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Abstract: The biosequestration of CO2 using microalgae has emerged as a promising means of
recycling CO2 into biomass via photosynthesis, which could be used to produce biofuels as an
attractive approach to CO2 mitigation. We investigated the CO2 fixation capability of the native
nonaxenic microalgal culture using a 2 L photobioreactor operated in batch mode. The cultivation
was carried out at varying concentrations of total dissolved CO2 (Tco2) in the bulk media ranging
from 200 to 1000 mg L−1, and the temperature and light intensities were kept constant. A maximum
CO2 fixation rate was observed at 400 mg L−1 of Tco2. Characteristic growth parameters such as
biomass productivity, specific growth rate, maximum biomass yield, and biochemical parameters
such as carbohydrate, protein, and lipids were determined and discussed. We observed that the
effect of CO2 concentration on growth and biochemical composition was quite significant. The
maximum biomass productivity was 22.10 ± 0.70 mg L−1 day−1, and the rate of CO2 fixation was
28.85 ± 3.00 mg L−1 day−1 at 400 mg L−1 of Tco2. The maximum carbohydrate (8.17 ± 0.49% dry
cell weight) and protein (30.41 ± 0.65%) contents were observed at 400 mg L−1, whereas the lipid
content (56.00 ± 0.82% dry cell weight) was the maximum at 800 mg L−1 of Tco2 in the bulk medium.

Keywords: nonaxenic culture; biomass productivity; polyculture; carbon dioxide; CO2 biosequestra-
tion; microalgae

1. Introduction

Anthropogenic activities have led to intensive greenhouse emissions, with carbon
dioxide (CO2) being the largest contributor to climate change [1,2]. One of the most
crucial current challenges for scientific research is to reduce atmospheric CO2 levels to
pre-industrial levels. Innovative interdisciplinary solutions to rising levels of CO2 are thus
a need of the moment on all fronts. Geological sequestration and microalgal biofixation
are two of the most frequently studied ways to capture atmospheric CO2. Capturing CO2
in the form of microalgal biomass recycles CO2 into the biotic carbon pool. Algae convert
atmospheric CO2 into biomass by photoautotrophic mechanism and account for a large
proportion (~50%) of the 111–117 billion metric tonnes of carbon per year of the global
primary productivity. Therefore, microalgae have the potential to enable the sustainable
production of energy, chemicals, and materials [3,4].

Generally, on a lab scale, monocultures of microalgae that are not associated with or
contaminated by other species, i.e., axenic microalgal cultures are studied for the production
of biofuels and other value-added compounds. Microalgae such as Botryococcus braunii,
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Chlorella pyrenoidosa, Dunaliella salina, Scenedesmus sp., and Chlamydomonas reinhardtii are
some of the organisms which are frequently studied in algal biofuel applications [5–7].
However, the outdoor mass cultivation of microalgae monocultures is often limited by low
biomass yields, the susceptibility to crashes caused by contamination with or the natural
introduction of invasive species, and low temporal stability to fluctuating conditions.

The challenges faced by large-scale monocultures of microalgae could be overcome
by multifunctional polycultures as microalgae naturally function symbiotically with other
living organisms present in aquatic ecosystems to utilise dissolved nutrients and organic
carbon. In terms of multifunctionality, diverse polycultures also have the potential to
better resist damage from grazers and invasions whilst maintaining a stable ecosystem
over time [8]. However, the role of biodiversity in improving the multifunctionality of
outdoor mass cultivation of algae is poorly understood. For example, Shurin et al. [9]
and Stockenreiter et al. [10] have shown that polycultures of algae exhibit a higher lipid
concentration and total cell biovolume compared to monocultures. Narwani et al. [8], on the
other hand, have shown that diverse cultures do not lead to improved multifunctionality.
Apart from being multifunctional in terms of increased culture productivity and stability,
polycultures with algal species such as Ankistrodesmus falcatus, Paenibacillus sp., Chlorella
vulgaris JSC-7, and Scenedesmus sp., could also make the harvesting process more energy
efficient by promoting the flocculation of the biomass [11].

Since cultures that are free from pest or predator species rarely develop in a full-scale
application, it is crucial to study microalgal polycultures under nonaxenic conditions,
i.e., in the presence of other organisms such as bacteria, amoebae, ciliates, and rotifers.
Previous studies involving nonaxenic cultures of microalgae have shown that the presence
of contaminating microorganism can either be beneficial or detrimental to the overall
culture performance. For instance, Watanabe et al. [12] showed that in nonaxenic cultures of
Chlorella vulgaris, the bacterial contaminants (i.e., in a strict sense, the organisms which make
the culture nonaxenic) had both increasing and decreasing effects on the culture lifetime.
Such interspecies interactions create complementary environmental niches and contribute
to culture stability. Therefore, for our study, we have chosen a microalgal polyculture with
microbial composition relevant to outdoor mass cultivation of microalgae [13–15]. As far
as we know, studies involving polycultures have not been evaluated for the role of the
availability of dissolved CO2 in the bulk media on the performance of the polyculture in
nonaxenic conditions. In this study, we also monitor the change in growth and biochemical
composition of algae grown at various concentrations of dissolved CO2 in the bulk media.
Based on the results, we discuss the potential of using mixed microalgal cultures for
sustainable CO2 biosequestration in outdoor mass cultivation.

2. Materials and Methods
2.1. Microalgal Polyculture and Culture Medium

A nonaxenic polyculture of native microalgae reported by Sasongko et al. [13] was col-
lected from the research-based Minamisoma pilot plant, Fukushima, Japan, and was grown
at the Algae Biomass and Production facility in Kurihara, Tsukuba, Japan. The species diver-
sity of this nonaxenic microalgal polyculture was previously studied by Demura et al. [16]
who reported that it was composed of chlorophytes such as Ankistrodesmus sp., Chlamy-
domonas sp., Coelastrum sp., Desmodesmus sp., Dictosphaerium sp., Eudorina sp., Kirchneriella
sp., Klebsormidium sp., Micractinium sp., Monoraphidium sp., Pediastrum sp., Scenedesmus
sp., Selenastrum sp., Staurastrum sp., Tetraspora sp., and Uronema sp., Heterokontophytes,
Ciliophora, Euglenozoa, Amoebozoa, and Cyanobacteria. The growth media used in this
study contained MgSO4·7H2O 30 mg L−1, NaNO3 140 mg L−1, CaCl2·2H2O 10 mg L−1,
NH4NO3 22 mg L−1, KH2PO4 10 mg L−1, K2HPO4 5 mg L−1, CaCO3 10 mg L−1, citric
acid 2 mg L−1, Fe-citrate 2 mg L−1, biotin 2 µg L−1, thiamine HCl 10 µg L−1, vitamin
B6 1 µg L−1, vitamin B12 1 µg L−1, and Trace element mix A5 with Co (Merck KGaA,
Darmstadt, Germany) 5 mL.
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2.2. Experimental System

The photobioreactor (PBR) consisted of SIMAX borosilicate glass bottles with diam-
eters of 136 mm and heights of 260 mm (Kavalierglass, Sazava, Czech Republic). The
working volume of the PBR was two litres. The PBR was operated in batch mode owing
to the simplistic design and flexibility of batch cultivation of microalgae [17]. The media
were inoculated with the microalgae mixture collected by centrifugation form a starter
culture. The initial dry weight content was set at 200 mg L−1. Pure industrial-grade CO2
was initially bubbled into the algae media at a flow rate of 0.5 L min−1 to reach 200, 400,
600, 800, and 1000 mg L−1 of total dissolved CO2 in the bulk media. The CO2 flow was cut
off when the required concentration of total dissolved CO2 was reached, pH was adjusted
to 8.5 using 5 M of NaOH, and the bottles were then sealed off to reduce CO2 escaping
due to gassing out. The cultures were stirred at 100 rotations per minute by a magnetic
stirrer and incubated at 28 ± 2 ◦C under continuous illumination of fluorescent lamps with
a photon flux density of 50 µmol m−2 s−1.

2.3. Determination of Total Dissolved Carbon Dioxide

When CO2 dissolves in the bulk media, it exists as carbonic acid, bicarbonate, and
carbonate ions. Thus, total dissolved CO2, Tco2 (mg L−1) is the sum of [H2CO3], [HCO3

−]
and [CO3

2−] and is given by the equation:

TCO2 = [H2CO3] +
[
HCO−

3
]
+
[
CO2−

3

]
(1)

Tco2 in the bulk media was experimentally determined by lowering the pH of the
sampled culture solution to below four by using a citrate buffered ionic strength adjuster
where virtually all these ions in the solution become CO2 gas. A carbon dioxide ion-
selective electrode (Handheld carbon dioxide meter CGP-31, TOA DKK, Japan) was then
immersed in the sample solution, which enabled CO2 in the sample solution to diffuse
through a gas-permeable membrane until an equilibrium was reached between the partial
pressures of CO2 in the sample solution and the CO2 in the high concentration sodium
carbonate internal filling solution.

2.4. Microscopy and Morphological Analyses

The algae were morphologically observed using an optical microscope equipped with
an advanced colour interpolation system (Leica DFC 7000T, Leica Microsystems, Tokyo,
Japan). The images were acquired and processed with a LAS X software.

2.5. Measurement of Growth Parameters

Optical density (OD) does not serve as a reasonable estimate of biomass in mixed
cultures [18]. Therefore, the biomass concentration was expressed as dry cell weight
(DW). 10 mL of culture samples were filtered through dried and pre-weighed GF/C glass
microfibre filter papers (Whatman, Chalfont, UK). Excess salts were removed from the
filter paper containing biomass by passing 20 mL of 0.5 N NH4HCO3 through the filter
papers. The filters were dried at 48 ◦C overnight and weighed. The difference in mass was
taken as the dry cell weight (DW).

The biomass specific growth rate, µ (day−1) was calculated using:

µ = (ln N2 − ln N1 )/(t2 − t1) (2)

where N1 and N2 are the biomass at time t1 and t2, respectively.
Biomass productivity, Px was obtained with Equation (3) where Xmax and Xi are the

maximum concentration of microalgae, and initial concentration of microalgae, respectively,
and tf and ti are the times required to reach Xmax and Xi, respectively:

Px = (Xmax − Xi)/(tf − ti) (3)
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The CO2 fixation rate, RCO2 (mg CO2 L−1 day−1) is estimated using the formula
as follows:

RCO2 = CavgPx (MCO2 /MC) (4)

where Cavg is the average carbon content of the microalgal cells (% w/w) measured by an
elemental analyser (UNICUBE, Elementrar, Langenselbold, Germany), MCO2 and MC are
the molar masses of CO2 and elemental carbon, respectively.

2.6. Biochemical Characterisation of Microalgal Cells

For the biochemical characterisation of microalgal cells, dry biomass was harvested
by centrifugation at 10,000× g for 10 min (MX-307, Tomy Digital Biology Co., Ltd.,
Tokyo, Japan), washed with distilled with H2O, and freeze-dried (Eyela FDH-2110, Tokyo
Rikakikai Co., Ltd., Tokyo, Japan) to prevent the degradation of any heat sensitive metabo-
lites and stored at −20 ◦C till further analysis. The carbohydrate content was estimated
and analysed by the Dubois phenol-sulphuric acid method [19]. The total organic carbon
and nitrogen were determined by the CHNS elemental analyser (UNICUBE, Elementrar,
Langenselbold, Germany) calibrated using sulphanilamide as a reference standard. About
5 mg of lyophilised microalgal biomass were combusted in pre-weighed aluminium cap-
sules with helium as a carrier gas. A total elemental nitrogen to protein conversion ratio of
4.44 was used [20]. The total lipid content was estimated by the Folch chloroform-based
lipid extraction method [21].

2.7. Statistical Analysis

All experiments were performed in duplicates, and each measurement was made
three times. Hence, all reported values are the mean of six data points. The effect of Tco2
on biomass growth and biomass composition were statistically evaluated by the analysis of
variance (ANOVA) test for equal variances using Minitab 19 (Minitab, LLC, Pennsylvania,
PA, USA).

3. Results
3.1. Biomass and Growth Analyses

We studied the effect of various concentrations of Tco2 in the bulk media on the mi-
croalgal polyculture. During the microscopic examination of the polyculture, Desmodesmus
sp., Scenedesmus acuminatus, Dictyosphaerium sp., and Phormidium sp. were observed as the
primary dominant species (Figure 1). Comparing the various growth curves, although a
net increase in biomass concentration was observed at all the defined Tco2, higher levels of
Tco2 were found to be detrimental to the rate of biomass accumulation (Figure 2).

The effect of the different levels of Tco2 in the bulk media on biomass accumulation
was triphasic: an initial period of acclimation and little growth (days 0–3) is followed by a
period of rapid biomass accumulation (days 3–7), after which the microalgal population
entered a stationary phase from days 7–10. Comparing the specific growth rate at different
phases (Figure 3), and the percentage increase in biomass accumulation from the start to
the end of each phase (Table 1) elucidates the role of Tco2 in culture growth. In the first
growth phase (1–3 days), the specific growth rate of the culture was highest when the Tco2
was 600 mg L−1 (µ = 0.04 day−1, 15.75% increase in biomass) and was slightly higher than
that observed at 400 mg L−1 of Tco2. In the second growth phase (3–7 days), the specific
growth rate was highest at 400 mg L−1 (74.50% increase in biomass) followed by that at
200 mg L−1 of Tco2 (50.12% increase in biomass). In the third growth phase (7–10 days),
while the growth rate vastly slowed down at all concentrations of Tco2, it was still highest
at 400 mg L−1 of Tco2, indicating that CO2 at this level was the most favourable for growth.
At 1000 mg L−1 of Tco2, the highest level tested in our study, the increase in biomass was
the least. Thus, the maximum specific growth rate was observed in culture with a Tco2 of
400 mg L−1 at the second phase after an initial acclimation during the first phase.
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Table 1. Increase in biomass of the nonaxenic microalgal culture at different concentrations of total
dissolved CO2 at the end of different growth phases.

Tco2 (mg L−1)
Increase in Biomass (%)

Phase 1 Phase 2 Phase 3 Overall

200 8.25 50.12 4.62 * 70.00

400 12.75 74.50 * 6.99 110.50 *

600 15.75 * 27.43 0.85 48.75

800 7.50 29.07 4.50 45.00

1000 5.00 30.24 0.73 37.75
* maximum value in each column.

At a Tco2 level of 200 mg L−1, which showed a 70% overall increase in biomass,
the overall productivity and maximum specific growth rate were 14.00 mg L−1 day−1

and 0.101 day−1, respectively (Figure 3). Whereas at Tco2 level of 400 mg L−1, which
showed a 110.50% overall increase in biomass, the productivity and maximum spe-
cific growth rate were 22.10 mg L−1 day−1 and 0.13 day−1, respectively. The maxi-
mum CO2 fixation rate and biomass productivity were 28.85 ± 3.00 mg L−1 day−1 and
22.10 ± 0.7 mg L−1 day−1, respectively, at 400 mg L−1 of Tco2 whereas 1000 mg L−1 of Tco2
showed the least CO2 fixation rate of 6.92 ± 1.2 mg L−1 day−1 and lowest biomass produc-
tivity of 7.50 ± 0.4 mg L−1 day−1 (37.75% overall increase in biomass). The overall increase
in biomass at Tco2 levels of 600 mg L−1 and 800 mg L−1 was 48.75% and 45%, respectively.

3.2. Effect of CO2 Concentration on Biochemical Composition

The content of carbohydrates, proteins, and lipids of the microalgae cultivated under
different concentrations of Tco2 was determined and depicted in Figure 4. The carbohydrate
content did not change significantly at any of the tested levels of Tco2.
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Varying Tco2 concentration significantly affected the protein content of the microalgae.
The percentage of accumulated protein at different levels of Tco2 ranged from 8.92 to 30.41%.
The protein content was higher in the groups in which higher growth rates were also
observed, i.e., at 200 and 400 mg L−1 of Tco2. The maximum and minimum protein content
obtained, 30.41 and 8.92%, were observed at 400 and 600 mg L−1 of Tco2, respectively.

The total lipid content at different levels of Tco2 ranged from 26.39 (minimum observed
at 200 mg L−1 of Tco2) to 56.00% (maximum observed at 800 mg L−1 of Tco2). A gradual
increase in lipid content was observed with increasing levels of Tco2. The lipid content was
higher at 600, 800, and 1000 mg L−1 of Tco2 than that observed at 200 and 400 mg L−1 of
Tco2. The overall biomass growth was also lower at the levels where lipid content was high.
The results indicate that the level of dissolved CO2 can significantly affect lipid content.

4. Discussion
4.1. Biomass and Growth Analyses

Only a limited number of reported studies were conducted on nonaxenic cultures of
microalgal polyculture. As far as we know, most of these studies correlate algal growth
parameters to CO2 concentration in the gaseous phase. CO2 concentration in the gaseous
phase does not reflect the actual level of CO2 available in the bulk media available for up-
take by algal cells, as it is determined by the culture pH and effective mass transfer [22–24].
Anjos et al. [24] also observed this likely lack of dependence of the high biomass accumula-
tion rate on the level of CO2 in the gaseous phase. Similarly, Yang et al. [25] reported that
when operated under continuous mode, Scenedesmus sp., and Desmodesmus sp., did not
show any increase in growth rate beyond 30 and 60 µM of CO2, respectively.

At higher levels of Tco2, the microalgae continued to grow but at less than half the
specific growth rate at a Tco2 concentration of 400 mg L−1. Since Tco2 is the sum of
[H2CO3], [HCO3

−] and [CO3
2−], the stimulatory effect of CO2 is due to the availability of

carbon. Thus, for the consortium under study, 400 mg L−1 of Tco2 was ideal for microalgal
growth. Below the ideal concentration, algal growth becomes limited, whereas CO2
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abundance influences several key enzymes in carbon metabolism, such as ribulose-1,5-
bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase [26,27]. The
increased availability of CO2 increases the carboxylating activity of RuBisCO, leading to
increased photosynthesis, but can also adversely affect the activity of extracellular carbonic
anhydrase and inhibit cell growth [28–30]. The low values observed for biomass growth
parameters of the polyculture indicate that a higher level of Tco2 is inhibitory. It also points
to the presence of CO2 tolerant species in the culture [31,32]. The high initial cell density
and the diversity of cell morphology likely increased the tolerance against high levels of
Tco2 and reduced the long adaptation period [33]. In mixed cultures, a niche partitioning is
generally observed in terms of CO2 assimilation activity and nitrogen-fixing [8,34]. Thus,
the growth parameters of the microalgae were significantly influenced by Tco2, and the
microalgae showed a wide range of tolerance to Tco2. However, further studies are required
to identify the optimum combination of traits of algal polyculture which would have the
desired effect on biomass production.

4.2. Effect of CO2 Concentration on Biochemical Composition

The biochemical composition is a crucial factor that determines the applicability of
potential algal species for CO2 biosequestration. The carbohydrate content of the culture
did not show any significant change at any of the studied levels of total dissolved CO2.
Our result is contrary to what is generally observed in monocultures [35–37]. In the case of
protein content, significant changes were observed with respect to Tco2. The maximum
protein content was at 400 mg L−1 of Tco2. At higher levels of Tco2, the protein content
decreased, likely due to a lack of availability of carbon and nitrogen species. There was a
noticeable increase in lipid content at the Tco2 level of 600 mg L−1 and higher. Elevated
CO2 concentration in the bulk media creates a stressful environment for the microalgal cells,
leading to the production of lipids [38]. The presence of oleaginous and high CO2 tolerant
Scenedesmus sp., and Desmodesmus sp., in the polyculture also likely contributed to increased
lipid composition [25,26,39]. The biosynthesis of major biochemical constituents such as
carbohydrates, proteins, and lipids involves many complex enzymatic reactions such as
the light-driven generation of ATPs [40]. Thus, the accurate measurement of metabolic
fluxes of CO2 uptake in photosynthetic microorganisms leading to the formation of carbon
backbones is complicated due to the presence of high levels of compartmentalisation [41].
The carbon backbones generated in the first few steps of CO2 biofixation are utilised for the
biosynthesis of carbohydrate during the dark period. The process can be driven towards
the synthesis of proteins and lipids by limiting the dark period. Moreover, the enzymes
involved in lipid biosynthesis require Mg2+ at their active centres. Therefore, we suggest
that, by implementing a two-stage cultivation process, comprising a first stage to promote
cell growth with nutrient replete condition followed by a nutrient deplete stage whilst
supplementing the media with Mg2+ ions at pH between 8 and 10 could enhance the
accumulation of lipids for the large-scale production of biofuels from microalgae [29,30,42].

5. Conclusions

Our results indicate that (i) the nonaxenic microalgal polyculture was tolerant to all
tested total dissolved CO2 concentrations up to 1000 mg L−1; (ii) even though increased
total dissolved CO2 levels reduced the overall biomass accumulation, it was also found
to be the most conducive to lipid accumulation. Our results also show that the growth
of polyculture microalgae stabilise over time in nonaxenic conditions even at very high
concentrations of total dissolved CO2 and are suited for large scale biomass cultivation ap-
plications in CO2 biosequestration, and accumulation of carbohydrate, proteins, and lipids.
Further research, however, is required to understand the interaction between different
species leading to niche partitioning and niche complementarity in nonaxenic microalgal
polycultures. In order to develop regimens for the stable and sustainable production of
biofuels from microalgae, future research efforts should also focus on identifying the agents
responsible for the failure of large outdoor cultivation systems.
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