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Abstract: Separation of savanna land cover components is challenging due to the high heterogeneity
of this landscape and spectral similarity of compositionally different vegetation types. In this
study, we tested the usability of very high spatial and spectral resolution WorldView-2 (WV-2)
imagery to classify land cover components of African savanna in wet and dry season. We compared
the performance of Object-Based Image Analysis (OBIA) and pixel-based approach with several
algorithms: k-nearest neighbor (k-NN), maximum likelihood (ML), random forests (RF), classification
and regression trees (CART) and support vector machines (SVM). Results showed that classifications
of WV-2 imagery produce high accuracy results (>77%) regardless of the applied classification
approach. However, OBIA had a significantly higher accuracy for almost every classifier with the
highest overall accuracy score of 93%. Amongst tested classifiers, SVM and RF provided highest
accuracies. Overall classifications of the wet season image provided better results with 93% for RF.
However, considering woody leaf-off conditions, the dry season classification also performed well
with overall accuracy of 83% (SVM) and high producer accuracy for the tree cover (91%). Our findings
demonstrate the potential of imagery like WorldView-2 with OBIA and advanced supervised
machine-learning algorithms in seasonal fine-scale land cover classification of African savanna.

Keywords: land cover; classifiers; random forest (RF); support vector machines (SVM); classification
and regression trees (CART); maximum likelihood (ML); k-nearest neighbor (k-NN)

1. Introduction

The savanna biome covers approximately 25% of the world’s terrestrial landscape, and contributes
significantly to the global net vegetation productivity and carbon cycle [1,2]. These mixed grass–woody
ecosystems constitute a multi-scale mosaic of bare soil, patches of grass, shrubs and tree clumps.
Detailed mapping of savanna’s land cover components is important in solving fundamental problems
in these ecosystems such as soil erosion, bush encroachment, forage and browsing availability.
However, separation of savanna land cover components is difficult and requires fine-scale analyses.
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Traditional land cover classification of these landscapes accounts for generalized classes with mixed
vegetation [3]. For various specialized studies of savanna ecosystems, there is a need for fine-scale
discrimination of the principal land cover components, such as bare soil, grass, shrubs and trees. High
landscape heterogeneity of savannas with gradual transition between open and closed vegetation
cover, and small patch sizes are, however, major reasons of misclassifications [3,4]. Furthermore,
limiting confusion between spectrally similar but compositionally different tree canopies, shrubs and
grasses can be very challenging [5].

It is also important to consider seasonality while classifying savanna land cover components, due
to the huge contrast in vegetation state during the wet (summer) and dry (winter) period [6]. As the
environmental conditions depend on water availability, an optimal discrimination of phenological
changes in different vegetation types is only possible by analyzing both wet and dry season data [7,8].
Understanding of seasonal vegetation dynamics is essential to distinguish between short-term
fluctuations or long-term changes in savanna composition and productivity [9]. However, there
are several challenges to overcome when discriminating land cover types from satellite imagery in
tropical savanna regions. First of all, image selection is affected by dense cloud cover and a high
amount of atmospheric water vapor occurring in the rainy period. These often prevent the usage of
wet season scenes or create gaps in the classification maps. Despite that, wet season images are often
preferred as they represent the peak of the growing season with well-developed vegetation cover and
leaf-on conditions [8,10]. However, when considering fine-scale separation of savanna components,
the high photosynthesis rate may confuse spectral differences between vegetation types [11]. Extended
band combination of new satellite sensors recording slight differences in the vegetation reflectance
can potentially contribute to solve this problem [12]. On the other hand, dry season imagery is
usually cloud-free and offers better contrast between senescing herbaceous vegetation and evergreen
trees [13,14]. It might however be difficult to detect leafless deciduous trees in winter scenes, as the tree
canopy is significantly smaller and less defined in the leaf-off conditions. Furthermore, biochemical
properties in leaves correlated with spectral information enable tree identification. That information
is missing for deciduous trees in the winter period. Considering all above-mentioned issues, it is
important to know how accurately savannas land cover components can be classified using winter
imagery and ground truth data collected in the dry season, in comparison to commonly preferred
maximum “greenness” images.

There are several remote sensing solutions useful for differentiation of land cover components in
heterogeneous landscapes. Combined airborne LiDAR and hyperspectral surveys, although arguably
the best suited for this application, are expensive for large scale studies, without mentioning that the
availability of LiDAR or hyperspectral infrastructure in Africa is limited. Very high resolution (VHR)
satellite imagery, however, affords the possibility of regional scale studies [15]. Moreover new satellite
sensors, like WorldView-2 (WV-2), offer not only a very high spatial resolution but also extended
and innovative spectral bands. The combination of a red-edge, yellow, and two infrared bands of
WV-2 provide additional valuable information for vegetation classification [16–18], which may be
particularly useful when spectrally similar components like shrubs and trees need to be separated. As a
consequence, several studies proved the benefits of using WV-2 imagery for land cover classification
of diverse landscapes (e.g., [19–21]).

Most land use classification studies are based on pixel-oriented approach. It is generally well
accepted that pixel-based classification tends to perform better with images of relatively coarse spatial
resolution [22,23]. However, fine-scale land cover classification based on VHR imagery increases
the number of detectable class elements, thus the within-class spectral variance. This can make
the separation of spectrally mixed land cover types more difficult [24] and leads to an increase of
misclassified pixels, creating a “salt-and-pepper” effect when using a pixel-based approach [25].
An alternative classification method is the Object-Based Image Analysis (OBIA), where an image is
firstly segmented into internally homogeneous segments to represent spatial objects. Segments,
compared to single pixels, can be described according to a wider range of spectral and spatial
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features [5,26]. Furthermore, replacement of pixel values belonging to the same segment by their means
lowers the variance of the complete pixels’ set (see Huygens theorem in Edwards and Cavalli-Sforza
(1965) [27]). As a result, several studies have proven that object-based approaches can be very
useful for mapping vegetation structure and to discriminate structural stages in vegetation [5,28–30].
Furthermore, different authors claimed that OBIA is better suited for classifying VHR imagery
compared to pixel-based methods [23,31–33]. However, none of these studies tested the usability of
OBIA in highly heterogeneous landscape such as African savanna for fine-scale land cover classification.
Although OBIA has been proven to perform better with high resolution data, it remains unknown
whether it outperforms the pixel-based approach when applied to a fine-scale mosaic of vegetation
patches consisting, often, of only a few pixels.

Besides the applied classification approach (pixel-based vs. OBIA), classification accuracy also
largely depends on the used algorithm. Traditional methods like k-nearest neighbor (k-NN) or
maximum likelihood (ML) have been used frequently in the past, but are nowadays increasingly
replaced by modern and robust supervised machine learning algorithms including tree-based methods,
artificial neural networks or support vector machines. Several studies compared the performance of
machine learning algorithms with OBIA or pixel-based classification [31,34,35]. However, it is yet
unclear which of the classifiers performs the best with OBIA and pixel-based approaches, especially
when used with VHR imagery for detail separation of vegetation components in African savanna.

To our knowledge, there are no extensive studies exploring best methods for fine-scale seasonal
delineation of trees, shrubs, bare soils, and grasses in African savanna. This study is the first to
comprehensively investigate how best to classify land cover components of an African savanna—a
biome characterized by a very high level of heterogeneity. The novelty of this study lies in the
combination of several factors: the investigated biome, the fine-scale separation of land cover
components, the context of seasonality, the set of tested classifiers, and the application of advanced
satellite imagery. In particular we examined the performance of selected traditional and machine
learning algorithms with object- and pixel-based classification approaches applied to wet and dry
season WorldView-2 imagery. We hypothesized that: (1) the OBIA approach performs better than
the pixel-based method in highly heterogeneous landscape of African savanna and in both seasons;
(2) more advanced machine learning algorithms outperform traditional classifiers; and (3) in wet or
peak productivity season, WorldView-2 scenes provide better classification results than during the
leaf-off dry season.

2. Materials and Methods

2.1. Study Area

The study area covers the extent of a single WorldView-2 scene between approximately
24.85◦–25.00◦S and 31.35◦–31.52◦E in the low-lying savanna of the northeastern part of South Africa
(Figure 1). The area encompasses three main land tenures: the state-owned Kruger National Park
(KNP), the privately owned Sabi Sands Wildtuin/Game Reserve (SSW) and the very densely populated
communal lands of Bushbuckridge (COM). The topography in the study area is gently undulating
with flat patches, and with an elevation ranging between 280 and 480 m above sea level. Annual mean
temperature is about 22 ◦C while the annual rainfall is approximately 630 mm [6]. Rains are confined
to the summer (wet season) from October to May [6]. During the dry (winter) season (May to October),
bush fires are frequently used for controlling shrubs and provoking nutritious green grass regrowth.
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Figure 1. Overview of the study area. True color composites (derived from the WorldView-2 image) 
for both the dry season and wet season are illustrated. The borders of Kruger National Park and Sabi 
Sands Wildtuin are marked in green and red, respectively. The white rectangle corresponds to the 
subset used in Figure 2. 

 
Figure 2. Subset of a WorldView-2 images (false color composite (FCC)) with corresponding 
Object-Based Image Analysis (OBIA) and pixel-based classifications of wet and dry season using 
support vector machines (SVM) classifier. 

2.2. Image Acquisition and Pre-Processing 

Two WorldView-2 scenes (panchromatic, 0.5 m pixel size and 8 bands multispectral, 2 m pixel 
size) were acquired on 15 July 2012 and 7 March 2013 (see Table 1 for acquisition parameters), which 
timing coincides with the dry (or winter) and wet season (or summer), respectively. 

The images (including the panchromatic band) were geometrically and atmospherically 
corrected. As a first step, the images were orthorectified using a mathematical model based on 
rational polynomial coefficients (RPC) supplied by the image vendor. PCI Geomatica OrthoEngine 
2013 was used for this task. An additional zero-order refinement was applied to this RPC model, 
using 7 accurate (post-processed to sub-meter accuracy using one-second data from the Nelspruit 

Figure 1. Overview of the study area. True color composites (derived from the WorldView-2 image)
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Figure 2. Subset of a WorldView-2 images (false color composite (FCC)) with corresponding
Object-Based Image Analysis (OBIA) and pixel-based classifications of wet and dry season using
support vector machines (SVM) classifier.

The vegetation in the study area is largely influenced by the dominant geology which consists
of granite and gneiss with local intrusions of gabbro [6]. Therefore, the two dominant vegetation
communities are classified as “granite lowveld” and “gabbro grassy bushveld”, [36]. The “granite
lowveld” is dominated by woody communities, mainly deciduous Combretaceae with broad leaves,
while grasses are sparse [36]. In contrast, “gabbro grassy bushveld” constitutes an open savanna with
a dense cover of nutritious grasses and a few scattered trees and shrubs, mostly Mimosaceae (especially
Acacia Spp.) with fine compound leaves and many thorns [36].
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2.2. Image Acquisition and Pre-Processing

Two WorldView-2 scenes (panchromatic, 0.5 m pixel size and 8 bands multispectral, 2 m pixel
size) were acquired on 15 July 2012 and 7 March 2013 (see Table 1 for acquisition parameters), which
timing coincides with the dry (or winter) and wet season (or summer), respectively.

Table 1. Main characteristics of the March and July WorldView-2 images.

Parameter
Acquisition Date

15 July 2012 7 March 2013

Sun azimuth 32.6 47.8
Sun elevation 36.5 62.4

Satellite azimuth 106 273
Off-nadir 32.5 25.4

The images (including the panchromatic band) were geometrically and atmospherically corrected.
As a first step, the images were orthorectified using a mathematical model based on rational polynomial
coefficients (RPC) supplied by the image vendor. PCI Geomatica OrthoEngine 2013 was used for
this task. An additional zero-order refinement was applied to this RPC model, using 7 accurate
(post-processed to sub-meter accuracy using one-second data from the Nelspruit reference station)
ground control points (GCPs), which were collected in the field using a Trimble GeoXH global
positioning system (GPS). This zero-order refinement method has previously been recommended
for attaining the best results with WorldView-2 imagery [37]. To remove the terrain effect, a digital
elevation model (DEM) derived from a 90-m SRTM (Shuttle Radar Topography Mission) elevation
data [38] was used. This was chosen because it was the best available DEM for the study area at the
time. The limited spatial resolution of the DEM however led to moderate results in the geometrical
correction, especially for the panchromatic images: root mean square error in 2D (RMSE 2D) of 4.4 and
1.0 pixels for the panchromatic and multispectral image, respectively.

In the next step, the images were atmospherically corrected and converted from digital numbers
to reflectance values using the ATCOR2 algorithm developed by Richter [39]. Finally, the multispectral
bands were resampled to 0.5 m (the resolution of the panchromatic band) using the “disaggregate”
function in R software (package “raster”) [40].

2.3. Methods

The methodology used in the study is summarized in Figure 3. This workflow was run separately
on both the wet and the dry season image. Firstly, a rule-based approach was implemented on
each image to mask out clouds, settlements, human infrastructure, water, fields and burnt areas.
Next, the images were segmented into homogenous objects for which a selection of features was
calculated. Finally, a collection of training and validation samples (both object-based and pixel-based)
was subsequently selected based on field data. The training samples were used to train a selection of
classification algorithms, while the validation samples were used for an independent validation of the
obtained land cover maps.
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2.3.1. Classification of Clouds, Settlements, Human Infrastructure, Water, Fields and Large Burnt
Areas

As this study focuses exclusively on natural landscapes consisting out of trees, grass, bare soil and
shrubs, prior to classifying these classes, several steps were taken to mask out regions of non-interest.
In particular, clouds, cloud shadows, urban settlements, water bodies, human infrastructure (roads
and runways) and cultivated fields were removed, and were not taken into account for further analysis.
Furthermore, a preliminary mask for large size controlled burnt plots was applied due to the ephemeral
character of these areas. Clouds and clouds shadows were manually digitalized. Masking out other
regions of non-interest involved a combination of thresholding and extraction based on ancillary data.

2.3.2. Image Segmentation

After masking out the areas of non-interest, image segmentation was performed using
the multi-resolution bottom-up segmentation algorithm [41] embedded in eCognition 8.8 [42].
Two hierarchic segmentation levels were produced: a first (fine) level was created using only
the panchromatic image as input layer, which was then grown into a second (coarse) level using
4 multispectral (Red, Red-Edge, NIR1, and NIR2) bands combined with the panchromatic image.
We tested several band combinations and the final four bands have proven to provide the best visual
results. Furthermore, those bands are commonly used in vegetation studies [16–18] and the segmented
area consists mainly of different forms of vegetation. The rationale behind hierarchic segmentation
approach was to first delineate small but homogenous objects (for example individual small canopies
or shrubs) at the highest resolution (0.5 m) possible, and subsequently grow those objects through
pair-wise merging of neighboring objects based on spectral similarity.

Required parameters (scale and compactness) for these two steps were set by using a systematic
“trial-and-error” approach often employed when conducting object-based image analysis [34,43,44].
Various values for scale and compactness were tested and appropriate values, i.e., avoiding
under-segmentation and over-segmentation, were thus selected based on visual inspection of the
segmentation results. An overview of these values can be found in Table 2.
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Table 2. Overview of the parameters used to create the two segmentation levels.

Segmentation Level Bands Scale Parameter Shape/Compactness

Fine segmentation Pan 5 0.1/0.5
Coarse segmentation Pan, Red, Red-Edge, NIR1, NIR2 20 0/0

2.3.3. Field Data Collection and Sampling

Ground truth data for training and validation were collected during two field missions in the
dry period (July 2012) and at the end of wet season (March 2013). Sampling points (876 in wet season
and 713 in dry season) corresponding to the four land cover classes of interest (bare soil, tree, shrub
and grass cover) and burnt areas were collected using a hand held Trimble GeoXH GPS system. To
distinguish trees from shrubs, a threshold was set at a height of 2 m. Two meters was selected as this
is the average minimum height of thickets of trees such as A. gerrardii and D. Cinerea [18]. Sampling
point locations were mainly purposively taken based on the WorldView-2 images to cover as much
of the image and vegetation-driven variance resulting from species diversity within a land cover
class, environmental and management conditions, for instance geology (gabbro vs. granite) or land
management (conserve vs. communal lands). The sampling was design to ensure that the data set
used for land cover classifications was of good quality for all investigated classifiers and that the
classification results represents the classifiers performance, rather than quality of the training data.

Based on the results of the image segmentation and the ground truth reference points, a selection
of 713 (wet season image) and 876 (dry season image) coarse level homogeneous segments served
as samples for the classification process. Besides the four classes of interest, two additional classes,
shadow and burnt areas were incorporated in the classification. While the former was required due to
the very high spatial resolution of the imagery which clearly identified tree shadows, the latter was
needed because the often complex spectral signature of these burnt areas made it impossible to classify
all burnt areas at once as reported in Section 3.1. In this step, burnt areas were considered as any
dark area where burnt component is dominant and limits the detection of trees or shrubs, and where
the grass component is suppressed. Shadows were sampled directly from the images. As a result,
segments for a total of 6 classes were selected to serve as training and validation data. An overview of
the number of sample segments used for each class is given in Table 3.

Table 3. Number of training/validation samples taken for the different classes and images.

Scene Total Number
of Samples

Number of Samples
for Training/Validation

Number of Samples Per Class for Training/Validation

Bare Soil Burnt Areas Grass Shadow Shrubs Trees

Dry season 876 584/292 68/35 30/14 140/70 58/29 90/40 198/99
Wet season 713 478/235 63/26 47/26 93/41 50/24 74/42 151/76

In order to obtain training and testing samples for the pixel-based classification that were
commensurate with training and testing image objects for the different images, one single point
within each of the selected image objects was randomly selected. As such, this sampling ensured
that both the object-based and pixel-based classifications used training and testing/validation data
gathered from the same locations.

Two thirds of the samples were selected to train the different classifiers and one third served as an
independent (hold-out) validation set (Table 3). Model building and tuning of individual parameters
used by the classification algorithms was accomplished through repeated k-fold cross-validation based
on the training data set only (see below).

2.3.4. Feature Selection

Following the image segmentation and sampling, a set of 24 object-features likely to contribute
to the object-based classification was selected (Table 4). These object-features comprised a mixture
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of mean band values, standard deviations and ratios, vegetation indices, texture indices and HSI
transformations. This selection of features was based on a literature review and has been previously
reported to substantially improve classification results (e.g., [44,45]). All object-features, except grey
level co-occurrence matrix (GLCM) features such as homogeneity and entropy, were calculated in
eCognition 8.8 and subsequently exported as object-feature images. Due to the size of the WorldView-2
images and the eCognition Developer processing limitations, GLCM homogeneity and entropy
images [46] were calculated using the r.texture function in GRASS 7.0.

Table 4. Set of the features used for different classification algorithms. Mean value of the pixels for
objects, single pixels for pixel based.

Feature Object-Based Pixel-Based

Band values
Coastal, Blue, Green, Yellow, Red,

Red-Edge, NIR1, NIR2, Pan
Coastal, Blue, Green, Yellow, Red,

Red-Edge, NIR1, NIR2, Pan

Vegetation indices NDVI, Red-Edge NDVI NDVI, Red-Edge NDVI

GLCM (calculated on a
11 × 11 window for pixel-based)

Homogeneity on Pan Homogeneity on Pan

Entropy on Pan Entropy on Pan

Standard deviation Coastal, Blue, Red-Edge, NIR1

Ratio (mean divided by sum of all
spectral band mean values) Red, NIR1

Other

Brightness

HSI Transformation Hue

HSI Transformation Saturation

HSI Transformation Intensity

For pixel-based classification, besides band values and two vegetation indices (the normalized
difference vegetation index NDVI and the Red-edge NDVI), also images of GLCM homogeneity and
entropy were derived at pixel level for each of the two images (Table 4). In order to calculate these
2 texture features, an 11 × 11 window was used.

2.3.5. Classifying the Different Savanna Components

A selection of traditional, k-nearest neighbor (k-NN) and maximum likelihood (ML), and relatively
modern and robust supervised machine learning algorithms like random forests (RF), classification
and regression trees (CART) and support vector machine (SVM), were compared. The k-NN is a
non-parametric method when the pixel/object is classified by a majority vote of its neighbors and
it is assigned to a most common class among its k nearest neighbors [47]. In contrast, the ML is a
parametric classifier calculating the probability that a given object or pixel belongs to a specific land
cover class, and assigns it to a class to which it most likely belongs (e.g., [48]). RF, CART and SVM
are non-parametric supervised machine learning algorithms. The CART model constructs rule sets
by iteratively subsetting the target dataset into smaller homogeneous groups, according to defined
thresholds of explanatory features. It is a single decision tree approach, which groups the target data
until an end node for a defined class is reached [12]. On the contrary, RF is an ensemble of large number
of decision trees, “growing” based on bootstrap samples of the original data set [49]. The predicted
class is determined by majority vote from all of the decision trees [50]. Kernel based SVM likewise RF
has been successfully used for classifying complex data of higher dimensionality [51]. SVM classifies
pixels/objects by constructing hyperplanes in a multidimensional space that optimally (in terms of
generalization error) separates cases of different class labels [52].

All 5 classifiers were used both for pixel-based and object-based classification using
testing/validation data gathered from the same locations and by implementing the features listed in
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Table 4. The 3.1.2 version of R software for statistical computing [40] was used for the classifications.
All classifiers were developed using the “caret” package within R [53], which allowed for a single
consistent environment for training each of the machine learning algorithms and tuning their associated
parameters. A k-fold (with here k = 5) cross-validation resampling technique was repeated 10 times on
the training data set to create and optimize classification models for both pixel-based and object-based
classifications using all five different classifiers. Tuning parameters were considered optimized based
on classification models that achieved the highest overall classification during the cross validation
process. In cross-validation, the dataset is randomly divided into k subsets of approximately equal size.
A training set is then formed by combining all except one of these groups, with the omitted subset
used to derive performance measures.

2.3.6. Accuracy Assessment

For each classification, a confusion matrix was calculated for the hold-out validation set, along
with its overall accuracy (i.e., the percentage of correctly classified land cover types), and user
and producer accuracy. The McNemar test [54,55] was used to assess the statistical significance
of the following comparison: (1) pixel-based versus object-based classifications utilizing a given
algorithm; and; (2) different algorithms when using either pixel-based or object-based image analysis.
The McNemar test has been recommended by Footy (2004) [56] to assess whether statistically significant
differences between classifications exist [56]. It has been used by several authors to statistically compare
object-based and pixel-based classifications (e.g., [5,34,57,58]). The McNemar test is a parametric test,
more precise and sensitive than the Kappa z-test. It is based on a chi-square (χ2) statistics, computed
from two error matrices [59].

3. Results

3.1. Dry Season Classification

The dry season OBIA classifications, based on the July 2012 image (winter), achieved an overall
accuracy of over 76% with the lowest score for CART, whereas the classifications based on pixels
yielded an accuracy of over 68% with the minimum also for the CART algorithm (Table 5). In both
classification approaches RF and SVM performed the best, reaching overall accuracies of respectively
75% and 77% when pixel-based approach was applied, and 82% and 83% with OBIA (Table 5). These
two classifiers outperformed the ML, k-NN and CART algorithms, however the difference was not
always significant at the 5% level (Table 6).

Considering the performance of each classifier, overall accuracies were between 6% and 8% higher
for OBIA compared to their pixel-based counterpart. CART showed the biggest improvement in
overall accuracy with 8% (Table 5). This increase in accuracy was significant at the 5% level for all
classifiers (Table 7).

Within individual land cover classes and considering the OBIA approach, very good producer
accuracies for the best classifier were obtained for bare soil, shadow, tree and burnt areas (>90%)
(Table 5). However, the producer accuracy of the latter class was even higher with pixel-based
approach (100% for RF and SVM). The lowest producer and user accuracy for the best algorithm within
the class was found for shrubs (64% for ML and 76% for SVM). This class had also the lowest producer
and user accuracy when considering pixel-based classification (56% for SVM and 67% for k-NN). Very
high user accuracies (≥90%) for the best classifier and with OBIA were found for bare soil, burnt areas
and shadow.
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Table 5. Accuracy indices (%) for all five pixel- and object-based classifiers for July 2012. Bold values
represent the maximum value. OA = Overall Accuracy; PA = Producer Accuracy; UA = User Accuracy.

Accuracy
Object-Based Pixel-Based

k-NN ML CART RF SVM k-NN ML CART RF SVM

OA 80 78 76 82 83 73 72 68 75 77
Kappa 74 72 69 77 78 64 64 59 67 70

PA bare soil 86 89 83 91 94 74 86 77 83 86
PA burnt 93 79 93 93 93 64 93 93 100 100
PA grass 81 80 81 79 83 84 80 79 79 77

PA shadow 97 90 93 90 90 69 76 79 72 72
PA shrub 53 64 53 60 49 44 53 33 44 56
PA tree 83 75 72 87 91 79 66 67 80 82

UA bare soil 94 86 97 94 89 93 88 93 91 91
UA burnt 87 100 87 87 100 64 81 93 88 88
UA grass 76 80 73 83 82 69 71 68 80 78

UA shadow 85 84 82 84 90 91 85 82 91 84
UA shrub 63 54 48 64 76 67 48 37 48 58
UA tree 83 82 83 83 80 70 75 67 72 76

Table 6. McNemar test results (p-values) for pair-wise comparison between classifiers (bold if
significantly different, using α = 0.05).

Image
Object-Based Pixel-Based

kNN SVM RF CART kNN SVM RF CART

July
2012

ML 0.42 0.04 0.10 0.51 0.89 0.06 0.34 0.21

kNN 0.24 0.51 0.07 0.09 0.39 0.11

SVM 0.70 <0.01 0.28 <0.01

RF <0.01 <0.01

March
2013

ML 0.12 0.15 0.08 0.73 0.05 0.52 0.60 <0.01

kNN <0.01 <0.01 0.30 <0.01 <0.01 0,35

SVM 0.79 0.03 1,00 <0.01

RF <0.01 <0.01

Table 7. McNemar test results (p-values) for pair-wise comparison between pixel-based and
object-based classifiers.

Image kNN ML CART RF SVM

July 2012 <0.01 0.05 0.01 <0.01 0.02
March 2013 <0.01 0.02 <0.01 <0.01 <0.01

A map of land cover classes for the dry period using the best classifier and classification approach
(SVM, OBIA) is presented in Figure 4. A visual inspection of this map revealed an overall high level of
consistency with the WorldView-2 image (Figure 2). However, based on ground truth data we found
that in some areas shrubs were confused with grass or trees.
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Figure 4. Land cover map for the July 2012 and March 2013 images, made using Object-Based Image
Analysis (OBIA) and the random forests (RF) classifier.

3.2. Wet Season Classification

For the March 2013 OBIA classification, the considered algorithms achieved an overall accuracy
of over 85% with the minimum score obtained for k-NN. The pixel-based algorithms showed much
lower values with a minimum score of 73% for CART (Table 8). Generally, RF and SVM were again
found to be the best classifiers producing very similar results in terms of overall accuracy: 93% and
92% for OBIA, respectively, and 83% for pixel-based (Table 8). They clearly outperformed the ML,
k-NN and CART classifiers although the difference was not always significant at the 5% level (Table 6).

Table 8. Accuracy indices (%) for all five pixel- and object-based classifiers for March 2013. Bold values
represent the maximum value. OA = Overall Accuracy; PA = Producer Accuracy; UA = User Accuracy.

Object-Based Pixel-Based

k-NN ML CART RF SVM k-NN ML CART RF SVM

OA 85 89 88 93 92 76 81 73 83 83
Kappa 81 86 84 91 90 70 77 66 79 79

PA bare soil 100 100 100 100 100 96 92 100 100 92
PA burnt 85 81 69 92 100 73 81 65 65 85
PA grass 78 85 88 93 93 73 78 66 85 83

PA shadow 92 88 100 100 100 96 100 96 100 100
PA shrub 88 74 79 93 81 74 81 76 79 81
PA tree 79 99 91 89 91 66 74 61 79 75

UA bare soil 93 93 93 93 93 93 83 93 87 89
UA burnt 81 100 90 100 96 63 91 59 89 88
UA grass 82 92 86 90 88 73 74 63 74 81

UA shadow 96 100 100 92 92 96 83 92 89 80
UA shrub 73 91 87 93 97 65 72 60 87 77
UA tree 90 81 83 93 91 77 88 81 81 85
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For most classifiers, overall accuracies where on average about 10% lower for the pixel-based
approach than the object-based approach. These differences were found to be always significant at the
5% level (Table 7). The biggest improvement in accuracy (15%) was found for the CART algorithm and
the smallest (8%) for ML (Table 8).

Comparing individual land cover classes for the OBIA approach, all classes had producer and
user accuracies for the best classifier (RF) higher than 90% (Table 8). The highest, 100% producer and
user accuracy was found for the bare soil, burnt, shadow classes. The tree class showed a very high
producer accuracy of 99% for ML. Considering all algorithms, very few accuracy metrics were found
below 80%. Generally, the lowest producer accuracy was found for shrubs and grass (below 93%).
The latter class had also the lowest user accuracy (below 92%). When considering the pixel-based
approach, user and producer accuracies for individual classes were found to be lower than the OBIA
results, with exception of bare soil and shadow, which had accuracies of 100%.

Based on these results the best classifier and classification method (RF, OBIA) was used to create
the final land cover map illustrated in Figure 4. The visual inspection of this map showed very high
level of consistency with the WorldView-2 image color composites and the ground truth data (Figure 2).

3.3. Seasonal Comparison

Comparing the classification results from both seasons, the image of March 2013 representing the
wet period had much higher overall accuracies for both classification approaches and every classifier.
However, the seasonal difference in classifier performance was stronger for OBIA. The overall accuracy
of the best classifiers for the wet season classification (RF, SMV) was 11% and 9% higher than for the
dry season when using OBIA, and 8% and 6% higher when pixel-based classification was applied,
respectively (Tables 5 and 8). K-NN was the algorithm that produced the lowest difference between
the two dates, for both OBIA and pixel-based approaches.

Most individual land cover classes had higher user and producer accuracy in the wet season
classification compared to the dry season. However, there were also differences according to the
classification approach. Pixel-based methods exhibited lower user and producer accuracies during the
wet season for about 37% of the cases irrespective of the algorithm used. Poorer performances for the
wet season with pixel-based approach were observed mostly for the burnt class (up to 35% decrease of
producer accuracy), and for the class tree (up to 13% decrease of producer accuracy).

When comparing the user accuracy and the best performers (OBIA, RF and SMV) the wet season
outperformed the dry season on all counts apart for the bare soil and burn area mapped with SVM
(−1% and −4%, respectively). The largest improvement was observed for the shrub class (+21% for
SVM and +29% for RF), with moderate improvement for the grass and tree class (6%–11%).

3.4. Feature Importance

The relevance of the WorldView-2 features for the delineation of land cover components of the
African savanna using random forest classifier with pixel-based or OBIA approach is illustrated
in Figure 5. The variables importance was calculated as a scaled version (from 0 to 100) of the
mean decrease in Gini Index. Feature importance analyses showed variations between classification
approaches and between seasons. However, in both approaches and for both seasons panchromatic
band appeared to be the most important variable. Green, yellow, red, red-edge, NIR1 and NIR2 bands
as well as NDVI and red-edge NDVI were found to be more important when random forest was
applied to the wet season imagery.
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4. Discussion

Findings of this study revealed that the classification based on WV-2 imagery produces high
accuracy results regardless of the used classification approach. The combination of very high spatial
resolution and extended spectral bands (especially yellow and red-edge) of WorldView-2 constitute an
invaluable and unique dataset to discriminate woody, herbaceous, and bare components of African
savannas. Advantages of using WV-2 images for fine-scale land cover classification of urban and
natural landscapes were also reported by other authors (e.g., [7,48,49]). However, this is the first time
that WV-2 was used for fine-scale classification of African savannas, proving effectiveness of this
imagery in highly heterogeneous landscape. With WV-2 images we were able to classify individual
trees, tree clumps, shrub patches, grass and bare soil, moving one step further from the “traditional”
savanna land cover mapping with mixed components into more discrete classification. This might
not be possible when applying IKONOS or Landsat imagery [17,60]. WV-2 provides the degree
of spatial detail and geometric precision comparable to aerial photographs [61] and multispectral
information facilitating more options for digital analysis [7]. The high accuracies achieved in this study
can be explained by the fact that WorldView-2 provides not only a high spatial resolution but also a
unique band combination. Based on random forest feature importance, we found that yellow and
red-edge band in pick productivity season are important in discrimination of vegetation components in
savanna ecosystem. The contribution of these bands in mapping vegetation components was reported
by several authors [7,62,63]. Yellow and red-edge band are able to record variations in pigment
concentration/content (e.g., chlorophyll, carotenoids, anthocyanin) in plants enabling detection of
species or vegetation communities [7,17]. Only LiDAR and/or airborne hyperspectral imagery can
produce similar or better classification results than WorldView-2. However, as these techniques are
costly, require substantial preprocessing and are often not suitable for regional scale mapping, the
methodology used in this study provides a valuable alternative.

In our study, both pixel- and object-based classifications generally produced high quality results
or accuracies (≥77%) regardless of the considered season. However the latter approach had a
significantly higher accuracy for almost every classifier with the highest overall accuracy score of
93%. This is consistent with several other studies indicating superiority of using OBIA in a range of
environments [5,31,64]. In particular, Whiteside et al. (2011) [5] concluded that OBIA outperforms
pixel-based classification for medium and high resolution satellite imagery in Australian savannas.
Moreover, study of Gibbes et al. (2010) [64] indicates that OBIA has a great potential in discriminating
African woodland savanna from shrubby dominated and grassland patches using IKONOS high
resolution imagery. Our study goes further, demonstrating that object-based classification of imagery
characterized by a small pixel size and 8 spectral bands provides tools for fine level differentiation
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of spectrally similar vegetation components in the African savanna ecosystem. In the classification
approach based on objects, thanks to hierarchic segmentation, very small objects of similar spectral
information, like tree crowns, shrubs and shrub/tree patches, can be delineated, which is not
possible with pixel-based methods. It leads to more thematically consistent mapping, eliminating the
“salt-and-pepper” effect appearing on maps generated using pixel-based method. This is evidenced
when comparing our results of OBIA and pixel-based approach for the best performing classifiers: trees
and shrubs were found to have one of the highest improvements in the user accuracy in both seasons.
A better performance of OBIA over pixel-based method with WorldView-2 imagery in detection of
woody vegetation or even tree species was also reported by Ghosh and Joshi (2014) [7] and Immitzer
et al. (2012) [62]. Furthermore, our results suggest that OBIA can be useful in crown shadow detection
in the dry season, when the spectral information from the shadowed area is more consistent as it is not
confused by a still strong photosynthesis signal of underlying vegetation.

All tested classifiers (except of ML in dry season classification) performed significantly better with
OBIA. This is consistent with the study of Ghosh and Joshi (2014) [7] when SVM and RF classifiers
produced much higher accuracy of fine-scale bamboo mapping with OBIA compared to pixel-based
methods. However, Duro et al. (2012) [34] did not find any statistically significant differences in
performance of CART, SVM and RF between the two classification methods using medium resolution
imagery. These results might indicate that the difference in classifier performance between OBIA and
pixel-based methods is more pronounced with increasing spatial resolution. Overall, SVM and RF
outperformed other classifiers in both approaches and regardless the season. SVM and RF algorithms
have been previously successfully applied in vegetation mapping with high and very high resolution
imagery [34,62,65]. Both classifiers are non-parametric, thus do not assume a known statistical
distribution of the data. This allows SVM and RF to outperform widely used classification methods
based on maximum likelihood, as the remotely sensed data usually have unknown distributions [52,66].
Furthermore, one of the most important and useful in land cover classification characteristics of SVM
and RF is their ability to well generalize from a limited amount of training data [52,62]. Pal (2005) [67]
and Duro et al. (2012) [34] reported that both SVM and RF can produce similar classification accuracies
which supports our findings. However, to achieve the best classification results with SVM the number
of input features and amount of training data should be well balanced, as the accuracy of a classification
by SVM has proven to decline with more features especially when using small training sample [7,68].
On the contrary, RF in comparison to SVM handles much better the variable collinearity, therefore can
produce high accuracy results with more variables included in the model.

All surfaces show some degree of spectral reflectance anisotropy when illuminated by sunlight,
which is described by the Bidirectional Reflectance Distribution Function (BRDF) [69]. Therefore it
is important to note, that given the varying viewing angles the BRDF might have an effect on the
classification accuracy results presented in this study, as for instance showed by Sue et al. (2009) [69],
Vanonckelen et al. (2013) [70] and Wu and Cihlar (1995) [71].

Our study demonstrates that it is possible to successfully distinguish savanna land cover
components during peak vegetation productivity (March, end of summer) using VHR WV-2 imagery.
Although the results of dry season classifications were also satisfactory, their accuracies were on
average 10% lower than during the wet season. The latter result is however particularly useful as
often, wet season imagery, although providing the best classification accuracy, is not available due
to the persistent cloud cover. Wet season imagery provided much better results in discriminating
shrubs compared to the dry season. Shrubs are generally difficult to separate due to their smaller,
in comparison with trees, canopy sizes and poorly defined canopy shapes (e.g., multiple stems and
coppices). They are therefore often confused with either smaller trees or higher herbaceous vegetation.
As shrub cover is well developed during the rainy season, its enriched spectral information makes it
then easier to differentiate with 8-band VHR imagery like WV-2. Besides shrubs, also bare soil showed
higher accuracies for the wet season imagery. This can be attributed to the fact that in the dry season
bare soil might be confused with wilting grasses or burnt lands. Interestingly, the WV-2 imagery
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combined with OBIA was very successful (producer accuracy of 91%) in detecting tree cover in the dry
season when deciduous trees are mostly leafless. This is probably due to the small pixel size allowing
accurate delineation of the leafless tree branches during segmentation process, combined with a set of
texture features improving the classification results. Furthermore, as the deciduous tree species are not
the major contributors to canopy characteristics in the study area, the remaining evergreen species
in dry season contrast stronger in reflectance with the senescing grasses, becoming easier to classify.
Similar results were found by Boggs (2010) [14], who reported that a combination of QuickBird imagery
and OBIA produces high accuracy results of dry season tree cover detection in Kruger National Park.

A future possible improvement to the fine-scale classification of savanna biome is to apply
multi-temporal WV-2 images with OBIA. The multi-temporal approach in vegetation classification was
successfully used by several authors proving superiority over single image/season classification [9,72].
Covering different phenological stages of vegetation could improve recognition of grass, shrubs and
trees in savanna. However, application of fine-scale multi-temporal images requires a very high
resolution digital surface models. The necessity of proper images alignment might constitute a limiting
factor for application of multi-temporal approach.

5. Conclusions

This study has investigated the potential of WorldView-2 imagery with very high spatial
and spectral resolution in fine-scale seasonal mapping of African savanna land cover components.
The performances of object- and pixel-based classification approaches were compared testing both
traditional and more advanced, machine learning classifiers. Generally, classification of WV-2 imagery
produced high mapping accuracies regardless the considered season or classification method. However,
the best results were achieved for the wet season using OBIA and SVM or RF algorithms. The study
has shown that the combination of OBIA with VHR WV-2 imagery is very successful in tree cover
detection, even during the leaf-off period. Findings of this study demonstrate that WV-2 imagery with
OBIA and advanced machine learning classifiers, like SVM and RF, constitute a very good alternative
for regional fine-scale land cover classification of African savanna.
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