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Abstract: Increasing carbon dioxide (CO2) concentrations threaten human production and life.
Currently the equipment used for CO2 monitoring is heavy and expensive, without a portable CO2

detector that is inexpensive and resistant to interference. Here we designed a portable CO2 detector
based on no-dispersive infrared sensors to measure CO2 concentration. The detector, which has
a mass of 1 kg, is powered by a lithium battery with dimensions of 200 mm (length) × 150 mm
(width) × 100 mm (height). Considering the fact that field observations are susceptible to humidity, a
series of experiments were carried out to reduce the humidity interference on sensor responses at a
laboratory. The values of humidity and CO2 variation were used in a regression model analysis to
determine a quadratic function with an R2 above 0.94. The detector was compared with a reference
analyzer in ambient CO2 measurement during a 7-day field campaign in Hangzhou, China. After
humidity correction, the data show better correlation with the reference data, with the R2 0.62–0.97
increasing from 0.62–0.97 compared to before the correction and the value deviation decreasing to
less than 3%. Cluster analysis of sensors revealed a reduction in average relative deviation of up to
1.4% as the number of sensors increased.

Keywords: CO2 measurement device; humidity interference; non-dispersive infrared (NDIR);
clustering sensors; regression model

1. Introduction

Carbon dioxide (CO2) is a major greenhouse gas, the concentration of which has
been rising every year since industrial revolution, causing global climate change [1,2].
Monitoring the level of CO2 in the environment is important for mitigating the greenhouse
effect [3]. In early days, flask-based measurements required observers to collect samples,
which were then transported to a laboratory for analysis with gas chromatographs [4].
Such detection methods carried a lag in data that made it difficult to capture the dynamic
changes in CO2 concentration.

Optical detection technology can provide great advantages with regards to gas se-
lectivity, accuracy and sensitivity. As a result, it is widely used for environmental CO2
detection [5,6]. To address global-scale monitoring requirements, probing satellites with
spectroscopic techniques have been deployed into space to monitor atmospheric CO2
concentrations [7–9]. This method has obvious disadvantages including high cost, low
resolution and large uncertainty. With the development of laser spectroscopy technology,
a number of continuous measurement CO2 instruments have been developed for CO2
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monitoring based on highly accurate detection techniques such as cavity ring-down spec-
troscopy (CRDS) [10], off-axis integrated cavity output spectroscopy [11] and tunable diode
laser absorption spectroscopy [12]. The source-sink of CO2 and climate effects in the envi-
ronment were revealed by these high-precision analytical devices in CO2 networks over the
world [13–16]. Due to the cost of the networks, it is difficult to develop them on a large scale
with a higher spatial density of observations. Meanwhile the majority of such instruments
are large and complex to operate, as well as requiring strict environmental conditions at the
measurement site. Therefore, they are not suitable for use in field observation experiments
where conditions are complex.

Electrochemical sensors as a conventional detection technology are widely used in
environmental air quality monitoring for the rapid assessment of regional environmental
pollution levels. Some rare earth elements were added to the electrodes for electrochemical
CO2 sensors, making the sensors more expensive [17]. In addition, most electrochemical
sensors need to be pre-heated for a long time in order to reach a suitable operating temper-
ature [18]. Compared to optical detection techniques these sensors have a longer response
time, usually exceeding 60 s [19]. With the advent of widely available and low-cost mid-
infrared light sources and detectors, one optical absorption method called no-dispersive
infrared (NDIR) technique was applied for the development of miniature CO2 sensors. A
chamber-less NDIR gas sensor was developed with low robustness using a light source
with an embedded parabolic reflector [20]. A multiplexed NDIR gas sensing platform was
designed for CO2 measurement with a 2 ppm detection limit [21]. A miniaturized NDIR
CO2 sensor was implemented on a silicon chip consisting of a hollow metallic cylindrical
cavity along with access waveguides showing a limit of detection of roughly 100 ppm [22].
Nevertheless, the response of the sensor is still susceptible to drift-induced variations in
the ambient air.

Variations in atmospheric pressure can affect the gas volume in the chamber of
the sensor causing a corresponding measurement error. A study has reported that the
root–mean–square error of a, NDIR sensor was 2.1 ppm when pressure changed over
45,000 Pa [23]. However, such a large fluctuation in atmospheric pressure is not expected
in ambient air testing in the field. Gas molecule diffusion within the detection chamber
is affected by temperature, and the absorption peaks of water molecules overlapped with
CO2, affecting detection accuracy [24,25]. Therefore, temperature and humidity are two
major ambient parameters that influence CO2 gas measurement in applications [26,27].
The effects of both on NDIR sensors have been evaluated in some studies. The long
term-stability of a fully integrated NDIR CO2 sensor on a silicon chip was subject to the
temperature fluctuations in the laboratory [28]. The NDIR sensors respond linearly to CO2
when measuring calibration tanks, but the regression slope between measured and assigned
CO2 differs between individual sensors and was influenced by meteorological conditions,
especially relative humidity (RH) [29]. Currently some desiccants are used to eliminate the
interference of humidity with the detection. Therefore, there are few correction methods
for RH in the literature. Understanding atmospheric CO2 variations is a long-term effort,
however, and a regular desiccant replacement would significantly increase the human cost
of monitoring. Hence, the reliability of the CO2 sensor needs to be addressed, given these
environmental restrictions.

In this study, a portable CO2 measurement device was designed by six NDIR sensors
for ambient CO2 monitoring. The effect of humidity on the signal drift of the sensor was
studied by simulating real atmospheric conditions at laboratory. The CO2 device was
deployed for measure ambient air with a reference analyzer in a 7-day field campaign.
Using regression models, we obtained correction equations for humidity and CO2 variation
values correcting the data of the CO2 device with the reference analyzer to eliminate
ambient humidity interference. Detection accuracy was further improved by clustering
sensors as well as limiting the effects of inter-sensor variability.
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2. Materials and Methods
2.1. Self-Developed CO2 Device

The self-developed CO2 device is shown in a red rectangle (Figure 1). NDIR optical
CO2 sensors (K30, SenseAir, Delsbo, Sweden) were integrated into the left and right of
the device (three on each side), the dimensions of which were 57 mm (length) × 48 mm
(width) × 8 mm (height). Gas diffusion sampling is used to detect calibration gas or
sampling air directly in contact with the sensor surface membrane, and the corresponding
voltage signal is detected by an internal photoelectric element. In addition, the surface
membrane has a filtering effect on particulate matter so that no individual flow cell device
is required. The sensor internal light intensity is attenuated by the diffusion of CO2 from air
onto the sensor surface, and the CO2 concentration is measured according to the intensity
of the attenuation. An LM35 temperature sensor (Texas Instruments, Dallas, TX, USA) and
an HIH-3610 humidity probe (Honeywell, Charlotte, NC, USA) were employed to measure
ambient air temperature and RH. A 20,000 mAh lithium battery was fitted inside the
device to power the sensors and microcomputer. The dimensions of the whole device were
200 mm (length) × 150 mm (width) × 100 mm (height) and its weight was 1 kg.
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2.2. Data Acquisition 

Figure 1. Schematic and actual diagram of a humidity interference experiment with a self-developed
CO2 device. The experimental devices are labeled with numbers and presented below the diagram
(1—Pure air generator, 2—CO2 standard gas, 3—Valve, 4—Gas dilution device, 5—Bubble absorption
bottle, 6—Acrylic box, 7—CO2 sensors and 8—Temperature and humidity sensor). The direction of
airflow is represented by black arrows. The details of the CO2 device are shown in the red rectangle
with three CO2 sensors on left and right side (sensor 1#–6#).

2.2. Data Acquisition

All sensor boards with a time resolution of 2 s were connected through a Smacq data-
acquisition (DAQ) device (USB-3200, Smacq Corporation, Beijing, China) to our in-house
designed LabVIEW DAQ software (LabVIEW 2012, National Instrument, Austin, TX, USA).
The signal voltages of the sensors were monitored and recorded in the software. The voltage
signals were converted into their parameter units including gas mixing ratio (ppm), RH
(%) and temperature (◦C) in the software. The system was controlled by a microcomputer
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with Windows 10, which showed and saved data. The microcomputer was equipped with
an inter processor with 64 GB of memory, and was powered by a lithium battery with
dimensions of 12 mm (length) × 11 mm (width) × 40 mm (height).

2.3. Interference from Humidity

In this study the influence of humidity on the CO2 sensors was initially investigated
through testing the variations of the sensor in clean ‘zero air’ at different controlled RH
(0%, 35%, 50%, 65%, and 80%). ‘Zero air’ is defined as clean air free from water vapor,
particulate matter and other gases such as sulphur dioxide, ozone, carbon monoxide and
so on. The schematic diagram of a humidity interference experiment with a self-developed
CO2 device is shown in Figure 1. A pure air generator (Model 1001, Beijing SDL Technology
Corporation, Beijing, China) was used to create the initially dry zero air in this experiment.
The zero gas generator and CO2 standard gas were connected to a gas dilution device
(T1700H, Beijing SDL Technology Corporation, China) together with valves. The humidity
of zero gas was controlled by adjusting the flow rate of the gas dilution device and the
volume of steam water in the bubble absorption bottle to achieve the target value. The
specific experimental parameters are shown in Table 1. The self-developed CO2 device
was placed in a sealed acrylic chamber with a one-way valve at the end of the chamber
to control exhaust gas. Humidified zero air or CO2 standard gas were detected by the
CO2 sensors and the humidity sensor of the CO2 device at the chamber. The stable data
from the device were selected for analysis of the interference of humidity with detection
performance, as described in Figure 2.
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Table 1. Operating parameters of the humidity interference experimental devices. The flow rate is
adjusted by the gas dilution device and the water volume refers to the steam water added in the
bubble absorption bottle.

RH 0% 35% 50% 65% 80%

Flow (mL/min) 4000 4000 4600 4500 5500
Water volume (mL) 0 10 10 27 125

2.4. Sensors and Reference Instrument Detect in Ambient Air

For a comparison of sensors in ambient air, the CO2 device was housed near the
sampling outlet of a reference instrument located approximately 15 m above the laboratory
roof. A Picarro (G2401, Picarro Corporation, Santa Clara, CA, USA) was used as the
reference instrument for CO2 concentration comparison. The pipe from the gas inlet to the
Picarro was too long to account for a time lag between the ambient air and the instrument
reading. To reduce the delay time of the instrument measurements, two circuits were split
from the inlet. The by-pass circuit consisted of a flow meter and an auxiliary pump while
the other circuit was connected directly to the instrument with a filter.

To evaluate the real-world applicability of the lab-derived correction factors and sensor
performance, the sensors were deployed for ambient air CO2 concentration monitoring
alongside the reference instrument during a 7-day monitoring exercise (from 30 August to
6 September 2022). The sampling site was the campus of Zhejiang University of Technology,
China. Sensor data and reference instrument data were averaged to 1 h intervals and
evaluated over the 7-day period.

The average mixing ratio of atmospheric CO2 in ambient air measured during the
whole campaign period by the reference methods was 439 ± 13 ppm (average ± SD). The
minute-averaged temperature and the relative humidity in the sampled air were 24 ± 2.5 ◦C
(average ± SD) and 83 ± 12% (average ± SD) during the field campaign.

3. Results and Discussion
3.1. RH Effects

Humidity and temperature are the key factors affecting the detection performance of
optical sensors [27,30]. According to the CO2 sensor datasheet, a temperature compensa-
tion function was applied to this product [31]. Therefore, the environmental interference
of the CO2 sensor was only investigated for humidity in this study. The CO2 concentra-
tion of each sensor when exposed to zero air in the presence of varying RH is shown in
Figure 2. Obviously, the measured concentration by the six CO2 sensors changed to varying
degrees as the humidity changed, which was not constant. This is significant since several
approaches for the field calibration of sensors have proposed bootstrapping ambient sensor
measurements to either nearby reference instruments or the sensor ensemble, but such
an approach must assume a constant zero value to deliver a calibration slope [32]. The
response of the six CO2 sensors to zero gas at the same humidity gradient varied in peak
value and magnitude, with the peak value of sensor 6# being significantly lower than the
other sensors at only 450 ppm and the maximum variation of sensor 4# at about 155 ppm.
This means that the individual differences between sensors are considerable even if the
sensors are made by the same company.

As sensors 1#, 2# and 6# showed, CO2 concentration slowly increased within 5 ppm as
humidity increased from 35% to 50%. Meanwhile, the other sensors showed a decreasing
trend, with the largest decrease of 40 ppm in sensor 4#. A similar phenomenon was found
when the humidity increased from 65% to 80% showing an increasing trend except for the
decrease in CO2 concentration in sensor 1#. This demonstrates that the drift of the signal
due to humidity interferences varies significantly from a single sensor even for the same
series of sensors. It means that measuring the CO2 concentration using a fixed calibration
equation can lead to large errors. We noticed a rapid increase in all sensors when the
humidity increased from 0 to 35% and a rapid decrease when the humidity increased from
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50% to 65%. In the ambient atmosphere, such rapid changes in RH would not often occur,
but this rate of change could well be experienced if a sensor was carried on a person from
outdoors to in, or vice versa.

3.2. Correction with RH

Gas concentration is positively related to the voltage signal according to the NDIR
sensor detection principle. In order to optimize the sensor detection accuracy, several
calibration curves (Figure 3) were fitted to CO2 standard gas using a gas dilution device
with three concentration gradients (400, 600 and 800 ppm) at different humidity conditions.
The simulation results for different humidity conditions were calculated based on the slope
between voltage values and corresponding concentration values. The signals of the six
CO2 sensors showed a positive correlation with the standard gas concentration, meaning
that the linear relationship of the NDIR sensor between gas concentration and voltage does
not change as RH varies. The sensitivity of sensor 2# was lower than that of the other
sensors, especially at the 600 and 800 ppm, where changes in humidity caused less change
in concentration. This is not consistent with the results from the other sensors, which again
confirms that individual errors in the sensors can affect the detection results. The same
results from the six sensors measured showed that the calibration curves at RH between
35% and 50% were very close and the discrepancy increased when increasing from 50% to
65%. This may indicate that the optimum RH condition for application of the CO2 sensor is
around 50%.
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CO2 concentration in ambient atmosphere is around 400 ppm [33], so we corrected
the sensors for humidity interference based on a 400 ppm calibration curve. The CO2
sensor response is a function of gas concentration and RH of the medium [34]. Therefore,
moderating the effect of environmental parameters can improve the reliability of the CO2
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sensor. A regression function defined in Equation (1) corrects the concentration by RH and
enhancement value (∆ CO2 concentration):

Ccorrected = Craw + Cinterference = Craw + ƒ (RH, ∆ CO2 concentration) (1)

where Ccorrected represents the concentration of CO2 after humdity correction, Craw means
the concentration of CO2 detected directly by the sensors, Cinterference represents the vari-
ation of CO2 concentration due to humdity and f (RH, ∆ CO2 concentration) denotes a
function between RH and CO2 enhancement value.

The relationship between RH and varying values of CO2 concentration is shown in
Figure 4. The two display a quadratic relationship whose equation and R2 markers feature
in red in the diagram. The results of the fitted curve showed a gradual decrease in ∆ CO2
concentration with increasing RH, with the smallest increment of ∆ CO2 concentration
being around 3 ppm around 50% RH, followed by an increase in deviation, reaching a
maximum around 65% RH and then decreasing again beyond 65%. The results of the
sensors were similar, with R2 above 0.94 showing a strong correlation. Among the sensors,
sensors 1#, 4# and 5# had the best R2 (of 0.99 or more).
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RH and temperature was measured by the humidity and temperature sensors inte-
grated into the CO2 device during the comparison experiment. The results are shown in
Figure 5 for the calibration of CO2 measurements in ambient air. Correction values for CO2
were obtained by taking the RH measured from outdoor air into the equation measured
in the simulation and adding the corresponding humidity interference values to initial
measured CO2 concentration.
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3.3. Comparison with Reference Instrument

The results of original measured and humidity corrected values of the CO2 device
compared with the Picarro are shown on the left of Figure 6. During the 7-day period, the
Picarro observed variations in ambient CO2 with a mean value of just above 439 ppm and
a standard deviation of just below 14 ppm. There was a clear synoptic variation in the
diurnal cycle observed, varying in magnitude from as low as 10 ppm over 24 h to more
than 40 ppm. Each of the sensors was successfully able to resolve the ambient variations
in CO2 over this comparison period, although none of the sensors matched the Picarro
perfectly in both absolute concentration and relative change. Each individual sensor has a
stage to match with the Picarro from Figure 6. A few of the sensors were approximately the
same as the Picarro, but many can have an offset that was as much as 6% (25 ppm) from
the Picarro. The differences between each sensor and the Picarro all had relative deviations
between 4% and 7% (Table 2).

The measured value of the sensor maintained the same trend as the reference in-
strument after calibration, with a deviation of less than 3% (Table 2). The difference in
measurement occurred mainly in the peaks or troughs, which may be due to the differ-
ence in response time. The Picarro detection is based on the CRDS method, a technique
characterized by a short response time. In contrast, the NDIR method is used for the CO2
sensor and the sample takes 2 s from diffusion to full detection. The errors caused by the
differences in measurement principle become more obvious when exposed to fluctuating
CO2 concentrations. This means that monitoring using CRDS technology are more suitable
for studying sudden changes in CO2, while for some continuous observation experiments
inexpensive CO2 sensors can replace these monitoring. The smallest differences of the six
CO2 sensors before and after calibration were found during the first three and last two
days of the field observation experiment. The deviation of sensors 1#, 2#, 3# and 6# in-
creased by approximately 20 ppm while sensors 4# and 5# did not change significantly from
10:00 a.m. on 1 September to 09:00 a.m. on 3 September. However the ambient air humidity
shows a dramatic change at this time from 60% to 80% in Figure 5. It is possible that sensors
4# and 5# are not too sensitive at this RH range.

Table 2. Maximum relative deviation of the CO2 sensors combinations compared with Picarro before
and after correction during a 7-day field experiment.

Number of Sensors 1# 2# 3# 4# 5# 6#

Relative deviation
(before correction) 6.12% 6.38% 6.91% 5.11% 4.84% 4.25%

Relative deviation
(after correction) 2.01% 3.37% 2.46% 1.89% 3.27% 3.45%

The scatter plot and linear fit curves between before and after calibration with the
Picarro are shown on the right of Figure 6. The correlation coefficients are located on
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both sides of the curves. The correlations of the raw CO2 data with the Picarro data were
improved with calibration by a range of 0.6–0.75. Sensors 1#, 2#, 4# and 6# all had strong
correlations with the Picarro above 0.9 after calibration. The R2 for sensors 3# and 5#
was close to around 0.83, which was lower than the other sensors. This indicates that the
accuracy of CO2 has all improved after correction for humidity interferences. Some of
the sensors have better detection performance, but there is still measurement error due to
individual differences between sensors and this error may be more pronounced.
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3.4. Improving Performance by Clustering Sensors

A cluster analysis of the measurement data from six sensors was conducted in order to
reduce the influence of individual differences between sensors in the experimental results.
At first the relative deviations between each sensor and the reference instrument after
calibration were calculated and then the average values were calculated for the sensors
according to the permutations in Figure 7. With an increased number of sensors the average
relative deviation decreases to a minimum of 1.4%, as shown in Figure 7. The average
relative deviation between the sensor and the Picarro after calibration was one third of
that before calibration, slightly less than 2%. As the number of sensors in a cluster is
increased, the observed range of values for the unique permutations of the groups narrows
considerably, greatly improving measurement precision. The relative deviation increased
slightly when selecting four sensors compared to selecting three sensors but was still better
than using one or two sensors. It is worth noting that if only a single sensor was analyzed,
one or several sensors had better deviations than the clustered results. Of course we cannot
deny the possibility that the best sensor (close to true value) can be directly selected for
environmental monitoring or scientific research, but the probability of this is small. Several
studies have shown that clustering analysis using several sensors was a potential technical
approach to reduce the effects of drift in individual sensor responses and limiting the effects
of manufacturing variability among sensors [35,36]. Therefore a combination of several
sensors is a more efficient way to improve the measurement accuracy.
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Figure 7. Average relative deviation of the CO2 sensors combinations compared with the Picarro
after RH correction during a 7-day field experiment. The number of sensors means that if data from
three out of six sensors are used there are 20 possible permutations of sensors. The 20 gradients of
these correlation plots are then plotted in the box plots above, with the median, 25th percentile and
75th percentile in the box and the 5th and 95th percentile on the whiskers.
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4. Conclusions

Using a combination of clustering CO2 sensors with NDIR technology, a portable and
highly sensitive CO2 device was developed for ambient air measurement. The concentration
drift of sensors influenced by RH was simulated by a humidity generation unit at a
laboratory. A quadratic equation was found between the value of CO2 concentration
variation and RH by regression analysis, with a better correlation range from 0.949 to 0.998.
Using the equation it was possible to recreate reference measurements reasonably well
when the sensors were tested side-by-side over a 7-day field experiment. The relative
deviation of the sensors and the Picarro decreased from 6.91% (a minimum of 4.25%) to
3.45% (a minimum of 1.89%) after calibration. The averaged relative deviation between the
clustering sensors and the Picarro gradually decreased as the number of sensors increased.
Clustering of sensors adds little to the overall power budget of an instrument but is a very
easy way to overcome individual sensor drift and irreproducibility. In general commercial
low-cost sensors calibrated with environmental interference are suitable for a variety of
scientific applications.
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