to rely on sum-
mary statistics; (b) many of the aerosol point measurements
are spatially and temporally sparse, so we cannot easily de-
tect spatial and temporal changes in model skill that might in-
dicate structural error; (c) the measurements do not have the
same spatial distribution in all months (because of brief, lo-
calised field campaigns) so spatial–temporal biases are hard
to detect; (d) the uncertainty in each measurement (particu-
larly the representativeness error, Sect. 2.4.2) is spatially and
temporally heterogeneous and often very poorly defined.

Our approach is summarised in Fig. 3. It is designed to
rule out implausible parts of parameter space while avoiding
doing so in cases where the biases shared by many model
variants could be caused by structural errors in the model.

The steps are as follows:

1. The implausibility is quantified for each of the 1 mil-
lion variants across all measurements of a single type

in a particular month. Figure 4 shows an example for
the measurements ofN50 in July. For each measurement
(numbered on the horizontal axis in Fig. 4a), the distri-
bution of the implausibility over the variants is shown
by the bar representing the 95 % credible interval.

2. Measurements are identified for which 97.5 % of the
model variants have an implausibility I > 1. These
measurements are excluded from the constraint proce-
dure (shown in red in Fig. 4). We assume that this large
implausibility for the significant majority of variants in-
dicates that either there is a structural error in the model
or that the model is unable to represent these point mea-
surements because of its low spatial and temporal reso-
lution. An alternative explanation is a mismatch in the
model’s meteorological year to the year of the measure-
ment (Sect. 2.4.1). We flag these measurements for fur-
ther investigation of potential structural errors or under-
estimated error terms (these are not examined further in
this study).

3. Using all other measurements (where more model
variants have lower implausibility, shown in blue in
Fig. 4), we use the implausibility metric values to de-
cide whether to rule each variant out as implausible or
retain it as plausible. If we ruled out all model variants
with high implausibility for each measurement in turn
(treating the measurements independently, as in many
emergent constraint studies), we could end up ruling out
all parts of parameter space. Our criterion is therefore to
rule out a model variant if more than a defined fraction
(or number) of the measurements (tolerance T ) exceeds
a defined implausibility threshold (θ ). For example, we
might rule out a model variant if more than 20 % of mea-
surements exceed an implausibility of 3.5 (i.e. bias is
3.5 times the expected error).

We apply this approach to the set of measurements for each
variable (measurement type) in each month and then com-
bine the constraints to a joint constraint over months and/or
over variables such that if a variant is ruled out for any sin-
gle month/variable combination, then it is also ruled out in
the joint constraint. This method allows us to identify the set
of model variants that capably represent measurements of a
range of variables and across multiple locations and seasons.
We extensively explored various choices of the tolerance and
threshold values in each variable/month case and found that
the final constrained parameter ranges were reasonably ro-
bust, except when the number of measurements was small.

Our choices of the threshold and tolerance for each mea-
surement type are given in Table A2 in Appendix A. A wide
range of values were tested in each case, starting with a set
threshold of θ = 3.5 and iterating through increasing toler-
ances T up to a maximum of T = 33 % (1/3 of the measure-
ments), before further increasing θ by 0.5 (to a maximum of
θ = 4.5) and re-iterating over T in order to retain (approx-
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Figure 3. Flowchart detailing the process followed for each model variant xj , in using the calculated implausibility over a set ofm measure-
ments z= {z1,z2, · · ·,zm} (for a single output variable y) simultaneously to constrain the model uncertainty.

Figure 4. (a) The distribution of implausibility calculated over the 1 million model variants for each measurement in the July N50 concen-
tration set, shown vertically. For each measurement, numbered along the x axis, the range of the implausibility distribution is shown by the
outer crosses, the bar corresponds to the 95 % credible interval (2.5 % to 97.5 % empirical quantiles), the horizontal markers through the bar
show the interquartile range, and the square point is the median implausibility. Here, we assume no structural error term in the implausibility
calculations and use the implausibility distribution to identify potential structural errors. Measurements coloured red are ruled out as poten-
tial structural error cases (as the lower 95 % credible interval bound is > 1), and those coloured blue are retained and used in our constraint
procedure. (b) Corresponding map to show the locations of the rejected JulyN50 measurements (red) and those retained for constraint (blue),
over the North Pacific and North American region (outside this region, all measurements were retained). We hypothesise that the red points
over the Pacific correspond to ports with localised pollution sources, while the red points over Canada correspond to localised fire emissions
that are not represented at the resolution of the model.

imately) a chosen percentage of model variants. Approxi-
mately the same percentage of variants was attained for all
months of a variable type and combined for an “all-months”
constraint. Our final choices for each variable type on its own
(left column in Table A2) were relaxed for the joint “all-
variables-months” constraint (retaining a larger percentage
of variants in each month for each variable, so a weaker con-
straint; right column in Table A2), in order to retain a reason-

able number of model variants and avoid overconstraining on
any one observational type.

Our assumption of zero structural error (Var(S)= 0) in
the implausibility calculations means that structural errors
in the model can easily come to light in our constraint pro-
cess. This occurs either in the calculated implausibility val-
ues for a measurement (where large values are consistently
produced over the 1 million variants covering the model
uncertainty, indicating a large model–measurement discrep-
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ancy, e.g. Fig. 4) or when bringing together the constraint
effects of different sets/types of measurements (where very
few, if any, model variants that lead to plausible model out-
put in all cases/measurement types simultaneously can be
identified and retained). Even though we do not directly ac-
count for structural errors in the implausibility measure it-
self, our constraint approach offsets the effects of such er-
rors on the achieved constraint as much as possible. This
is accomplished by screening out observations with large
model–measurement discrepancies from the constraint pro-
cess (step 2; Fig. 4) and by relaxing the constraint criteria
for the joint all-variables-months constraint. Through this ap-
proach, we are able to produce as robust a constraint as pos-
sible, given the limitations we have in specifying structural
and representational errors.

2.5 Interpretation of constrained parameter
probability distributions

Observationally plausible parts of parameter space ex-
ist in 26 dimensions. We show the results as one-
dimensional marginal probability distributions, which are
one-dimensional projections of the 26-dimensional param-
eter probability distribution. Figure 5 shows an idealised rep-
resentation for a two-dimensional parameter constraint. The
white parts of the joint distribution are ruled out, leaving
the shaded region of joint parameter space as observation-
ally plausible. The effect on the marginal probability distri-
bution of parameter 1 is to entirely rule out the lowest and
highest values (i.e. there is no combination of these values
of parameter 1 with parameter 2 that produces an observa-
tionally plausible model). Where some values of parameter 1
are ruled out over the range of parameter 2, the likelihood of
parameter 1 having those values is reduced.

In the results below, the parameter probability distribu-
tions therefore reflect the relative likelihood of the parameter
having particular values, with lower probabilities indicating
that there are fewer ways in which the parameter can be com-
bined with the other 25 parameters to produce a plausible
model. For conciseness in the results section, we say, for ex-
ample, that “a measurement constrains the parameter to low
values”, which means that we retain a larger proportion of
model variants with low values.

Figure 5 also shows the separate and joint effects of two
observational constraints. We show this conceptually be-
cause it arises in the results. Measurement 1 rules out the
lowest values of parameter 1 and suggests that parameter 1
is likely to be at the high end of the sampled range. Con-
versely, measurement 2 suggests that parameter 1 is likely to
be at the low end of the range. However, the correct inter-
pretation of this situation is that intermediate values of the
parameter are consistent with both measurements (measure-
ment 1 is consistent with the model for all but the lowest
values of the parameter and measurement 2 is consistent for
all but the highest values). Only in cases where the two sepa-

rate constrained parameter PDFs do not overlap can we con-
clude with certainty that there is likely to be a structural de-
ficiency in the model. However, to obtain multivariate con-
straint, we prevent this happening by screening out measure-
ments with large model–measurement discrepancies and re-
laxing the constraint criteria with each measurement type.

3 Results

3.1 Constraint using individual measurement types

Figure 6 shows the constrained marginal parameter distribu-
tions for all parameters based on using individual measure-
ment types (each column on left) and all measurement types
together (right column).

AOD measurements constrain aerosol and precursor emis-
sions to low values and removal rates to high values. These
constraints imply that the PPE produces generally too-high
AODs across the sampled parameter space, which is the
case (Sect. 3.4). In particular, sea spray emissions higher
than about 3.6 times the baseline emissions are ruled out,
but emissions down to as low as 0.125 times the base-
line emissions are plausible. For anthropogenic SO2 emis-
sions, the likelihood of the emissions scale factor being be-
low 1 (corresponding to the default value from the inven-
tory) increases from 55 % to 70 % on constraint. For biogenic
volatile organic compound (BVOC) emissions, the likelihood
of the emissions (or effectively the production of SOA) be-
ing more than 3 times the default emission of 46 Tgyr−1

(= 138 Tgyr−1) is reduced from 31 % to 13 %, but all lower
values from the default emission down to our lower bound of
37 Tgyr−1 are equally plausible.

The AOD measurements also constrain the model to low
values of other parameters: more variants with higher cloud
droplet pH values are ruled out (judged implausible) and as
a result cloud droplet pH is nearly 3 times as likely to be be-
low the central value of its range of 5.8 as above it, which
is consistent with a higher likelihood of slower production
of sulfate aerosol from in-cloud SO2 oxidation. The hygro-
scopicity of OC in the particles (κOC) is also weakly con-
strained to low values, which reduces the water content of
aerosol and reduces AOD. The rate of aerosol scavenging by
precipitating raindrops (the Rain_Frac parameter) is weakly
constrained to high values.

Sulfate measurements strongly constrain SO2 emissions
to low values, which is consistent with the AOD constraint.
Given this constraint, the SO2 emissions have a 78 % like-
lihood of being below the default value from the inventory
and the median emission is reduced to 0.78 times the default.
Also consistent with the AOD constraint, the deposition rate
of accumulation-mode particles is constrained strongly to
high values, with an 87 % likelihood of the rate being above
the default value. Likewise, the SO2 dry deposition rate is
constrained fairly weakly to higher values, with a 60 % likeli-
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Figure 5. Schematic of parameter constraint in two dimensions using two measurements.

hood of the scaled value being above the default value. Each
of these constraints is consistent with too-high sulfate con-
centrations in many of the sampled model variants across the
parameter uncertainty space (Sect. 3.4).

PM2.5 measurements have a similar effect to AOD on some
parameters, but for others there are differences. Emissions
of sea spray and BVOC emissions are constrained similarly
(to low values). However, SO2 emissions and cloud droplet
pH are weakly constrained to higher values and the dry de-
position rate of accumulation-mode particles is weakly con-
strained to low values, opposite to the AOD and sulfate con-
straints for these parameters. The PM2.5 measurements also
weakly constrain the residential combustion emissions to
high values. PM2.5 and AOD are strongly correlated in the
PPE (Johnson et al., 2018), so differences in the constrained
parameters most likely reflect differences in the spatial distri-
bution of the measurements (Fig. 1) and how that maps onto
the spatial variations in sensitive parameters. As described in
Sect. 2.5, these apparently opposing constraints are not nec-
essarily inconsistent: for AOD and PM2.5, there may be other
parameter settings that can be combined with low SO2 emis-
sions to achieve agreement with the measurements (so the
space is not ruled out).

OC measurements strongly constrain the scaled magnitude
of residential carbonaceous emissions to a narrower credi-
ble interval of about 0.3–1.8 centred near the default value
specified in the emissions. Emissions above 2.0 times the
default value are effectively ruled out and there is only a
13 % likelihood of the emissions being below half the de-
fault value. Fossil fuel emissions have a 70 % likelihood of
being above the default emission value. The OC measure-
ments also constrain the scaled BVOC emissions in a similar

way to PM2.5 and AOD, with scaled emissions above about
a factor of 2.1 (97 Tgyr−1) having only a 31 % likelihood
(compared to 50 % prior to constraint). OC measurements
also constrain the lowest values of BVOC emissions, which
was not achieved with PM2.5 and AOD. The likelihood of the
scaled emissions being below 1 (46 Tgyr−1) is 6 % (com-
pared with 11 %). The dry deposition rate of Aitken-mode
particles is constrained to the low part of the range, which
will tend to increase OC concentrations in the atmosphere
consistent with the constraint of fossil fuel emissions to high
values. There is also a weak constraint of the ageing rate to-
wards higher values, which has a 55 % likelihood of being
in the upper half of the range. The rate of aerosol scaveng-
ing by precipitating raindrops (Rain_Frac parameter) is con-
strained similarly but to lower values. Again, although weak,
these two constraints imply slower ageing, slower removal
rates, longer OC lifetime and higher atmospheric concentra-
tions. Biomass burning emissions are only very weakly con-
strained towards lower emissions. The lack of constraint on
the biomass burning emissions from OC measurements here
is likely a result of the limited coverage, if any, of the OC
measurements in regions important for biomass burning such
as Africa and southeast Asia (Fig. 1).

Particle concentration (N3 and N50) measurements con-
strain a wider range of parameters than the measurements
of mass-related properties. The rate of boundary layer nu-
cleation is strongly constrained to the low part of the sam-
pled range by theN3 measurements (a 77 % likelihood of be-
ing below the default rate), suggesting N3 concentrations are
generally too high across the PPE.N3 also weakly constrains
the dry deposition of Aitken- and accumulation-mode parti-
cles to low values. Low deposition rates of accumulation-
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Figure 6. Marginal parameter distributions after constraint using individual measurement types over all months (six columns on the left) and
after using all measurement types over all months together (right column). The 25th, 50th and 75th percentiles of each constrained distribution
are shown in the central boxes, and the parameter values on the x axes correspond to values as they are used in the model (parameters that are
multiplicative scaling factors are shown on the log10 scale), covering the full parameter ranges (Yoshioka et al., 2019). The corresponding
choices of threshold θ and tolerance T that were applied in the constraint process to generate these results are given in Table A2 (left column
for each individual measurement type; right column for the joint measurement-type constraint), along with the percentage of model variants
that is retained in the constrained sample in each case. See Sect. 2.5 for a definition of marginal parameter distributions.

mode particles (hence higher atmospheric concentrations)
will result in a higher condensation sink and more removal
of sulfuric acid that participates in particle nucleation, so
this is consistent with the constraint of nucleation rates to
low values. The constraint of Aitken-mode deposition to low
values is less obvious. Aitken-mode particles can contribute
substantially to N3, so low deposition rates would enhance
N3 (opposite to the constraint on nucleation rates). However,
nucleation rates are constrained to very low values, so in such
a situation Aitken particles can begin to act as a sink term for
nucleation by affecting the condensation sink and by growing
into accumulation-mode particles. BVOC emissions are not

constrained by N3 measurements, even though SOA enters
the nucleation rate expression. This is most likely because
high BVOC emissions also enhance total SOA, which acts as
a condensation sink for nucleation, so the two effects cancel
(Carslaw et al., 2013b).

For N50, the constraints are consistent with shifting the
N50 concentrations in the ensemble towards lower values
(Sect. 3.4). N50 has very little effect on the range of bound-
ary layer nucleation rate. In contrast, a previous study found
that boundary layer nucleation made a statistically signifi-
cant difference to model skill at about half of the ground
sites they analysed (Reddington et al., 2011) – although that
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study tested the effect of including or not including bound-
ary layer nucleation rather than perturbing the rate as we do
here. Without boundary layer particle formation, the model
was structurally deficient and had poor skill at around half the
sites analysed. However, our results show that uncertainty in
the parameter value itself is unimportant when other param-
eter uncertainties are considered. This parameter is uncon-
strained by N50 measurements because there are many alter-
native ways of achieving model–measurement agreement.
N50 measurements also tend to constrain primary parti-

cle emissions to the lower end of the range (fossil fuel and
primary sulfate emissions), albeit weakly. Residential parti-
cle emissions are not constrained, but the measurements we
used are not well located to achieve this. It also constrains the
emitted particle diameters to the high end of their ranges (fos-
sil fuel, primary sulfate), which is again consistent with low
number concentrations (since we perturb emission diameter
independently of the mass, so number concentration is af-
fected). The constraint of particle emission sizes is consistent
with a previous study that showed cloud condensation nu-
clei (CCN) concentrations are sensitive to the assumed size
(Reddington et al., 2011). Our results show that N50 mea-
surements allow the emission size to be constrained, even
though there are many other compensating factors that can
affect CCN concentrations. N50 weakly constrains cloud pH
to higher values, consistent with greater production of sul-
fate aerosol and a higher sink for nucleation. BVOC emis-
sions are constrained to the low end, which is consistent
with reduced growth of nucleation-mode particles into the
Aitken and accumulation modes. N50 also constrains deposi-
tions rates: accumulation-mode deposition is constrained to
low values and Aitken-mode deposition to high values, sug-
gesting a shift in the aerosol size distribution towards larger
aerosols is consistent with N50 measurements.

3.2 Seasonal variations in constraint

Many of the parameter constraints vary seasonally, which can
be linked to seasonal variations in emissions and parameter
sensitivity. Some examples are shown in Fig. 7. Cloud pH
is constrained more by AOD in Northern Hemisphere win-
ter (Fig. 7a) when in-cloud oxidation of SO2 by ozone dom-
inates sulfate production. BVOCs are constrained by AOD
only in Northern Hemisphere summer when the emissions
are strong (Fig. 7b). There are several other seasonal varia-
tions in the constraint effect from AOD measurements that
we do not show. For example, anthropogenic SO2 emissions
are constrained by AOD more in winter because the AOD
uncertainty in summer is dominated by the uncertainty in
SOA. The hygroscopicity of OC is also constrained more
in summer when OC is a larger component of the aerosol.
Biomass burning emissions are constrained in NH summer as
expected from wildfire emission seasonality and the North-
ern Hemisphere bias of our measurements dataset. Residen-
tial emissions are only constrained in winter when emissions

are high. Microphysical process rates (dry deposition of ac-
cumulation mode and wet scavenging rates) are consistently
constrained throughout the year.

For PM2.5, the seasonality of constraint is very similar to
AOD with one notable exception. The dry deposition rate of
accumulation-mode particles is constrained to high values in
summer (consistent with AOD and sulfate) but to low values
in the winter (Fig. 7c). This may occur just because of the
way in which the combinations of parameters control PM2.5;
for example, BVOCs can account for PM2.5 in summer so
high dry deposition rates cannot be ruled out. However, it
may also indicate a structural deficiency. The low deposi-
tion rates in winter imply that PM2.5 has missing sources
in winter but not in the summer, such as nitrate. Our model
does not include aerosol nitrate, which (if included) would
increase Northern Hemisphere winter PM2.5 concentrations
and weaken the constraint on dry deposition towards lower
values in Northern Hemisphere winter.

For N3, we find that the boundary layer nucleation rate is
constrained only in summer when photochemical production
of the nucleating vapours is fast (Fig. 7d). This is consistent
with previous studies that have examined the seasonal cy-
cle of organic-mediated nucleation (Riccobono et al., 2014).
Similarly, N3 measurements constrain SO2 emissions and
cloud droplet pH in summer when nucleation is most active.
This is in contrast to the AOD and sulfate measurements,
which constrained these two parameters in winter when their
relative contribution to aerosol mass is greater.

For N50, we find that parameter constraints do not vary
smoothly throughout the year (not shown). This is because
theN50 measurements we have used are primarily from cam-
paigns, which move around the globe, resulting in constraint
of regionally important parameters. This is one indication
that we need to add long-term network measurements of N50
to the dataset.

3.3 Constraint using all measurement types

The multivariate constraint is shown as the right-hand col-
umn of PDFs in Fig. 6 and Table 2 shows corresponding pa-
rameter distribution statistics from this constraint. For each
individual variable/month constraint that feeds into this mul-
tivariate constraint, the implausibility threshold and toler-
ance criteria (θ and T ) were relaxed from the individual
measurement constraints to retain approximately 75 % of the
1 million model variants (Table A2). This relaxed criterion
leads to measurements that provide stronger constraint being
downweighted and individual parameter constraints becom-
ing weaker, but it means that we are able to avoid overcon-
straining on any one measurement type. Using all measure-
ment types together leads to retention of only 2.1 % of the
original 1 million model variants as plausible models (nearly
98 % rejected; Table A2). In most cases, the marginal param-
eter distributions from this constraint can be understood in
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Figure 7. Seasonal variation in the constraint of parameter marginal probability distributions. The examples are (a) constraint of the pH
of cloud droplets (Cloud_pH) parameter using global AOD measurements, (b) constraint of SOA production from BVOCs (BVOC_SOA)
using AOD measurements, (c) constraint of the dry deposition rate of accumulation-mode particles (Dry_Dep_Acc) using global PM2.5
measurements and (d) constraint of boundary layer nucleation rates (BL_Nuc) using N3 measurements mainly over Europe.

terms of the combination of individual constraints described
above.

Boundary layer nucleation rates are constrained to the low
end of the range, which can be attributed almost entirely
to the N3 measurements. However, the constraint is slightly
weaker than when justN3 measurements are used because of
the need to relax the tolerances and thresholds applied when
ruling out model variants using multiple measurement types
(Sect. 2.4.3). The nucleation rate is constrained such that the
likelihood of it being in the lower half of the range (0.1–1
times the default value) is 70 % – more than twice the like-
lihood of it being in the upper half of the range (1–10 times
the default value).

The pH of cloud droplets, which controls aqueous-phase
oxidation of SO2 to form sulfate aerosol, is constrained to
be more likely in the middle of our elicited range. This re-
sults from a combination of AOD and sulfate measurements
constraining it to the lower end of the range and PM2.5 mea-
surements constraining it to the higher end. Observational
constraint is unable to rule out any of the pH values between
4.6 and 7.0, although there is a reduction of 0.13 in the 95 %
credible interval to 4.69–6.84 (from 4.66–6.94 before con-
straint) and a larger reduction of 0.32 in the interquartile
range to 5.24–6.12 (from 5.2–6.4 before constraint).

Biomass burning emissions are weakly constrained. The
likelihood of emissions being more than a factor of 2 above
the default value is reduced to 14 % (from 25 %), but all val-

ues below this down to 0.25 times the default value are still
equally likely, as they were before constraint.

Residential carbonaceous emissions are constrained pri-
marily through a combination of PM2.5 and OC measure-
ments. This emissions scaling parameter is constrained to
be most likely near the middle of its range around the de-
fault setting, with emissions higher than about 2.7 times the
default emission rate ruled out completely and also some
weaker constraint at the lower end of the range. The 95 %
credible interval has significantly shifted towards lower val-
ues, from 0.27–3.73 times the default value before constraint
to 0.27–1.85 times the default value after constraint, with the
constrained interquartile range being 0.46–1.06 (Table 2).

The diameter of fossil fuel particles is constrained mainly
through the N50 measurements towards larger diameters,
with a likelihood of being in the upper half of our elicited
range (60–90 nm diameter) of 61 % and the median of this
parameter distribution shifting to a larger diameter on con-
straint, increasing from 60 to 65.63 nm.

Sea spray emissions are constrained through a combina-
tion of AOD and PM2.5 measurements, and to a lesser extent
by N50. The multivariate constraint is slightly weaker than
was achieved by AOD and PM2.5 individually, although we
are still able to rule out emissions in the range 4.7–8 times
the default value. Emissions in the range 0.125–2.8 times the
default value are not strongly constrained by any of the mea-
surements.
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Table 2. Marginal parameter distribution statistics (median and 95 % credible interval) for the unconstrained sample of 1 million model
variants in normal font and the constrained sample of model variants from the constraint using all measurement types simultaneously in
bold. The final column shows the ratio of the constrained to the unconstrained 95 % credible interval range, accounting for the nature of the
parameter (absolute or multiplicative) by using the log10 scale for the calculation when the parameter is a multiplicative scaling.

Parameter Median 95 % credible interval 95 % CI range
ratio (constrained/

unconstrained)

BL_Nuca 1.00 0.47 (0.11, 8.91) (0.11, 6.79) 0.94
Ageing 5.15 5.51 (0.54, 9.76) (0.55, 9.81) 1.00
Acc_Width 1.50 1.50 (1.21, 1.79) (1.21, 1.79) 1.00
Ait_Width 1.50 1.55 (1.21, 1.79) (1.23, 1.79) 0.97
Cloud_pH 5.80 5.67 (4.66, 6.94) (4.69, 6.84) 0.94
Carb_FF_Emsa 1.00 1.01 (0.52, 1.93) (0.52, 1.93) 1.00
Carb_BB_Emsa 1.00 0.83 (0.27, 3.73) (0.26, 3.28) 0.97
Carb_Res_Emsa 1.00 0.73 (0.27, 3.73) (0.27, 1.85) 0.73
Carb_FF_Diam 60.00 65.63 (31.50, 88.50) (35.16, 88.80) 0.94
Carb_BB_Diam 195.00 194.97 (95.25, 294.75) (94.89, 295.27) 1.00
Carb_Res_Diam 295.00 299.73 (100.25, 489.75) (99.26, 492.03) 1.01
Prim_SO4_Fraca 3.16× 10−4 2.41 × 10−4 (1.33× 10−6, 7.50× 10−2) (1.26 × 10−6, 7.46 × 10−2) 1.00
Prim_SO4_Diam 51.50 56.43 (5.43, 97.58) (7.06, 98.04) 0.99
Sea_Spraya 1.00 0.82 (0.14, 7.21) (0.14, 3.69) 0.83
Anth_SO2a 0.95 0.77 (0.61, 1.47) (0.61, 1.35) 0.90
Volc_SO2a 1.30 1.25 (0.73, 2.31) (0.73, 2.30) 1.00
BVOC_SOAa 2.09 1.88 (0.85, 5.15) (0.86, 3.74) 0.82
DMSa 1.00 0.97 (0.52, 1.93) (0.52, 1.92) 1.00
Dry_Dep_Aita 1.00 0.88 (0.52, 1.93) (0.51, 1.90) 1.00
Dry_Dep_Acca 1.00 0.76 (0.11, 8.91) (0.11, 5.73) 0.90
Dry_Dep_SO2a 1.00 1.45 (0.22, 4.61) (0.23, 4.76) 1.00
Kappa_OC 0.35 0.36 (0.11, 0.59) (0.11, 0.59) 1.00
Sig_W 0.40 0.40 (0.12, 0.68) (0.11, 0.69) 1.04
Dusta 1.00 1.03 (0.52, 1.93) (0.52, 1.94) 1.00
Rain_Frac 0.50 0.50 (0.31, 0.69) (0.31, 0.69) 1.00
Cloud_Ice_Thresh 0.30 0.29 (0.11, 0.49) (0.11, 0.49) 1.00

a Parameter values given as a multiplicative scaling.

Anthropogenic SO2 emissions are strongly constrained to
the lower part of the elicited range by a combination of AOD
and sulfate measurements. The emissions are most likely to
be at the lower end of our elicited range (0.6 times the de-
fault value) and the likelihood of the emissions being in the
range 0.6–1 times the default value is 82 %. Our interquar-
tile range after constraint is 0.67–0.93 times the baseline
emission value of 98 Tgyr−1 from the MACC/CityZEN EU
project (MACCity) inventory, so 65–91 Tgyr−1. Our con-
strained range therefore lies largely below the baseline value,
with only an 18 % probability of it being above the base-
line value. Liu et al. (2018) have developed a new SO2 emis-
sion inventory based on Ozone Monitoring Instrument (OMI)
measurements. They did not provide a global estimate of SO2
emissions, but over the US and Europe, where most of our
sulfate measurements are located, their revised emissions are
40 % lower than in the Hemispheric Transport of Air Pollu-
tion (HTAP) inventory, which is in the same direction as our
constraint. In their inverse model study, C. Lee et al. (2011)

estimated global land SO2 emissions of 100–105 Tgyr−1

(with an estimated uncertainty of 20 %), in agreement with
MACCity emissions, but their central value is around our
85th percentile.

BVOC emissions are constrained to a central value that
corresponds to a global annual SOA production of about
86.5 Tgyr−1. No values in the parameter range (correspond-
ing to an emissions range of 37–250 Tgyr−1) are ruled out,
although the likelihood of SOA production being in either
the upper (above 150 Tgyr−1) or lower (below 60 Tgyr−1)
quadrants of the scaling range is significantly reduced and
the interquartile range of the parameter distribution has re-
duced from 60–155 to 62–111 Tgyr−1. BVOCs were con-
strained in Spracklen et al. (2011) using global aerosol
mass spectrometer measurements (which we also used) and
a set of model runs that perturbed combinations of bio-
genic monoterpene and isoprene emissions as well as an
anthropogenic VOC. Here, we have used a combination of
AOD, PM2.5, OC, N50 and N3 measurements, all of which
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are influenced by SOA. Their best estimate of the global
SOA source was 140 Tgyr−1 with an uncertainty range
of 50–380 Tgyr−1. This included 100 Tgyr−1 from anthro-
pogenic sources (which they called anthropogenically con-
trolled SOA), which we do not include in our set of per-
turbed parameters. When we use just global OC from AMS
measurements, we find a 95 % range on BVOC SOA of 42–
195 Tgyr−1. Measurements of PM2.5, AOD and, to a lesser
extent N50, provide additional constraint, resulting in a 95 %
interval of 40–172 Tgyr−1 and a median of 86.5 Tgyr−1.
This range accounts for potential compensating effects of un-
certainty in deposition rates and other parameters that were
not considered in Spracklen et al. (2011).

The dry deposition rate of Aitken-mode particles is weakly
constrained to low values, which comes mainly from the OC
and N3 observational constraint. The likelihood of the depo-
sition rate being in the range 0.5–1.0 times the default value
(1.0) is increased from 50 % to 60 % on constraint.

The dry deposition rate of accumulation-mode particles is
constrained to the middle of the range. This is likely because
sulfate measurements constrain the deposition rate to be to-
wards the high end while the other measurements constrain
it towards the low end. The multivariate constraint is weaker
than when individual measurement types are used (AOD, sul-
fate, PM2.5, N50, N3), which results from relaxing the indi-
vidual constraints in order to retain a reasonable number of
model variants when multiple variables do not agree on the
best value of the deposition rate.

The dry deposition rate of SO2 is constrained to the upper
part of the elicited range, with the likelihood of it being in
the range 1–5 times the default value (i.e. an increase in SO2
emissions) now 62 % after constraint.

3.4 Model–measurement comparison

Figure 8 compares the unconstrained (black) and con-
strained distributions of model outputs with the measure-
ments (green). We show the results when single measurement
types are used for constraint (blue) and when all measure-
ment types are used together (red). The constraint procedure
clearly rules out wide ranges of model outputs that are in-
consistent with the measured values, shown by the vertical
green lines. For example, the unconstrained distribution of
mean global sulfate concentration (at the measurement sites)
extends up to about 6 µgm−3 in January, but the tail of the
distribution is limited to 3 µgm−3 after constraint.

The constrained model distribution sometimes agrees
much better with the measurements when only a single mea-
surement type is used compared to when all measurements
are used. The weaker multivariate constraint is because we
relax the constraint on individual variables so as not to rule
out all model variants. This effect is most apparent for sul-
fate and PM2.5. The mean of the constrained PM2.5 distri-
bution using all measurements is about 40 % lower than the
mean of the measurements in January but the mean of the

sulfate distribution is about 50 % higher than the mean of
the measurements. This is likely to indicate a structural error
in the model that prevents good model–measurement agree-
ment with both quantities in the same parts of model param-
eter space. One explanation could be that the model is miss-
ing sources of PM2.5 mass (e.g. nitrate aerosols in winter),
which forces a compromise in which the constraint method-
ology rules in sulfate concentrations that are at the upper end
of the uncertainty range to minimise the error for PM2.5. Al-
though relaxing our constraint criteria offsets many effects of
such structural errors, the shifting of these all-measurement
constraint distributions away from the measurements indi-
cates some structural error is still not fully accounted for. It
is possible that our constraint would adjust better to account
for this structural deficiency if we could directly specify a
structural error term in the implausibility measure through
Var(S).

3.5 Unconstrained parameters

Several parameters are barely constrained or not constrained
at all using all the measurements. Unconstrained microphys-
ical processes or assumptions are the ageing rate of insoluble
into soluble particles, the width of the lognormal accumu-
lation mode, the hygroscopicity of organic material (κOC),
the updraft speed and wet deposition rates. Among the emis-
sions, unconstrained parameters are the emission rates of fos-
sil fuel particles, degassing volcanic SO2, dimethyl sulfide
(DMS) and dust emissions.

There are several potential reasons for the lack of con-
straint. It is possible that parts of the joint parameter space are
ruled out but with a negligible effect on the marginal parame-
ter distribution (i.e. the ruled-out parameter space is uniform
across the parameter of interest). For example, wet deposi-
tion rates are directly compensated by emission rates and the
ageing rate affects the wet removal rate. Another reason is
that we did not include measurements in regions where the
six variables are sensitive to these parameters. This is likely
to be the case for DMS, volcanic and dust emissions given
the relative lack of measurements over remote ocean regions
and downwind of dust sources, which means these regions
are not strongly weighted in the overall constraint process.
Furthermore, some parameters may be more related to other
aerosol properties that we have not used for constraint. For
example, ageing rates in the model are not constrained, likely
because the ageing process predominantly affects the black
carbon concentration which is not included as a measurement
type in this study.

3.6 Implications for constraint of aerosol forcing

Figure 9 shows the nine most important parameters for the
uncertainty in global mean aerosol forcing in the PPE in
terms of the forcing uncertainty they account for (Yoshioka et
al., 2019). Some of these parameters are fairly strongly con-
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Figure 8. Comparison of the constrained model with the measurements for January (top) and July (bottom). The distributions were calculated
as a mean over model grid boxes containing measurements. AOD, sulfate and PM2.5 are global comparisons; N3 and N50 are Europe-only
comparisons due to the limited global coverage of these measurements in each month. The black line shows the prior (unconstrained)
probability distribution of the model. The blue line shows the constrained model distribution when only measurements of each type are
used in the constraint. The red line shows the constrained model distribution when all measurement types are used. The green dashed line
shows the mean of the measurements and the dotted lines show the approximate 95 % uncertainty range on an average observation that was
accounted for in the constraint.

strained by the measurements, but others are unconstrained.
Within the joint parameter space of just these nine param-
eters there is considerable potential for model variants that
compensate, thereby reducing the effectiveness of the con-
strained parameters on the forcing. It also needs to be borne
in mind that global mean forcing is the sum of regional forc-
ings, and in each region a different set of parameters is being
constrained and may be constraining the same parameters to
different parts of their range (Lee et al., 2016; Regayre et al.,
2015).

Figure 10 shows how the constrained parameters affect the
uncertainty in predicted global annual mean net RF and its
component parts due to aerosol–cloud interactions (RFaci)
and aerosol radiation interactions (RFari). (Note that this
calculation of RF differs from that shown in Yoshioka et
al. 2019, which used elicited parameter distributions when
sampling over the parameter uncertainty space, while we use
uniform distributions for the sampling here.) Table 3 shows
the corresponding parameter distribution statistics (median,
interquartile range, ±1σ range (on mean value) and 95 %
credible interval) for these forcing constraints.

The net RF is dominated by RFaci, which is only weakly
constrained (Fig. 10b) by 6 %, in line with the net RF
(Fig. 10a). This occurs because our constraint uses measure-
ments of aerosol properties rather than cloud properties. Al-
though the overall reduction in the RFaci uncertainty is weak,
the PDFs in Fig. 10b show a slight shift in RFaci to stronger

forcings, with the median RFaci shifting from −1.99 Wm−2

in the prior (unconstrained) distribution to −2.07 Wm−2 af-
ter constraint. The likelihood of the strength of RFaci being
weaker than −1.5 Wm−2 (less negative) is reduced by 38 %
and the likelihood of it being stronger (more negative) than
−2.5 Wm−2 is increased by 20 %. In general, although the
anthropogenic emissions were constrained to lower values
(which should weaken the forcing), the sea spray emissions
were constrained to lower values, which acts to strengthen
the forcing (Carslaw et al., 2013a; Regayre et al., 2014). The
95 % credible interval for the net RF is reduced by 8 %.

The 95 % credible interval of direct forcing, RFari, is re-
duced by 34 % (Fig. 10c) and the ±1σ range is reduced by
33 %. RFari is constrained most strongly by the PM2.5, AOD
and sulfate measurements (not shown) but insignificantly by
the OC, N3 and N50 measurements. The inconsistency be-
tween the constraints on PM2.5, AOD and sulfate (Fig. 8)
leads to inconsistency in the constraint on RFari. In particu-
lar, using just sulfate measurements results in an RFari ±1σ
range of −0.10 to −0.22 Wm−2, but using just PM2.5 mea-
surements results in a range −0.20 to −0.36 Wm−2. This
highlights the importance of detecting and fixing structural
deficiencies in the model as well as the limitations of using
single-variable emergent constraints.

Furthermore, we have found that the observational con-
straint on present-day (2008) global annual mean aerosol ra-
diative effects (RE; relative to no aerosol radiative effects)
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Figure 9. Ranked list of parameters that dominate the uncertainty in global mean aerosol radiative forcing in the ensemble (Yoshioka et al.,
2019).

Figure 10. Effect of observational constraint using all measurement types on the probability distribution of global annual mean aerosol
radiative forcing: (a) net RF, (b) RFaci (aerosol–cloud interaction) and (c) RFari (aerosol–radiation interaction). The black line shows the
prior (unconstrained) distribution and the red line shows the constrained distribution. For each box-and-whisker plot, the box represents the
interquartile range split at the median forcing (the line inside the box), and the whiskers extend to the lower and upper bounds of the 95 %
credible interval of the distribution.
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Table 3. Uncertainty distribution statistics (median, interquartile range,±1σ range (on mean value) and 95 % credible interval) for the global
annual mean aerosol radiative forcing (net RF, RFaci and RFari) from the unconstrained sample of 1 million model variants in normal font and
the constrained sample of model variants from the all-variables constraint in bold. The final two columns show the ratio of the constrained to
the unconstrained 95 % credible interval and corresponding percentage reduction in this interval on constraint.

Median Interquartile range ±1σ range 95 % credible interval 95 % CI range 95 % CI
ratio (constrained/ reduction

unconstrained)

Net RF −2.23 −2.26 (−2.56, −1.90) (−2.71, −1.75) (−3.17, −1.29)
0.92 8 %

(−2.57, −1.95) (−2.71, −1.81) (−3.15, −1.41)

RFaci −1.99 −2.07 (−2.29, −1.69) (−2.43, −1.55) (−2.84, −1.15)
0.94 6 %

(−2.36, −1.78) (−2.48, −1.66) (−2.88, −1.28)

RFari −0.23 −0.19 (−0.31, −0.17) (−0.33, −0.15) (−0.44, −0.09)
0.66 34 %

(−0.23, −0.16) (−0.26, −0.14) (−0.32, −0.10)

is stronger than the constraint on aerosol radiative forcing.
The uncertainty in the clear-sky aerosol RE is reduced by
47 %. Industrial-period aerosol radiative forcing has distinct
sources of uncertainty from aerosol radiative effects in the
present-day atmosphere (Regayre et al., 2018), so a stronger
constraint on present-day radiative effects is in line with ex-
pectations.

It is important to note that the probability distribution of
net aerosol RF includes values that, with current knowledge,
would produce a net negative (greenhouse gas plus aerosol)
forcing over the industrial period. The forcing is dominated
by aerosol–cloud processes, which we have not attempted to
constrain here. Nevertheless, the lack of constraint shows, as
in Lee et al. (2016), a well-configured global aerosol model
has little bearing on the uncertainty in RFaci. In contrast, the
constraint of RFari, which has not been attempted in our pre-
vious studies, is significant and encouraging.

4 Conclusions

We have used extensive point measurements of AOD, PM2.5,
sulfate mass, organic carbon mass and the concentrations of
particles larger than 50 nm dry diameter (N50) and 3 nm (N3)
from surface sites, aircraft and ships to constrain uncertain
aerosol parameters in a global aerosol–climate model. A to-
tal of 26 parameters related to aerosol emissions and pro-
cesses were varied in a perturbed parameter ensemble and
statistical emulators were used to generate a set of 1 million
model variants that represent the model outputs for combi-
nations of parameter values across the 26-dimensional un-
certainty space. The plausibility of each model variant was
tested against each measurement type in turn and then in
combination using a history-matching procedure based on
an implausibility metric (Craig et al., 1996; Williamson et
al., 2013). The resulting probability distributions of aerosol
forcings can be considered as the “observationally plausible”
ranges for the HadGEM3-UKCA model.

Observational constraint ruled out almost 98 % of the 26-
dimensional parameter space and the probability distribu-
tions of many parameter values were effectively constrained.
Overall, 14 of the parameters were constrained to some ex-
tent, despite the fact that there are many ways in which pa-
rameter values can be combined to produce plausible results
within the uncertainties. Constraint of a parameter means that
the probability distribution of a parameter (and potentially its
absolute range) is narrowed, and hence the likelihood of the
parameter taking a particular range of values within its abso-
lute range is increased; i.e. there are more ways to combine
these parameter values with values of the other 25 parame-
ters to produce a plausible model. For two parameters, some
of the individual prior elicited parameter ranges were ruled
out entirely: very high sea spray emissions and very high
residential carbonaceous emissions. The very highest BVOC
emissions were nearly ruled out. However, for the remaining
parameters, it was not possible to entirely rule out any part
of the prior range.

Parameter constraints are mostly, but not always, consis-
tent across multiple measurement types, even though the dif-
ferent measurement types were made at very different loca-
tions and sometimes at different times of the year. For exam-
ple, we often found consistent constraint of parameters re-
lated to the production of aerosol mass or number (emissions,
nucleation, secondary aerosol mass) and parameters related
to removal (condensation sink, deposition rates of gases and
aerosols). There is also a very clear seasonal variation in the
magnitude of constraint related to variations in the dominant
processes.

The multivariate constraint has the following effect on the
parameter probability distributions, which were assumed be-
fore constraint to be equally plausible between lower and up-
per bounds defined by expert elicitation:

1. Boundary layer nucleation rates based on a sulfuric
acid–organic mechanism (Metzger et al., 2010) are con-
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strained to the low end of the elicited range, mainly from
the N3 measurements.

2. The pH of cloud droplets, which controls aqueous-
phase oxidation of SO2 to form sulfate aerosol, is con-
strained to be more likely in the middle of our elicited
range but we were unable to rule out any of the pH val-
ues between 4.6 and 7.0. The constraint led to a reduc-
tion of 0.32 in the interquartile range to 5.24–6.12 (from
5.2–6.4 before constraint) and a reduction of 0.13 in the
95 % credible interval to 4.69–6.84 (from 4.66–6.94 be-
fore constraint).

3. Biomass burning emissions are weakly constrained by
the PM2.5, AOD and OC measurements, with a reduced
likelihood of the emissions exceeding a factor of 2
above the default value. All lower emissions down to
0.25 times the default value are equally likely as they
were before constraint.

4. Residential carbonaceous emissions are constrained pri-
marily through a combination of PM2.5 and OC mea-
surements. Emissions higher than about 2.7 times the
default emission rate were effectively ruled out by the
OC measurements as observationally implausible.

5. The diameter of fossil fuel particles is constrained by
N50 measurements, with a reduced likelihood of being
in the range 30–45 nm, but diameters in the range of 60–
90 nm are unconstrained by any measurements.

6. Sea spray emissions are constrained through a combina-
tion of AOD, PM2.5 and N50 measurements. Emissions
in the range 4.7–8.0 times the default value are ruled
out but emissions in the range 0.125–2.8 times the de-
fault value are not strongly constrained by any of the
measurements.

7. Anthropogenic SO2 emissions are strongly constrained
to low values by AOD and sulfate measurements, with
an 82 % likelihood of being below the default value
from the emission inventory.

8. BVOC emissions are constrained by AOD, PM2.5, OC,
N50 andN3 measurements. The likelihood of either high
or low emissions is reduced. On constraint, our median
estimate corresponds to 86.5 Tgyr−1 SOA production,
with a 95 % credible interval of 40–172 Tgyr−1. How-
ever, no values in the range 37–250 Tgyr−1 are ruled
out entirely.

9. The dry deposition rate of Aitken-mode particles is
weakly constrained to low values using OC andN3 mea-
surements and the dry deposition rate of accumulation-
mode particles is constrained to the middle of the range
by AOD, sulfate, PM2.5, N50 and N3 measurements.

The dry deposition rate of SO2 is constrained to the up-
per part of the elicited range, with a 62 % likelihood of
it being above the default value.

Several parameters of importance to aerosol forcing were not
well constrained, in particular parameters related to micro-
physical processes (primary sulfate particle diameter, the di-
ameter of biomass burning particles, the width of the accu-
mulation mode and the ageing rate). Dimethyl sulfide emis-
sions were also not strongly constrained.

The prior (unconstrained) uncertainty (95 % credible in-
terval) in the pre-industrial to present-day net aerosol RF is
reduced by 8 %. The radiative forcing in the ensemble ac-
counts for direct and indirect (cloud albedo) effects but not
cloud adjustments. RFari uncertainty (95 % credible interval)
is reduced by 34 %, but the net RF uncertainty is dominated
by the RFaci uncertainty, which is reduced by only 6 %. The
recent assessment of aerosol forcing (Bellouin et al., 2019)
adopted ±1σ ranges to define the uncertainty. Our equiva-
lent±1σ ranges are−0.14 to−0.26 Wm−2 for RFari (reduc-
tion of 33 % due to constraint) and −1.66 to −2.48 Wm−2

for RFaci (reduction of 7 % due to constraint). The reduction
in uncertainty is much larger for RFari than RFaci because
our constraints focus on aerosol properties rather than cloud
properties.

Our results highlight the importance of using multiple
measurement types to constrain aerosol–climate models. We
have shown that use of a single measurement type, as is done
in emergent constraint studies, would lead to an overconfi-
dent constraint. This is because potential structural deficien-
cies in our model prevent consistently good constraint across
several measurement types. In particular, we showed that
constraint using PM2.5 or sulfate aerosol measurements led
to probability distributions of RFari that barely overlap. The
final multivariate constraint on forcing is therefore a com-
promise that achieves reasonable agreement with all obser-
vations rather than being overconfidently constrained by one
metric.

In terms of future directions and requirements to achieve
better constraint, we make the following recommendations:

1. We need to understand and quantify model–
measurement representativeness errors. The biggest
challenge (and the factor that most limits the constraint,
other than model structural error) is quantification of
the representativeness error associated with comparing
point measurements with a global model (Reddington
et al., 2017; Schutgens et al., 2017, 2016a, b). The
ambiguity in deciding whether a model–measurement
bias is related to structural error in the model or
underestimation of the uncertainty terms was the main
limiting factor in our constraint procedure. The repre-
sentativeness uncertainties have been estimated based
on model simulations at a few locations (Schutgens
et al., 2016b), but they have not been measured, and
we have no information about these uncertainties at
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other locations. Small campaigns to characterise the
space–time variability around existing sites and for
potential new sites should be considered. Alternatively,
representation errors could be reduced by increasing
the temporal and spatial resolution of our model, and
the effect of interannual variability could be reduced
if we always compare the model to measurements
for the correct year. In our calculations of model
variant implausibility, interannual variability accounts
for around 30 to 90 % of the model–measurement
comparison representation uncertainty. With smaller
representation errors in the model–measurement com-
parison, we could more confidently reject implausible
model variants. However, this approach is not currently
computationally feasible.

2. We need to understand and quantify structural defi-
ciencies in the model. Our current approach, to as-
sume zero structural error in our implausibility calcula-
tions, enables some structural errors in the model to be
detected by comparing single and multi-measurement
constraints. Ideally, to produce the most robust con-
straint possible, these structural errors should be ac-
counted for directly using Var(S) in the implausibility
measure – or, better still, corrected in the model.

3. We should prioritise expansion of measurements to
cover more long-term well-characterised sites. Such
measurements will have much lower (or at least well-
defined) representativeness error when used for model
evaluation and constraint. Sites should be characterised
in terms of how they represent a typical model grid box
over a long period of time. These sites should be in
diverse locations so that they help to constrain a wide
range of model uncertainties (Reddington et al., 2017).

4. We should aim to dedicate part of field campaigns to
routine, unbiased (or effectively random) sampling of
aerosols across the scale of model grid boxes. Such
measurements will also have much lower representa-
tiveness error than measurements that target specific
processes or aerosol environments. Many field cam-
paigns (particularly using aircraft) often prioritise mea-
surements to explore aerosol processes or to char-
acterise particular aerosol environments (e.g. pollu-
tion plumes). Others, like the Atmospheric Tomogra-
phy Mission, emphasised the effective sampling of air
masses in an unbiased way. A greater emphasis on such
tomography missions, even just as part of a larger field
campaign, would benefit model uncertainty reduction.

5. Additional aerosol measurements could be used to fur-
ther constrain the parameters and forcing. We expect the
following (already available) measurements would pro-
vide further constraint: (i) black carbon measurements
to help constrain the aerosol absorption component of
radiative forcing but also as a measure of aerosol re-
moval rates; (ii) SO2 concentrations to avoid ambiguity
between sulfate and PM2.5 constraints; (iii) measure-
ments from biomass burning regions to help constrain
both the emissions and the size distribution of the par-
ticles; (iv) vertical profiles of aerosol (Watson-Parris et
al., 2019); (v) more particle number size distribution in-
formation instead of just N3 and N50, which have not
constrained the size distribution well enough.

6. Measured or derived process rates would be very use-
ful because they would help to constrain model param-
eters directly, rather than relying on indirect constraint
through measured state variables. For example, dry and
wet deposition rates (Emerson et al., 2018) are required
on the scale of model grid boxes (tens to hundreds of
kilometres). Similarly, direct estimates of particle for-
mation and growth rates (Kerminen et al., 2018) would
be useful, rather than just relying on integral particle
number concentrations averaged over long periods.

It is very challenging to constrain model uncertainty using a
large set of perturbed parameter model variants and exten-
sive measurements of different types. However, the resulting
ranges of model parameters and outputs (like radiative forc-
ings) estimated in this way are much more robust than those
based on a very small number of models. Although our study
is incomplete (not all parameters were perturbed and not all
measurements were used), the outcome is an estimate of the
“observationally plausible” range of aerosol forcings for the
HadGEM3-UKCA aerosol–climate model. The ranges might
be wider if we accounted for more sources of uncertainty and
directly accounted for structural errors in the implausibility
calculations, but they could also be narrowed if we improved
model structural deficiencies, reduced model–measurement
representativeness errors and used a wider set of measure-
ment types.
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Appendix A

Table A1. The 26 aerosol parameters included in the AER PPE. Further details are provided in a separate publication (Yoshioka et al., 2019).

Index Parameter name Description

1 BL_Nuc Boundary layer nucleation rate
2 Ageing Ageing of hydrophobic aerosols (no. of monolayers of soluble material)
3 Acc_Width Modal width of accumulation modes (nm)
4 Ait_Width Modal width of Aitken modes (nm)
5 Cloud_pH pH of cloud droplets (used to calculate the conversion of SO2 into sulfate)
6 Carb_FF_Ems Carbonaceous fossil fuel emissions scale factor
7 Carb_BB_Ems Carbonaceous biomass burning emissions scale factor
8 Carb_Res_Ems Carbonaceous residential (biofuel) emissions scale factor
9 Carb_FF_Diam Carbonaceous fossil fuel emission diameter (nm)
10 Carb_BB_Diam Carbonaceous biomass burning emission diameter (nm)
11 Carb_Res_Diam Carbonaceous residential (biofuel) emission diameter (nm)
12 Prim_SO4_Frac Mass fraction of SO2 converted to new sulfate particles in power plant plumes
13 Prim_SO4_Diam Mode diameter of new subgrid sulfate particles (nm)
14 Sea_Spray Sea spray aerosol scale factor
15 Anth_SO2 Anthropogenic SO2 emission scale factor
16 Volc_SO2 Volcanic SO2 emission scale factor
17 BVOC_SOA Biogenic secondary aerosol formation from volatile organic compounds scale factor
18 DMS Dimethyl sulfide surface ocean concentration scale factor
19 Dry_Dep_Ait Aitken-mode dry deposition velocity scale factor
20 Dry_Dep_Acc Accumulation-mode dry deposition velocity scale factor
21 Dry_Dep_SO2 SO2 dry deposition velocity scale factor
22 Kappa_OC κ-Kohler coefficient of organic carbon
23 Sig_W Updraft vertical velocity standard deviation (used to calculate the activation of aerosols into cloud

drops)
24 Dust Dust emission scale factor
25 Rain_Frac Fraction of cloud-covered area in large-scale clouds where aerosol scavenging by raindrops occurs
26 Cloud_Ice_Thresh Threshold of cloud ice fraction above which nucleation scavenging is suppressed (restricting further

activation of aerosols into cloud drops)
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Table A2. The choices of the number of measurements (tolerance, T ) allowed to exceed a threshold implausibility (θ ) for constraint on each
of the monthly observed aerosol properties, along with the corresponding percentage of the large sample of 1 million model variants (that
covers the PPE parametric uncertainty) that is retained on constraint for each choice. The choices on the left correspond to those used for
the all-months constraints shown on the left of Fig. 6. The choices on the right correspond to those used for the joint all-variables-months
constraint shown on the right in Fig. 6. The percentage of variants retained is also shown for the combined all-months constraint for each
variable (ALL) as well as for the joint all-variables-months constraint (final row). LHS indicates the left-hand side and RHS the right-hand
side.

AOD All-months constraint choices (LHS Fig. 6) Joint all-variables-months constraint choices (RHS Fig. 6)

Month No. obs used Threshold Tolerance % Variants Threshold Tolerance % Variants
in constraint implausibility (no. obs) retain implausibility (no. obs) retain

Jan 272/294 3.5 33 40.03 4 76 75.60
Feb 274/301 3.5 27 42.37 3.5 82 75.71
Mar 284/309 3.5 23 40.54 3.5 80 75.78
Apr 289/316 3.5 17 39.70 3.5 52 76.47
May 292/322 3.5 12 34.55 3.5 47 76.17
Jun 295/320 3.5 24 43.10 3.5 53 74.13
Jul 303/323 3.5 24 43.38 3.5 48 75.46
Aug 310/326 3.5 19 35.51 3.5 50 74.06
Sep 303/321 3.5 24 43.09 3.5 61 74.65
Oct 285/315 3.5 23 39.57 3.5 80 75.97
Nov 273/309 3.5 27 41.91 3.5 93 74.75
Dec 267/298 3.5 43 41.44 4 91 75.82

ALL 3447/3754 19.01 60.42

Sulfate All-months constraint choices (LHS Fig. 6) Joint all-variables-months constraint choices (RHS Fig. 6)

Month No. obs used Threshold Tolerance % Variants Threshold Tolerance % Variants
in constraint implausibility (no. obs) retain implausibility (no. obs) retain

Jan 147/149 3.5 3 38.76 4 50 75.42
Feb 164/148 3.5 3 38.79 4 38 74.64
Mar 144/151 3.5 6 42.70 4 46 74.99
Apr 149/151 3.5 6 38.66 4 51 75.22
May 146/149 3.5 9 41.38 4.5 35 74.60
Jun 142/150 3.5 6 38.19 3.5 48 74.40
Jul 142/148 3.5 9 41.75 4 40 75.19
Aug 143/148 3.5 9 38.97 4 46 75.00
Sep 144/147 3.5 3 39.13 4 46 74.77
Oct 143/147 3.5 3 38.03 4 46 75.02
Nov 143/146 3.5 3 40.21 4 46 75.52
Dec 144/147 3.5 3 41.52 4 49 72.42

ALL 1733/1781 27.73 64.90

PM2.5 All-months constraint choices (LHS Fig. 6) Joint all-variables-months constraint choices (RHS Fig. 6)

Month No. obs used Threshold Tolerance % Variants Threshold Tolerance % Variants
in constraint implausibility (no. obs) retain implausibility (no. obs) retain

Jan 142/168 3.5 20 41.52 3.5 40 74.02
Feb 145/168 3.5 20 36.27 3.5 38 73.51
Mar 154/170 3.5 15 39.14 3.5 34 75.09
Apr 152/170 3.5 9 43.70 3.5 24 72.93
May 154/167 3.5 9 43.16 3.5 22 75.83
Jun 158/170 3.5 13 34.89 3.5 32 74.91
Jul 163/172 3.5 16 40.27 3.5 36 74.08
Aug 161/169 3.5 13 36.70 3.5 39 75.68
Sep 154/166 3.5 9 42.71 3.5 31 75.37
Oct 151/165 3.5 12 45.71 3.5 24 75.59
Nov 142/168 3.5 14 38.76 3.5 31 73.69
Dec 148/169 3.5 24 40.51 3.5 44 75.52

ALL 1824/2022 10.80 48.89
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Table A2. Continued.

OC All-months constraint choices (LHS Fig. 6) Joint all-variables-months constraint choices (RHS Fig. 6)

Month No. obs used Threshold Tolerance % Variants Threshold Tolerance % Variants
in constraint implausibility (no. obs) retain implausibility (no. obs) retain

Jan 3/6 3.5 0 63.60 4.5 0 76.25
Feb 10/14 3.5 3 58.59 3.5 4 86.56
Mar 41/82 3.5 2 57.69 3.5 3 72.06
Apr 49/74 3.5 2 68.29 3.5 3 76.20
May 20/23 3.5 1 56.91 3.5 2 76.69
Jun 22/23 3.5 3 71.67 3.5 4 76.64
Jul 18/23 3.5 2 57.40 3.5 4 73.36
Aug 21/23 3.5 2 65.05 3.5 3 72.19
Sep 17/22 4 4 67.45 3.5 5 77.65
Oct 24/41 3.5 4 72.35 3.5 4 72.35
Nov 15/37 4.5 0 58.57 3.5 1 81.81
Dec 11/15 3.5 1 71.62 3.5 1 71.62

ALL 251/383 6.94 20.00

N3 All-months constraint choices (LHS Fig. 6) Joint all-variables-months constraint choices (RHS Fig. 6)

Month No. obs used Threshold Tolerance % Variants Threshold Tolerance % Variants
in constraint implausibility (no. obs) retain implausibility (no. obs) retain

Jan 12/13 3.5 0 95.74 3.5 0 95.74
Feb 12/13 3.5 0 96.60 3.5 0 96.60
Mar 12/13 3.5 0 85.80 3.5 0 85.80
Apr 11/12 3.5 0 68.78 3.5 1 75.35
May 11/12 3.5 0 56.05 3.5 4 77.67
Jun 12/12 3.5 1 58.61 3.5 4 75.70
Jul 13/13 3.5 1 57.15 3.5 4 73.41
Aug 13/13 3.5 1 53.12 3.5 4 73.59
Sep 13/13 3.5 0 67.29 3.5 1 74.97
Oct 12/13 3.5 0 76.94 3.5 0 76.94
Nov 12/13 3.5 1 97.44 3.5 1 97.44
Dec 10/12 3.5 0 94.03 3.5 0 94.03

ALL 143/152 44.03 61.58

N50 All-months constraint choices (LHS Fig. 6) Joint all-variables-months constraint choices (RHS Fig. 6)

Month No. obs used Threshold Tolerance % Variants Threshold Tolerance % Variants
in constraint implausibility (no. obs) retain implausibility (no. obs) retain

Jan 74/77 3.5 3 55.41 3.5 9 76.09
Feb 82/90 3.5 7 53.78 3.5 13 75.28
Mar 132/148 3.5 8 50.40 3.5 16 74.89
Apr 177/199 3.5 25 52.59 3.5 32 71.65
May 62/64 3.5 2 53.39 3.5 7 74.25
Jun 88/96 3.5 4 48.43 3.5 9 73.21
Jul 102/115 3.5 4 48.30 3.5 10 74.10
Aug 97/109 3.5 4 58.29 3.5 8 73.51
Sep 114/133 3.5 7 52.34 3.5 14 76.95
Oct 112/119 3.5 9 45.93 3.5 16 72.77
Nov 113/155 3.5 20 49.80 3.5 27 77.18
Dec 62/67 3.5 9 46.17 3.5 14 77.70

ALL 1215/1372 9.99 40.45

Final % variants retain for the joint all-variables-months constraint: 2.085
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Appendix B: Description of the datasets used in this
study

For the AERONET AOD data used in this study, we thank
the PIs of the AERONET sites used for maintaining their
instruments and providing their data to the community. We
also acknowledge AERONET for their continuous efforts in
providing high-quality measurements and derivative prod-
ucts. All data used in this work can be accessed through the
AERONET web page: http://aeronet.gsfc.nasa.gov/ (last ac-
cess: 17 September 2019).

For the sulfate data used in this study, we acknowledge the
EMEP (http://ebas.nilu.no/, last access: 17 September 2019;
Tørseth et al., 2012), IMPROVE (http://views.cira.colostate.
edu/fed/, last access: 17 September 2019) and EANET (https:
//www.eanet.asia/, last access: 17 September 2019) measure-
ment networks for making their measurement data avail-
able, along with all data managers involved in data collec-
tion. Additional ground station observations from the SOR-
PES (Station for Observing Regional Processes of the Earth
System) monitoring station in Nanjing, China (Ding et al.,
2016), are also included. Data on the acid deposition in the
east Asian region were provided from the Network Center
for EANET, https://monitoring.eanet.asia/document/public/
index (last access: 7 June 2018). IMPROVE is a collabora-
tive association of state, tribal and federal agencies and inter-
national partners. The US Environmental Protection Agency
is the primary funding source, with contracting and research
support from the National Park Service. The Air Quality
Group at the University of California, Davis, is the central
analytical laboratory, with ion analysis provided by Research
Triangle Institute and carbon analysis provided by Desert Re-
search Institute.

For the PM2.5 data used in this study, we acknowledge
the IMPROVE (http://views.cira.colostate.edu/fed/, last ac-
cess: 17 September 2019), WMO GAW-WDCA (https://
www.gaw-wdca.org, last access: 17 September 2019; http:
//ebas.nilu.no/, last access: 17 September 2019; Tørseth et al.,
2012), A-PAD (Atanacio et al., 2016) and NAPS (Galarneau
et al., 2016; http://maps-cartes.ec.gc.ca/rnspa-naps/data.
aspx?lang=en, last access: 17 September 2019) measure-
ment networks for making their measurement data avail-
able, along with all data managers involved in data col-
lection. Further ground station measurements are included
from sites in Australia (ANSTO stations: Cohen and Atana-
cio, 2015), South America (Artaxo et al., 2013), Tai-
wan (Fang and Chang, 2010), South Africa (Vakkari et
al., 2013) and Nanjing, China (SORPES station; Ding
et al., 2016). The PM2.5 data for Europe were obtained
from the World Data Centre for Aerosols (WDCA), and
we thank the following data providers to this network:
Adamos Adamides (Cyprus), Jacobus P. J. Berkhout (the
Netherlands), Elke Bieber (Germany), Tanja Bolte (Slove-
nia), Geoff Broughton (United Kingdom), Darius Cebur-
nis (Ireland), Anna Degorska (Poland), Iveta Dubakova

(Latvia), Fermin Elizaga (Spain), Marina Froehlich (Aus-
tria), Marina Frolova (Latvia), Robert Gehrig (Switzer-
land), Alberto Gonzalez (Spain), Carsten Gruening (Italy),
Savvas Kleanthous (Cyprus), Manuel Lambas (Spain),
Maj Britt Larka Abellan (Spain), Marijana Murovec (Slove-
nia), Jaroslav Pekarek (Czech Republic), Noemi Perez
(Spain), Cinzia Perrino (Italy), Jean-Philippe Putaud
(Italy), Xavier Querol (Spain), Stephane Sauvage (France),
Karin Sjoberg (Sweden), Andre Sonntag (Germany), Ger-
ald Spindler (Germany), Daan P. J. Swart (the Nether-
lands), Karin Uhse (Germany), Milan Vana (Czech Repub-
lic), Keith Vincent (UK), Pasi Aalto (Finland), Markku Kul-
mala (Finland), Anne-Gunn Hjellbrekk, (Norway) and
Aas Wenche (Norway).

The N3 data used in this study were obtained from the
EBAS ACTRIS database (Asmi et al., 2013; https://www.
actris.eu/, last access: 17 September 2019; http://ebas.nilu.
no/, last access: 17 September 2019), collated via the Global
Aerosol Synthesis and Science Project, GASSP (Redding-
ton et al., 2017, http://gassp.org.uk/, last access: 17 Septem-
ber 2019), and public data on the EBAS database. The
EBAS database has largely been funded by the UNECE
CLRTAP (EMEP) and AMAP and through NILU internal
resources. Specific developments have been possible due
to projects like EUSAAR (EU-FP5; EBAS web interface),
EBAS Online (Norwegian Research Council INFRA; up-
grading the database platform) and HTAP (European Com-
mission DG-ENV; import and export routines to build a sec-
ondary repository in support of http://www.htap.org; last ac-
cess: 4 April 2019). A large number of specific projects
have supported development of data and metadata report-
ing schemes in dialogue with data providers (EU; CREATE,
ACTRIS and others). Through ACTRIS, the research leading
to the these results has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement no. 654109. For a complete list of pro-
grammes and projects for which EBAS serves as a database,
please consult the information box in the Framework filter
of the web interface. These are all highly acknowledged for
their support.

The observations of OC used in this study are collated
from seven observational campaigns and supplemented by
additional ground station observations. The campaign data
were collated via GASSP and are derived from size dis-
tribution measurements taken during the following cam-
paigns: VOCALS (NERC grant NE/F019874/1; Allen et
al., 2011; Hawkins et al., 2010; Wood et al., 2011), Cal-
Nex (Ryerson et al., 2013), WACS (Quinn et al., 2014),
ICEALOT (Frossard et al., 2011), DYNAMO (DeWitt et
al., 2013), NEAQS-2004 (Quinn et al., 2006; Wang et al.,
2007), TEXAQS06 (Bates et al., 2008), RHaMBLe (NERC
grants NE/D006570/1, NE/E011454/1; Allan et al., 2009)
and ACCACIA (NERC grant NE/I028696/1; Allan et al.,
2015). The OC ground station observations used are from
the AMS Global Database which has a worldwide cover-
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age (Zhang et al., 2017), along with data for further Eu-
ropean sites from ACTRIS (https://www.actris.eu/, last ac-
cess: 17 September 2019; http://ebas.nilu.no/, last access:
17 September 2019; collated via GASSP) and data from
individual stations including Chilbolton (England; Crippa
et al., 2014), COPS (NERC grant NE/E016200/1; Hor-
nisgrinde, Germany; Irwin et al., 2010; Jones et al., 2011),
Holme Moss (England; Liu et al., 2011), OP3 (NERC grant
NE/D004624/1; southeast Asia; Hewitt et al., 2010) and
MC4 (NERC grant NE/H008136/1; Weybourne, England;
Liu et al., 2013) collated via GASSP, the SORPES site in
Nanjing, China (Ding et al., 2016), and AMF stations in
the US and northeast Atlantic (Atmospheric Radiation Mea-
surement (ARM) user facility, 2014a, b). The OC data at
the AMF stations (US and northeast Atlantic) were obtained
from the ARM programme sponsored by the US Depart-
ment of Energy, Office of Science, Office of Biological and
Environmental Research, Climate and Environmental Sci-
ences Division. The AMS Global Database ground station
data cover the following sites: Barcelona (Minguillón et al.,
2011; Mohr et al., 2012), Beijing (Sun et al., 2010), Blodgett
Forest (Farmer et al., 2011), Boulder (Nemitz et al., 2008),
Cape Hedo, Chebogue Point, Cheju Island (Topping et al.,
2004), Chilbolton, Cool (Setyan et al., 2012), Duke Forest
(Stroud et al., 2007), Edinburgh (Allan et al., 2003a), Fi-
nokalia (Hildebrandt et al., 2010), Fukue Island (Takami et
al., 2005), Helsinki (Timonen et al., 2013), Houston (Cana-
garatna et al., 2007), Hyytiälä (Allan et al., 2006), Jungfrau-
joch (Ng et al., 2010), Komaba (Takegawa et al., 2006), K-
Puszta, Mace Head (Dall’Osto et al., 2010), Mainz (Ng et al.,
2010), Manaus (Chen et al., 2009), Manchester (Allan et al.,
2003b), Melpitz (Poulain et al., 2011), Mexico City (Aiken
et al., 2009), Montseny, New York City (Drewnick et al.,
2004; Sun et al., 2011; Weimer et al., 2006), Pasadena (Hayes
et al., 2013), Pinnacle State Park (Bae et al., 2007), Pitts-
burgh (Zhang et al., 2005), Point Reyes National Seashore
– ARM Mobile Facility (AMF) (Ervens et al., 2010), Puy
de Dome (Freney et al., 2011), Riverside – SOAR field site
(Docherty et al., 2011; Williams et al., 2010), San Pietro
Capofiume, Storm Peak, Trinidad Head (Millet et al., 2004),
Vancouver (Alfarra et al., 2004; Boudries et al., 2004), Wey-
bourne Atmospheric Observatory, Whistler Mountain (Sun
et al., 2009), Whiteface Mountain (Hogrefe et al., 2004) and
Writtle Agricultural College.

The observations of N50 used in this study are collated
from 19 observational campaigns and supplemented by ad-
ditional ground station observations. The campaign data
were collated via GASSP and derived from size distribu-
tion measurements taken during the following campaigns:
ACE1 (Bates et al., 1998; Clarke et al., 1998), VOCALS
(NERC grant NE/F019874/1; Allen et al., 2011; Hawkins et
al., 2010; Wood et al., 2011), DOE ARM MAGIC (Lewis
and Teixeira, 2015), CalNex (Ryerson et al., 2013), WACS
(Quinn et al., 2014), NEAQS-2002 (Bates et al., 2005; Quinn
and Bates, 2005), ARCTAS (McNaughton et al., 2011), AS-
COS (Heintzenberg and Leck, 2012; Tjernström et al., 2014),
ICEALOT (Frossard et al., 2011), AEROSOL99 (Bates et al.,
2001), DYNAMO (DeWitt et al., 2013), INDOEX (Quinn
and Bates, 2005; Ramanathan et al., 2001), PEM-Tropics-
A (Fenn et al., 1999), PEM-Tropics-B (Raper et al., 2001),
PASE (Hudson and Noble, 2009), NAURU99 (Long and Mc-
Farlane, 2012), ACE-ASIA (Bates et al., 2004; Huebert et al.,
2003), NEAQS-2004 (Quinn et al., 2006; Wang et al., 2007)
and TEXAQS06 (Bates et al., 2008). The N50 ground sta-
tion observations used, collated via GASSP and public data
on the EBAS database, are from Canada (Jeong et al., 2010;
Leaitch et al., 2013; Takahama et al., 2011), South Africa
(Vakkari et al., 2013), the Russian Arctic (Asmi et al., 2016),
India (Hyvärinen et al., 2010), Antarctica (Fiebig et al., 2009)
and European sites (Asmi et al., 2011). ASCOS (the Arctic
Summer Cloud Ocean Study) was funded by the Knut and
Alice Wallenberg Foundation and DAMOCLES (EU Sixth
Framework Programme). The Swedish Polar Research Sec-
retariat provided access to the icebreaker Oden and logistical
support.

https://doi.org/10.5194/acp-20-9491-2020 Atmos. Chem. Phys., 20, 9491–9524, 2020

https://www.actris.eu/
http://ebas.nilu.no/


9516 J. S. Johnson et al.: Robust observational constraint of uncertain aerosol processes
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ble S1 in the Supplement. Model data and analysis code can be
made available upon request to the corresponding author. The au-
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