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Abstract: The emergence of hyperspectral optical satellite sensors for ocean observation 

provides potential for more detailed information from aquatic ecosystems. The German 

hyperspectral satellite mission EnMAP (enmap.org) currently in the production phase is 

supported by a project to explore the capability of using EnMAP data and other future 

hyperspectral data from space. One task is to identify phytoplankton taxonomic groups. To 

fulfill this objective, on the basis of laboratory-measured absorption coefficients of 

phytoplankton cultures (aph(λ)) and corresponding simulated remote sensing reflectance 

spectra (Rrs(λ)), we examined the performance of spectral fourth-derivative analysis and 

clustering techniques to differentiate six taxonomic groups. We compared different sources 

of input data, namely aph(λ), Rrs(λ), and the absorption of water compounds obtained from 

inversion of the Rrs(λ)) spectra using a quasi-analytical algorithm (QAA). Rrs(λ) was tested 

as it can be directly obtained from hyperspectral sensors. The last one was tested as 

expected influences of the spectral features of pure water absorption on Rrs(λ) could be 

avoided after subtracting it from the inverted total absorption. Results showed that 

derivative analysis of measured aph(λ) spectra performed best with only a few misclassified 

cultures. Based on Rrs(λ) spectra, the accuracy of this differentiation decreased but the 
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performance was partly restored if wavelengths of strong water absorption were excluded 

and chlorophyll concentrations were higher than 1 mg∙m−3. When based on QAA-inverted 

absorption spectra, the differentiation was less precise due to loss of information at longer 

wavelengths. This analysis showed that, compared to inverted absorption spectra from 

restricted inversion models, hyperspectral Rrs(λ) is potentially suitable input data for the 

differentiation of phytoplankton taxonomic groups in prospective EnMAP applications, 

though still a challenge at low algal concentrations. 

Keywords: phytoplankton taxonomic groups; EnMAP; remote sensing reflectance; 

absorption; derivative analysis; QAA 

 

1. Introduction 

Optical observations of various water types based on in situ measurements and remote sensing data 

have provided comprehensive information on optical properties and concentrations of  

optically-significant constituents in aquatic systems. Most notably there have been extensive studies 

focusing on bio-optical algorithms for estimating the concentration of chlorophyll-a as a general proxy 

for phytoplankton biomass and primary production from water surface reflectance, e.g., [1–3]. 

Recently, different bio-optical and ecological algorithms have been developed for identifying and 

differentiating between phytoplankton functional types (PFTs) or size class (PSCs), and taxonomic 

composition of phytoplankton at the ocean surface, including remote sensing algorithms for monitoring 

and detecting harmful algal blooms, and for identifying specific phytoplankton species [4–8]. These 

methods can be summarized into four main types: (1) methods using information on chlorophyll or 

light absorption to distinguish between PFTs or PSCs [9–11]; (2) spectral response methods based on 

reflectance anomalies for different PFTs/PSCs (e.g., the PHYSAT approach by Alvain et al. [12–14]); 

(3) absorption-based spectral approaches by deriving a phytoplankton size factor [15,16], through 

look-up tables [17], by a phytoplankton size discrimination model [18], by the partial least squares 

regression method [19], or by Differential Optical Absorption Spectroscopy (PhytoDOAS) [20,21]; 

and (4) a backscatter-based method to infer particle size distribution (PSD) and PSCs [22]. Most 

approaches mentioned above have been tested globally and applications for using these satellite 

products have been started. However, validations and adaptions of these approaches to new sensors 

need to be carried out prior to becoming operational.  

With recent advances in optical measurements, comprehensive understanding of the light field 

within the water, and improvements in satellite sensors, the possibility of taxonomic discrimination of 

phytoplankton groups has been investigated [23–27]. As satellite sensors expanded from multispectral 

to hyperspectral detection (e.g., Hyperion, HICO, and the future missions EnMAP [28], PACE, and 

HyspIRI), the consequently higher number of wavebands, narrower spectral bandwidths and  

fully-covered range of the visible light spectrum provide more comprehensive remote sensing data on 

spectral properties of the water reflectance. For instance, as one of the advanced hyperspectral satellite 

missions, EnMAP is currently in its production phase. One of the major scientific tasks to which 

EnMAP will contribute is the aquatic ecosystems, not only focusing on oceans but also coastal and 
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inland waters, regarding various water applications such as improvements on quantification of water 

constituents and taxonomically identification of algal and phytoplankton groups [28]. The future 

availability of hyperspectral sensors from space provides a high potential for distinguishing 

phytoplankton groups by their spectral pigment absorption alone and, thereby, provide a better 

mapping of the phytoplankton community composition, both for global oceans and regional waters.  

Several algal groups have distinct optical properties that are related to their taxonomy and size. The 

shape of phytoplankton light absorption spectra results from absorption of individual pigments 

contained in the cell, where the pigment composition is genetically fixed and the concentrations in the 

cell are influenced by photoacclimation [29]. Due to the genetically fixed pigment composition, 

taxonomically different algal groups of phytoplankton can be differentiated by analyzing spectral 

absorption properties. Fourth derivative transformation is typically applied to absorption spectra to 

enhance spectral features, and then the similarity between the fourth derivative spectra of the targeted 

phytoplankton and a reference spectrum of a known algal species or taxonomic group is analyzed [30]. 

Using this method Millie et al. successfully detected the potential harmful algae Gymnodinium breve 

(now named Karenia brevis) [30] and expanded this application to natural waters [31]. Based on 

spectral derivative analysis methods, such as principal component analysis (PCA), cluster analysis, and 

Discriminant Analysis, have been tested for this application [32–34]. Instead of a single parameter, 

measurements of biomass, pigment composition, and fluorescence excitation were combined with the 

absorption spectra. These supplementary data have also played an important role in precisely 

distinguishing phytoplankton groups [25,26,35–38].  

Optical remote sensing typically provides water-leaving reflectance, Rrs(λ) as one measured 

parameter; this has been used to discriminate phytoplankton communities and to identify some single 

algae species. Craig et al. [4] applied two numerical methods to in situ hyperspectral measurements of 

Rrs(λ) to assess the feasibility of remote detection of the toxic dinoflagellate, Karenia brevis. A  

quasi-analytical algorithm (QAA) was used to invert Rrs(λ) to derive phytoplankton absorption aph(λ) [39], 

then the fourth derivatives of derived aph(λ) were compared to the fourth derivative of a reference K. 

brevis absorption using a similarity index analysis. Similar studies to Craig et al. [4] have been carried 

out subsequently to distinguish phytoplankton types or monitor algal blooms by using multispectral 

and hyperspectral approaches, band ratios, or empirical relationships between a Rrs ratio and typical 

pigment concentration of specific algae [6,23,40–42]. An ocean reflectance inversion model was also 

developed for inverting marine inherent optical properties for the use of phytoplankton community 

structure in order to discriminate Noctiluca miliaris and diatoms [43]. Most of the studies on algae 

detection were proposed to identify only a single species or to differentiate a single phytoplankton 

group in natural waters.  

Due to the diversity of phytoplankton in the global oceanic and coastal waters, it is necessary to 

spectrally differentiate most common phytoplankton groups using hyperspectral data from advanced 

optical sensors, such as EnMAP. The aims of the current study are to assess the feasibility of using 

Rrs(λ) spectra to differentiate several phytoplankton taxonomic groups, and to compare the 

performance when using Rrs(λ) directly and absorption obtained from inversion of the reflectance as 

input data, so that the suitable input data can be determined. This study is proposed to be a preparation 

research for an application of phytoplankton group differentiation using EnMAP hyperspectral data.  
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2. Data and Methods  

2.1. Algal Cultures  

125 cultures of various algal species from six major phytoplankton taxonomic groups were 

prepared. These cultures included 19 diatom species (heterokontophyta (bacillariophyceae)), 13 

species of dinophytes (dinophyta (dinophyceae)), four species of prymnesiophytes (haptophyta 

(prymnesiophyceae)), three species of cryptophytes (cryptophyta (cryptophyceae)), 23 species of 

chlorophytes (chlorophyta), and six species of cyanobacteria (cyanophyceae)). Additional cultures of 

three different taxonomic groups that were represented by just a single species were not included in 

this study, as genetic variability inside a single taxonomic group shall be represented by results of 

several species inside a group. Diatom species were isolated from water samples taken in the North 

Sea. Species of the other groups were provided by the Alfred-Wegener-Institute, Helmholtz-Center for 

Polar and Marine Research, and the Leibnitz-Institute of Freshwater Ecology and Inland Fisheries. The 

cultures were grown in f/2 medium [44] prepared from filtered North Sea water, in the case of marine 

species, and modified Waris solution [45] in case of the fresh water species. The algae were grown 

from single isolated cells in light culturing chambers (Rumed, Germany) at 20 °C under 24 h artificial 

light (day-light fluorescence tubes) of 50 and 100 µmol photons m−2∙s−1 photosynthetically available 

radiation. The different light conditions were chosen to take variations in aph(λ) due to 

photoacclimation in one species into account. Therefore the original isolate was grown for a few days 

under 50 µmol photons m−2∙s−1 until a sufficient cell concentration was reached to divide the culture 

into two 1L-flasks and then grown for another 5−10 days under the two different light intensities. After 

this photoacclimation period the cell concentrations were still low and the algae still in the exponential 

growth phase when sampled. During acclimation and until sampling a good physiological status of the 

cells was controlled daily by measuring the maximum quantum efficiency of photochemistry with a 

PhytoPAM (Walz, Germany). Cultures were used only when this efficiency was high and cells can, 

hence, be considered to be in a healthy state; this is typically the case when cultures are in an 

exponential growth phase under nutrient replete situation. In case the efficiency was too low for a 

specific culture, a single cell of that culture was isolated and a new culture established. 

2.2. Absorption Measurements and Normalization 

The absorption coefficient spectra of phytoplankton, aph(λ) (m−1), were measured with a  

Point-Source Integration-Cavity Absorption Meter (PSICAM) following the procedures outlined by 

Röttgers et al. [46,47]. Determination of aph(λ) are performed in the spectral range of 350–725 nm with 

a 2 nm resolution, by measuring the absorption coefficient of the culture sample and subtracting the 

absorption coefficient of the 0.2 µm-filtrate of the same culture sample. All measurements were done 

at least in triplicate against pure water as the reference. The PSICAM was calibrated daily against a 

spectrophotometer (Lambda 800, Perkin-Elmer) using solutions of the colored dye Nigrosine. The 

PSICAM offers accurate and very sensitive determinations of the absorption coefficient without errors 

induced by light scattered on the algal cells.  

The measured aph(λ) spectra were normalized for further utilization. According to Roesler et al. [48], 

absorption spectra exhibit two kinds of variance: variance in magnitude and variance in spectral shape. 
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Magnitude variances are due to changes in the spectrally averaged absorption coefficient, Aph (m−1), 

which is the area of the spectral curve over the pre-defined spectral range and can be expressed as: 

𝐴𝑝ℎ =
∫ 𝑎𝑝ℎ(𝜆) (𝑚−1) 𝑑𝜆 (𝑛𝑚)

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛(𝑛𝑚)
 (1) 

where λmax and λmin are the integration upper and lower spectral limits. Therefore, for each 

phytoplankton culture, the absorption spectrum was normalized to the underlying area in the range of 

400–700 nm: 

𝑎𝑝ℎ
𝑛 (𝜆) =

𝑎𝑝ℎ(𝜆)

𝐴𝑝ℎ
 (2) 

where 𝑎𝑝ℎ
𝑛 (𝜆) (dimensionless) is the area-normalized absorption curve. 

2.3. HydroLight Simulations of Hyperspectral Remote Sensing Reflectance 

As one of the most important apparent optical properties, remote sensing reflectance, Rrs(λ), is 

commonly used in bio-optical models and ocean color remote sensing for water component retrieval 

and biomass estimation. In this study the absorption spectra of cultures were measured in the 

laboratory and based on these absorption spectra, and a radiative transfer model was used to compute 

radiance distributions through the water column and, finally, Rrs(λ). The simulations were carried out 

with HydroLight 5.2 (Sequoia Scientific, Inc., Bellevue, WA, USA) [49,50]. HydroLight allows the 

user to provide input files that define the inherent optical properties (IOPs) used in a simulation in 

controlled environments and other environmental parameters,, such as ocean surface wind speed, sun 

and sky irradiance, sun zenith angle, and so forth.  

In the present study, hyperspectral Rrs(λ) were simulated with the following setups and assumptions 

taken into account: 

 Phytoplankton absorption: eight chlorophyll concentrations (Chl) were set for each measured 

𝑎𝑝ℎ
𝑛 (𝜆) varying from 0.1 to 100 mg∙m−3 (0.1, 0.5, 1, 3, 5, 10, 50, and 100 mg∙m−3). To 

determine aph(λ) for these different Chl concentrations, we used the empirical relationship by 

Bricaud et al. [51] to calculate aph(440): aph(440) = 0.0654 [Chl]0.728. The modeled absorption 

spectra were obtained by multiplying the normalized absorption spectra with aph(440),  

i.e., 𝑎𝑝ℎ
𝑚𝑜𝑑(𝜆) = 𝑎𝑝ℎ(440) 𝑎𝑝ℎ

𝑛 (𝜆). In the end, eight sets of 𝑎𝑝ℎ
𝑚𝑜𝑑(𝜆) were obtained for these 

different Chl concentrations. 

 Chromophoric dissolved organic matter (CDOM) absorption: the HydroLight  

default exponential model for CDOM absorption with fixed values at 440 nm,  

aCDOM(440) (m−1), and a single spectral slope of 0.014 nm−1 was used [52]:  

𝑎𝐶𝐷𝑂𝑀(𝜆) = 𝑎𝐶𝐷𝑂𝑀(440)exp (−0.014(𝜆 − 440)) . In the simulations two CDOM 

concentrations were used with aCDOM(440) = 0.0 and 0.1 m−1 to check how the varying 

CDOM concentrations do influence the performance of the differentiation.  

 Absorption by non-algal particles, aNAP(λ) (m−1), was determined using a mass-specific 

absorption coefficients due to non-algal particles, aNAP
*(λ) (m2∙mg−1), and a particle mass 

concentration, which is often referred to as total suspended matter concentrations (TSM),  
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i.e., 𝑎𝑁𝐴𝑃(𝜆) = 𝑇𝑆𝑀𝑎𝑁𝐴𝑃
∗ (𝜆). The spectral shape of the aNAP

* used is very similar to the 

HydroLight standard (average coefficient), but is based on spectrally exponentially-shaped in 

situ measurements from the Baltic Sea and Elbe River (unpublished data). Two TSM values 

were set for different simulation scenarios (TSM = 0 and 1 g∙m−3).  

We used standard settings for these HydroLight simulations [50], with the exception of pure 

seawater absorption and scattering coefficients, aw(λ) and bw(λ), which were calculated with the Water 

Optical Properties Processor (WOPP) [53], assuming a temperature of 10°C and salinity of 30 PSU. 

Plankton and non-algal particles are assumed to scatter like Petzold’s average particle scattering (each 

with a backscatter fraction of 0.0183) [50,54]. Furthermore, the ocean is assumed to be infinitely deep 

and optically homogeneous. Raman scattering, as well as chlorophyll and CDOM fluorescence are 

taken into account. Other assumptions regarding the atmosphere included: the sun is in zenith, wind 

speed is 5 m∙s−1, a standard atmosphere with marine aerosols, and a clear sky; this results in an aerosol 

optical thickness at 550 nm of 0.261. Rrs(λ) spectra were simulated from 400 nm to 700 nm with  

2.5 nm spectral resolution, therefore 4000 Rrs(λ) spectra were finally obtained for the above scenarios 

including the different Chl and TSM concentrations and CDOM absorption coefficients. As done above 

for aph(λ), area-normalization was applied to each simulated Rrs(λ) spectrum in the range of  

400–700 nm to obtain as set of 𝑅𝑟𝑠
𝑛 (𝜆) for each 𝑎𝑝ℎ

𝑛 (𝜆) spectrum. 

2.4. Inversion of Absorption Spectra from Simulated Rrs(λ) 

As Rrs(λ) can be obtained directly from satellite sensors, potential applications in phytoplankton 

groups differentiation using satellite data will rely, firstly, on reflectance data. However there can be 

two ways to utilize Rrs(λ) data. The simple one is to apply the differentiation approaches directly to the 

normalized Rrs(λ); the other one is to invert absorption spectra from Rrs(λ) data using bio-optical 

models and then utilize the inverted absorption spectra for differentiation. In the present study, 

absorption spectra were inverted from the simulated hyperspectral Rrs(λ) using the quasi-analytical 

algorithm (QAA) version 5 as described in Lee et al. [39,55,56] for optically-deep waters. Prior to 

choosing the QAA, other reflectance inversion models had been tested (e.g., semi-analytical 

algorithms in GIOP model [57]), but showed significant discrepancies between the inverted absorption 

spectra and measured ones, as in these algorithms the aph(λ) are modeled by derived specific 

absorption coefficients of phytoplankton or by empirical equations using absorption coefficients at a 

reference wavelength, which deteriorates the spectra features of pigment composition in the full 

spectral region. The QAA is simple and quick to apply, as its calculation efficiency is similar to that of 

empirical models, but its accuracy has been shown to be similar to that of optimization methods [39]. 

Both absorption coefficient spectra, NAP and CDOM, are characterized by an absorption 

exponentially decreasing with wavelength without pronounced maxima or minima, thus their 

absorption will have very little influence on the spectral shape of the fourth derivative spectrum [19]. 

Compared to that, the inversions using bio-optical models for aph(λ), aCDOM(λ) and aNAP(λ) usually 

include uncertainties and errors due to a series of assumptions and empirical relationships between the 

absorption coefficient and wavelength. The total absorption coefficient is typically a precisely 

retrieved parameter from QAA inversion [39] and as pure water absorption is relatively accurately 

known, subtraction of the pure water absorption from total absorption might reduce its deteriorating 
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effect on the spectral absorption features, though uncertainties introduced by the inversion will 

somehow influence the quality of inverted absorption data. Therefore, we only inverted the non-water 

absorption, apg(λ) = aph(λ) + aCDOM(λ) + aNAP(λ), instead of aph(λ), when using QAA. A detailed 

description of the mathematical steps involved in the QAA inversion process can be found in [56]. The 

QAA-inverted apg(λ) spectra were also area-normalized to obtain 𝑎𝑝𝑔
𝑛 (𝜆), as done for the lab-measured 

aph(λ) and HydroLight-simulated Rrs(λ).  

2.5. Derivative Analysis 

Derivative spectroscopy has been widely used in the analysis of hyperspectral data using various 

computation algorithms [58–60]. It can be applied to hyperspectral measurements of both inherent and 

apparent optical properties (e.g., absorption spectra, remote sensing reflectance). Derivative analysis 

enhances spectral features and, thus, better distinguishes subtle features in the spectra. In the present 

study, a finite divided difference algorithm was used to estimate the derivative spectra by taking the 

difference of a given spectrum over a sampling interval (Δλ), defined as Δλ = λj − λi, where λj > λi. The 

first and the nth derivative are obtained using equations of 
𝑑𝑠

𝑑𝜆
|

𝑖
≈

𝑠(𝜆𝑗)−𝑠(𝜆𝑖)

Δ𝜆
 and 

𝑑𝑛𝑠

𝑑𝜆𝑛 =
𝑑

𝑑𝜆
(

𝑑(𝑛−1)𝑠

d𝜆(𝑛−1)), 

respectively, where s is the spectrum used for the derivative transformation [59]. It is noteworthy that 

the use of the second derivative and fourth derivative transformation yield different meanings: the 

second derivative provides qualitative identification of pigments only, whereas the fourth derivative 

provides quantitative identification [61]. Therefore, the fourth derivative spectra of the absorption are 

often computed to resolve the positions of the absorption maxima attributable to photosynthetic 

pigments [30]. To be consistent, the fourth derivative transformation was applied to 𝑎𝑝ℎ
𝑛 (𝜆), 𝑅𝑟𝑠

𝑛 (𝜆) 

and QAA-inverted 𝑎𝑝𝑔
𝑛 (𝜆) spectra in this study. However, as the derivative computation increases 

noise in the spectrum, smoothing has to be applied to the data [36,58]. The Savitzky-Golay filter was 

used for smoothing the original data in which a polynomial order of four and a frame size of 21 were 

appropriately selected after multiple attempts to determine the best compromise between the noise 

removal and the ability to resolve the fine spectral information. The Savitzky-Golay filter was selected 

based on the advantage that the filter exhibits excellent properties of the distribution such as relative 

maxima and minima. Other smoothing filters by conventional methods, such as a moving average 

usually distort some spectral features by flattening or shifting [62].  

2.6. Similarity Index (SI) and Clustering Analysis 

All derivative spectra, those of 𝑎𝑝ℎ
𝑛 (𝜆) , simulated 𝑅𝑟𝑠

𝑛 (𝜆) , and of QAA-inverted 𝑎𝑝𝑔
𝑛 (𝜆) , were 

compared between the 125 input spectra using a similarity index (SI) analysis as described by  

Millie et al. [30]. In the present study the cosine distance was considered as SI and was computed from 

the angle between two vectors such that SI =
𝐴1∙𝐴2

|𝐴1|×|𝐴2|
 , where A1 and A2 are vectors that comprise the 

two derivative spectra. The SI calculation yields a number from 0 to 1, where 0 indicates no similarity, 

while 1 indicates absolute similarity between the two spectra. 

SI analysis is adequate to differentiate two spectra that may represent, or not, two optically-different 

spectra/groups, but a single SI number alone is not sufficient for the differentiation of several 

phytoplankton groups. Therefore, hierarchical cluster analysis (HCA) was used to create a hierarchical 
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cluster tree and to partition the dataset into clusters using a single linkage (nearest neighborhood) 

algorithm. The linkage algorithm is based on the cosine distance (i.e., SI) between derivative spectra. 

HCA traditionally displays a dendrogram to represent the hierarchical tree, with individual 

observations at one end and the clusters to which the data belong at the other. According to the SI 

defined here, the closer to one the SI is, the more similar are the features of the two compared spectra. 

Therefore, spectra with a similar phytoplankton composition are expected to appear closer with larger 

SI in the cluster tree than those having a very different composition [25]. Cluster trees in the current 

study were generated by using a free software for scientific data analysis PAST version 2.17 [63]. 

3. Results 

3.1. Derivative Analysis and Clustering of Algal Absorption Spectra 

Figure 1a shows some representative 𝑎𝑝ℎ
𝑛 (𝜆) spectra of cultures from the six investigated taxonomic 

algal groups. These 𝑎𝑝ℎ
𝑛 (𝜆) spectra showed considerable variability in spectral shape from one group 

to another, indicating significant differences in absorption spectral features. Figure 1b shows fourth 

derivative transformed spectra of 𝑎𝑝ℎ
𝑛 (𝜆), indicating positions of the absorption maxima attributable to 

single photosynthetic pigments [35]. The HCA cluster analysis was performed on these fourth 

derivative spectra of 𝑎𝑝ℎ
𝑛 (𝜆). Note that the result of this clustering is sensitive to the selection of the 

spectral range, as specific absorption imprints caused by accessory pigments usually occur in a 

narrower range than 400–700 nm. A sensitivity analysis of spectral regions was performed in detail by 

Torrecilla et al. [25] and here we used a similar procedure to determine the optimal spectral range 

before performing cluster analysis. The optimal range was determined by choosing low SI between 

each pair of groups based on the SI calculated for all possible varying ranges from 400 to 700 nm 

(Figure 2 shows the SI variation between heterokontophyta and cryptophyta as an example). There 

were, in total, 15 optimal ranges generated for all pairs of groups from the six phytoplankton groups. 

Those spectral ranges that also show low SI values, but are too narrow (i.e., close to the 1:1 line as 

shown in Figure 2), were not considered because they present too little information. As we try to 

differentiate the six groups simultaneously, due to the fact that for each pair of groups the optimal 

range may vary, in the present study we combined the 15 spectral ranges to include all the important 

pigment information. This analysis showed that the spectral range of 430–660 nm gave the best 

information of all accessory pigments and, thus, was used as the optimal spectral range. Clustering 

results showed that the fourth derivative spectra of measured 𝑎𝑝ℎ
𝑛 (𝜆) can be used to differentiate the 

six phytoplankton groups quite precisely. All species of haptophyta, chlorophyta, cryptophyta, and 

cyanobacteria were well grouped together. For the heterokontophyta, 27 out of 30 cultures, and for the 

dinophyta, 20 of 21 cultures, were classified together (Figure 3 and Table 1). Using a SI of 0.90, 

cryptophyta could be differentiated; while the SI of 0.95 and 0.96 were the thresholds for 

cyanobacteria and chlorophyta, respectively. The highest SI was found between heterokontophyta and 

dinophyta (0.98) with a few misclassified cultures in between the two groups. 
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Figure 1. Examples of (a) normalized absorption spectra for different phytoplankton 

groups with (b) corresponding fourth-derivative spectra. 

 

Figure 2. SI variation between heterokontophyta and cryptophyta for all possible varying 

ranges from 400 to 700 nm. The optimal spectral range containing most pigment 

information with low SI is between λmin ≈ 430 nm and λmax ≈ 660 nm. 

 

Figure 3. Cluster tree of the six phytoplankton groups generated by using fourth-derivative 

spectra of measured phytoplankton absorption aph(λ). 
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Table 1. Clustering accuracy using measured aph(λ), HydroLight-simulated Rrs(λ), and 

QAA-inverted apg(λ) (apg_QAA(λ)) spectra for different water types. 

 Heterokontophyta Dinophyta Haptophyta Cryptophyta Chlorophyta Cyanobacteria 

Measured aph(λ) 27/30 20/21 7/7 5/5 51/51 11/11 

Simulated Rrs(λ) 

(Chl = 0.1 mg∙m−3) 
Mixed 4/5 Mixed 8/11 

Simulated Rrs(λ) 

(Chl = 0.5 mg∙m−3) 
Mixed 4/5 Mixed 8/11 

Simulated Rrs(λ) 

(Chl = 1 mg∙m−3) 
Mixed 5/5 51/51 11/11 

Simulated Rrs(λ) 

(Chl = 5 mg∙m−3) 
Mixed 5/5 51/51 11/11 

Simulated Rrs(λ) 

(Chl = 10 mg∙m−3) 
Mixed 5/5 51/51 11/11 

Simulated Rrs(λ) 

(Chl = 50 mg∙m−3) 
Mixed 5/5 51/51 11/11 

Simulated Rrs(λ) 

(Chl = 1 mg∙m−3, 

CDOM = 0.1 m−1, 

TSM = 1 g∙m−3) 

Mixed 5/5 51/51 11/11 

apg_QAA(λ) 

(Chl = 1 mg∙m−3) 
Mixed 5/5 49/51 11/11 

apg_QAA(λ) 

(Chl = 1 mg∙m−3, 

CDOM = 0.1 m−1, 

TSM = 1 g∙m−3) 

Mixed 5/5 49/51 11/11 

apg_QAA(λ) 

(Chl = 50 mg∙m−3) 
29/30 18/21 Undistinguishable 5/5 51/51 11/11 

Numbers “m/n” indicates that m spectra are grouped together from total n spectra. 

3.2. Derivative Analysis and Clustering on HydroLight-Simulated Rrs(λ) 

Figure 4 shows examples of HydroLight-simulated 𝑅𝑟𝑠
𝑛 (𝜆) that are based on individual absorption 

spectra of the cultures for four Chl concentrations varying from 0.1 to 50 mg∙m−3 and their 

corresponding fourth-derivative spectra. With increasing Chl concentration, the spectral shape of the 

𝑅𝑟𝑠
𝑛 (𝜆) and derivative spectra were more distinct between the different taxonomic groups. It is obvious 

that at low Chl concentrations, the Rrs(λ) were dominated by water absorption features and little 

variations could be found between 𝑅𝑟𝑠
𝑛 (𝜆)  based on absorption spectra of the different cultures.  

Figure 4 supports this statement and shows that when Chl concentration is low (0.1 mg∙m−3), little 

difference between cultures of different taxonomic groups can be seen either in Rrs(λ) or their 

derivative spectra, especially in the red to NIR region where absorption by water dominates. The 

differences between taxonomic groups became more distinct with increasing Chl concentration. In 

order to understand to what extent the Chl concentration did influence the differentiation, SI values 

between different groups were calculated using derivative spectra in the range of 430–620 nm only (to 

reduce the direct influence of water absorption features). Figure 5 shows an example for the SI 
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between a single spectrum of each group varying with Chl concentration. The SI decreases 

dramatically with increasing Chl concentration between most of the groups, except for the SI between 

heterokontophyta, dinophyta, and haptophyta, which stayed relatively high compared to the SI 

between other groups. Figures 4 and 5 indicated that phytoplankton groups differentiation using 

hyperspectral Rrs(λ) might not be feasible if Chl concentrations are lower than 1 mg∙m−3 due to high 

similarity in the derivative spectra.  

 

Figure 4. Examples of HydroLight-simulated 𝑅𝑟𝑠
𝑛 (𝜆) with different Chl values (left panel) 

and the corresponding fourth-derivative spectra (right panel). Note that the y-axis of the 

derivative spectra is reversely displayed. 
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Figure 5. Similarity index between the six taxonomic groups varying with Chl 

concentrations. Note that SI was calculated using the fourth derivative spectra of 𝑅𝑟𝑠
𝑛 (𝜆) 

within 430–620 nm and between single representative spectra of each group.  

To further assess the performance of remote sensing reflectance in differentiating phytoplankton 

groups, HydroLight-simulated 𝑅𝑟𝑠
𝑛 (𝜆) with a Chl concentration of 0.1, 0.5, 1, 5, 10, and 50 mg∙m−3 

were used and the influence by water absorption features at longer wavelengths was reduced by using 

the fourth derivative spectra in the range of 430–620 nm only. The simulated Rrs(λ) dataset with  

Chl = 1 mg∙m−3, CDOM = 0.1 m−1, and TSM = 1 g∙m−3 were also tested to assess whether CDOM and 

TSM concentrations influence the differentiation. Cluster trees for different water types are displayed 

in Figure 6 (cluster trees for water types with Chl of 0.5 and 10 mg∙m−3 were not shown but the 

accuracy data were listed in Table 1). Results showed that Rrs(λ) spectra for Chl of 0.1 and 0.5 mg∙m−3 

cannot to be used to efficiently differentiate the different taxonomic groups; only cyanobacteria and 

cryptophyta were distinct (Table 1 and Figure 6a). When Chl = 1 mg∙m−3 (Figure 6b), the most distinct 

phytoplankton group are the cryptophytes with the SI of 0.80; the cyanobacteria cultures were grouped 

together at SI = 0.90, but showed larger variation in SI between species in the group due to the  

above-described variation in spectral absorption. Chlorophytes were well grouped (SI = 0.94), again 

indicating similar pigment composition among species as presented in the performance of measured 

aph(λ). When Chl is higher than 1 mg∙m−3, similar clusters were found but with lower SI thresholds 

(Figure 6c,d). More subtle differences were shown for cyanobacteria cultures, which were separated 

into two subgroups. When including CDOM and TSM in the derivation of Rrs(λ), the differentiation 

performance was not visibly deteriorated (Table 1 and Figure 6e). The overall results showed that four 

main groups can be differentiated using simulated Rrs(λ) when Chl ≥ 1 mg∙m−3, as all species of 

chlorophyta, cryptophyta, and cyanobacteria were classified in a single cluster, whereas 

heterokontophyta, dinophyta, and haptophyta were hardly distinguishable (Table 1 and Figure 6).  
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Figure 6. Cluster trees of the six phytoplankton groups generated by using fourth-derivative 

spectra of HydroLight-simulated Rrs(λ) for water types with (a) Chl = 0.1 mg∙m−3,  

(b) Chl = 1 mg∙m−3, (c) Chl = 5 mg∙m−3, (d) Chl = 50 mg∙m−3, and (e) Chl = 1 mg∙m−3, 

CDOM = 0.1 m−1, and TSM = 1 g∙m−3. Color-code legend denotes different phytoplankton 

taxonomic groups, as shown in (b). 
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3.3. Phytoplankton Group Differentiation Using Absorption Inverted from Rrs(λ) 

Rrs(λ) showed expected weaker differentiation performance compared to that using original 

𝑎𝑝ℎ
𝑛 (𝜆) spectra. This is due to the introduction of additional uncertainties during the HydroLight 

simulation to Rrs(λ) and due to absorption features by water itself. In this section, the QAA-inverted 

non-water absorption spectra apg(λ) were analyzed and used to differentiate phytoplankton groups. Its 

performance was compared with that using Rrs(λ) data in Section 3.2 to determine the suitable input 

data for phytoplankton groups differentiation. 

 

 

 

Figure 7. Examples of QAA-inverted absorption spectra of 𝑎𝑝𝑔
𝑛 (𝜆) and the corresponding fourth 

derivative spectra of the six taxonomic groups for (a,b) water type I with only Chl = 1 mg∙m−3, 

(c,d) water type II with Chl = 1 mg∙m−3, CDOM = 0.1 m−1, and TSM = 1 g∙m−3 for  

400–560 nm, and (e,f) water type III with Chl = 50 mg∙m−3 for 400–700 nm. 
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In order to verify if the absorption by non-algal particles and CDOM has an influence on the 

derivative analysis, two different water types were considered to retrieve apg(λ): (I) water with  

Chl = 1 mg∙m−3, CDOM and TSM were set to zero, and (II) water with Chl = 1 mg∙m−3, CDOM = 0.1 m−1, 

and TSM = 1 g∙m−3. Note that for water type I and II only data for 400–560 nm were selected because, 

beyond this range, there is insufficient information to reliably invert apg(λ) from Rrs(λ) due to errors 

induced by the strong absorption by water [55]. A water type III was also considered with extremely 

high Chl = 50 mg∙m−3, based on the assumption that high absorption by phytoplankton might reduce 

the QAA inversion errors at longer wavelengths. Results showed that the inverted apg(λ) at longer 

wavelengths were successfully retrieved for extremely high Chl waters (Figure 7e). To assess the 

performance of the QAA, the measured apg(λ) were compared with the QAA-inverted apg(λ) for the 

three water types at some discrete wavelengths [55]. Despite of the slight underestimation of the apg(λ) 

values (slope < 1 in Table 2), the QAA algorithm could give satisfactory retrievals of absorption 

coefficients from Rrs(λ) in the considered spectral range (Table 2). 

Table 2. Summary of the QAA performance for different water types. A linear regression 

without the interception term was used between inverted and measured apg(λ),  

i.e., QAA-inverted apg(λ) = Slope * (measured apg(λ)), at four selected bands (410, 440, 

490, and 510 nm). The slope, determination coefficient (R2), root-mean-square error 

(RMSE), and number of points are shown. 

 Slope R2 RMSE (m−1) N 

Water type I 

(Chl = 1 mg∙m−3) 
0.942 0.961 0.0086 500 

Water type II 

(Chl = 1 mg∙m−3, CDOM = 0.1 m−1, 

TSM = 1 g∙m−3) 

0.938 0.948 0.0245 500 

Water type III 

(Chl = 50 mg∙m−3,  

an extreme case) 

0.953 0.975 0.117 500 

Similar to the measured algal absorption spectra, the inverted apg(λ) were normalized and then 

fourth-derivative-transformed for the cluster analysis. Figure 7a,b shows the normalized apg(λ) 

(𝑎𝑝𝑔
𝑛 (𝜆)) and the corresponding fourth derivative spectra for water type I and Figure 7c,d shows the 

same for water type II. In fact, the inverted non-water absorption spectra apg(λ) for water type I 

correspond to aph(λ) as no absorption by CDOM and non-algal particles was included in the 

simulation, Nevertheless, the fourth derivative spectra of 𝑎𝑝𝑔
𝑛 (𝜆) for both water types showed little 

differences in the spectral shape (Figure 7b,d), though their magnitude was different because the 

inclusion of CDOM and TSM for water type II would change the derivative values due to the 

exponential slopes of CDOM and non-algal particle absorption spectra. As apg(λ) was reasonably 

inverted at longer wavelengths only for water type III, the normalization and fourth derivative 

transformation were done within the entire spectral range as shown in Figure 7e,f. Positions of maxima 

and minima in Figure 7f were in good agreement with that in Figure 7b–d at 420–550 nm and were 

comparable to that in Figure 1b at 560–660 nm. Cluster analysis was applied to these QAA-inverted 

apg(λ) data set for water type I and II and a similar clustering was obtained (Figure 8a). The clustering 
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results showed that four taxonomic groups can be distinguished. All cultures of the cyanobacteria and 

all of the cryptophyta were clustered together; 49 of 51 chlorophytes were correctly grouped, however 

the three other groups (heterokontophyta, dinophyta, and haptophyta,) were mixed within each others’ 

clusters (Table 1 and Figure 8a). Nevertheless, a better clustering was shown for water type III with 

extremely high Chl using the same range of 430–620 nm as done on simulated Rrs(λ) spectra  

(Figure 8b). In this case, all cultures of the chlorophyta, cryptophyta, and cyanobacteria were clustered 

together; only very few cultures of heterokontophyta and dinophyta were misclassified, but haptophyta 

were undistinguishable. 

 

Figure 8. Cluster trees of the six phytoplankton groups generated by using (a) fourth 

derivative spectra of QAA-inverted non-water absorption apg(λ) from simulated Rrs(λ) for 

water type I and II, and (b) fourth derivative spectra of QAA-inverted non-water 

absorption apg(λ) from simulated Rrs(λ) for water type III. Note that the spectral range used 

in (a) is 430–550 nm, and in (b) is 430–620 nm.  

4. Discussion 

4.1. HydroLight Simulations 

Part of the scope of this work is to assess how phytoplankton groups are reflected from the 

hyperspectral remote sensing perspective. As Rrs(λ) were simulated by HydroLight in this study, two 

points regarding the HydroLight simulations are discussed in the following. Firstly, as for the 

scattering properties, besides the fact that scattering properties of hydrosols underlie particular 

variability and uncertainties [64], some assumptions have been made in the simulations to simplify and 

unify scattering properties, thus, to strengthen the sensitivity of absorption effects. The volume 
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scattering function, VSF, exhibits spectral variations and shape changes for different algal species [65]. 

Depending on the nature and concentrations of planktonic particles in sea water, particle backscatter 

fractions in the ocean can vary from a fraction of a percent to several percent. If this would be 

implemented more accurately into the Hydrolight simulations, this would affect the Rrs(λ) spectra,  

e.g., [66,67]. However, VSF, particle backscattering, and total scattering of the culture samples have 

not been measured. Thus, we have no information on the actual particle backscatter fraction bbp/bp, 

which is necessary to define the appropriate Fournier-Forand phase function. Various formulas for the 

backscatter fraction as function of Chl can be found in the literature, e.g., [68]. However, it must be 

remembered that the backscatter fraction correlates poorly with Chl, and there can be  

order-of-magnitude variability in the measured value of bbp/bp for a given Chl. Mobley et al. [66] show 

effects of phase functions on simulation data. They state that the use of a phase function with the 

correct backscatter fraction could reduce RMS percentage errors in the predicted upwelling irradiance 

and Rrs(λ) by roughly an order of magnitude. However, the exact shape of the phase function in 

backscatter directions does not greatly affect the light field, so long as the overall shape of the phase 

function does not deviate greatly from the correct shape, and this is provided by using the Petzold 

average-particle phase function with bbp/bp = 0.0183.  

Secondly, with regards to CDOM and non-algal particles absorption, two simple cases were 

considered, namely, one case without any CDOM and non-algal particles absorption and one with 

aCDOM(440) = 0.1 m−1 and TSM = 1 g∙m−3. The CDOM concentration would correspond to roughly  

10 mg∙m−3 chlorophyll concentration in the Case-1 parameterization by Morel [69]. According to our 

routinely-obtained in situ dataset mainly from the North Sea, a very high variability of CDOM versus 

Chl was found with aCDOM(440) = 0.1 m−1 corresponds to Chl between 0.1 and 10 mg∙m−3 (two orders 

of magnitude). In the open sea, CDOM is mainly a product of phytoplankton degradation. In an 

extreme and fresh algal bloom event with concentrations of more than 10 mg∙m−3, the used CDOM 

absorption is probably not unrealistic. Furthermore, CDOM and TSM were included in this study to 

test how they would influence the differentiation performance of the simulated Rrs(λ), and our results 

showed that no significant influence was found in results of the cluster analysis (Table 1 and Figure 6). 

4.2. Phytoplankton Groups Differentiation Using Absorption and Rrs(λ) Data—Performance Comparison 

The fourth derivative analysis uncovers more distinct the absorption of pigments maxima within the 

overall absorption spectra [30]. By using the similarity index (SI) with the hierarchical cluster analysis 

(HCA) it was possible to effectively characterize all absorption spectra and, thus, to allow the detection 

of differences among phytoplankton taxonomic groups. In the present study, cluster analysis on the 

fourth derivative of aph(λ) spectra efficiently separated the 125 algal absorption spectra into distinct 

groups. As expected, the fourth derivative spectra from species of heterokontophyta (diatoms) and 

dinophyta were highly similar with SI > 0.975 and few cultures of the two groups were misclassified, 

due to the known similar pigment composition and absorption spectra of these two groups. Most 

chlorophyte species showed identical spectral features within the group and, thus, were well-clustered 

together. The five cryptophyte cultures showed distinct spectral features compared to other groups. The 

six cyanobacteria species (11 cultures) were spectrally rather different from each other, and included 

green, blue-green, and red colored cultures. For instance, some cultures showed distinct spectral 
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differences in their absorption, especially at 500–600 nm, induced by several phycobilin pigments 

(Figure 1). Nevertheless, the current study only focused on the differentiation of phytoplankton 

taxonomic groups but not yet intended to investigate details at the species level. With significant 

optical differences to the other groups, cyanobacteria are probably easily identifiable using 

hyperspectral data ([7], and references therein).  

For the perspective of applications using data from hyperspectral sensors, HydroLight-simulated 

Rrs(λ) for different Chl concentrations were tested to differentiate phytoplankton taxonomic groups 

with this approach. Results revealed that the SI for the fourth derivative of simulated Rrs(λ) spectra 

varies largely, as it is highly influenced by the Chl concentrations (Figure 5) used in the simulations, 

leading to an increase of uncertainty in detecting the different taxonomic groups. From the SI variation 

in Figure 5, a threshold of Chl = 1 mg∙m−3 was primarily determined to more efficiently differentiate 

the groups when based on Rrs(λ). The main reason for this less efficient differentiation at low Chl 

concentrations is the dominating influence of spectral features of pure water absorption. Further 

verification of this threshold was done by using simulated Rrs(λ) for water types with discrete Chl 

concentrations. Results indicated that four main groups can be differentiated only when  

Chl ≥1 mg∙m−3 (Table 1). This is also consistent with the SI variation shown in Figure 5, meaning that 

the derivative analysis and clustering approach using Rrs(λ) is promising in waters with Chl ≥ 1 mg∙m−3 

for differentiating chlorophyta, cryptophyta, cyanobacteria, and heterokontophyta/dinophyta/haptophyta 

when they are dominating. So far this finding has been noted for the first time by the present study for 

differentiating multiple phytoplankton taxonomic groups simultaneously; no similar results have been 

reported in the literature and, thus, cannot be compared. It still remains difficult to distinguish 

phytoplankton groups with similar optical signatures (e.g., heterokontophyta and dinophyta) purely 

depending on reflectance spectra. Approaches to discriminate these two groups during bloom events 

have been developed using combined data sets of Rrs(λ), chlorophyll anomaly, absorption, and 

backscattering spectra from both in situ measurements and space, e.g., [42,70–72]. It remains unclear, 

however, if these techniques are effective in waters beyond their study regions or in non-bloom waters. 

As an important water components in natural waters, CDOM and TSM were also considered in our 

simulated Rrs(λ). A test of Rrs(λ) for water type with Chl = 1 mg∙m−3, CDOM = 0.1 m−1, and  

TSM = 1 g∙m−3 showed similar differentiation results with that for water types without CDOM and 

TSM (Figure 6e), indicating that as expected CDOM and TSM have an insignificant influence on the 

differentiation performance also when using simulated Rrs(λ). The exponential spectral shapes of 

CDOM and non-algal particles absorption do not influence the derivative analysis. 

It is noteworthy that the difficulty in differentiating phytoplankton groups using Rrs(λ) also has to do 

with the fundamental difference between the inherent optical properties (IOPs) and apparent optical 

properties (AOPs), where the latter depend on the ambient light field. According to the discussions 

above, differentiation of phytoplankton taxonomic groups based on simulated Rrs(λ) spectra is less 

effective as that based on aph(λ) spectra. As far as hyperspectral sensors are concerned, one can obtain 

absorption spectra from Rrs(λ) by using bio-optical inversion models. However, the differentiation 

performance of using inverted absorption spectra is much less precise due to uncertainties and errors 

introduced by the inversion models. The effects seemed to be larger than those induced by the pure 

water absorption spectral features in Rrs(λ). Though the QAA-inverted apg(λ) were often in good 

agreement with the measured ones (Table 2), the QAA showed limitations resulting in the lacking 
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absorption spectra at longer wavelengths for waters with low Chl concentrations due to the influence 

of the absorption by water itself [4,55]. Compared to simulated Rrs(λ) for water types I and II, the same 

approach applied to the QAA-inverted apg(λ) showed slightly poorer differentiation performance, as 

the QAA does not allow to use longer wavelengths, thus only giving satisfactory inversions of 

absorption in the range of 400–560 nm when Chl is low. This has caused the loss of important pigment 

information for certain taxonomic groups. For instance, from the measured 𝑎𝑝ℎ
𝑛 (𝜆)  and the 

corresponding fourth-derivative spectra (Figure 1), it was clearly seen that the main spectral difference 

between cryptophyta and other groups was found at 560–600 nm. This deteriorated information at 

longer wavelengths by QAA resulted in a weak ability to distinguish cryptophyta from the three mixed 

groups (heterokontophyta, dinophyta, and haptophyta) (Table 1 and Figure 8a) and, thus, reduced the 

differentiation accuracy. The test of an extreme water type III (Chl = 50 mg∙m−3) suggested that the use 

of QAA-inverted apg(λ) partly restored the differentiation accuracy when Chl is high enough. However, 

the overall performance of using the inverted absorption spectra was restricted due to the limitations of 

the inversion model. A recent study in estimating the dominance of diatoms by Isada et al. [27] using 

the derivative spectroscopy approach also suggested that the QAA-inverted absorption spectra is less 

precise than in situ measured absorption. The performance of directly using in situ Rrs(λ) spectra was, 

however, not assessed in their study.  

5. Conclusions and Outlook 

In this study we tested the differentiation of phytoplankton taxonomic groups from hyperspectral 

data by using remote sensing reflectance Rrs(λ) directly versus using absorption spectra derived from 

Rrs(λ) by inversion algorithms. This was done to help future implementations of applications for 

hyperspectral satellite sensors like EnMAP. 

When looking at direct differentiation capabilities, the fourth-derivative spectra of measured 

phytoplankton absorption performed more effectively than that of simulated Rrs(λ) for six major 

phytoplankton groups, but the QAA-inverted absorption spectra were less precise than Rrs(λ). The 

discrimination of phytoplankton taxonomic groups using Rrs(λ) data for a spectral analysis is limited by 

the strong influence of spectral features from pure water absorption. The inversion of Rrs(λ) to receive 

pigment absorption and remove water absorption influence is not giving better results due to errors 

induced by the inversion algorithm. This might change in the future with improved inversion 

algorithms. Therefore, the use of current hyperspectral remote sensing reflectance directly from 

hyperspectral sensors for phytoplankton group differentiation is suggested. Additionally, there are 

difficulties in very low algal concentrations and in discriminating heterokontophyta, dinophyta, and 

haptophyta due to their similar pigment composition. 

The present study is restricted by the use of HydroLight simulations under ideal circumstances with 

stable CDOM and TSM concentrations. Furthermore, it is noteworthy that reflectance spectra of natural 

waters are far more complex than theoretical simulations, and the quality of the measured spectra are 

also a matter of the sensor’s spectral resolution, the radiometric calibration, and the atmospheric 

correction, to mention only the most prominent impacts. All of the above issues induce uncertainties 

and difficulties in identifying phytoplankton groups for natural waters. Future work will include the 

differentiation capability assessment on phytoplankton group mixtures, the utilization of Rrs(λ) both 
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from natural waters and simulated EnMAP hyperspectral images, as well as a more elaborate 

investigation on the impact of varying water constituent concentrations on Rrs(λ) spectral features. 
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