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Abstract: The transition to renewable energies is an unavoidable step to guarantee a peaceful and
sustainable future for humankind. Although solar radiation is one of the main sources of renewable
energy, there are broad regions of the planet where it has not been characterized appropriately
to provide the necessary information for regional and local planning and design of the different
solar powered systems. The Caribbean, and Cuba in particular, lacked until very recently at least
one long-term series of surface solar radiation measurements. Here we present the first long-term
records of solar radiation for this region. Solar radiation measurements manually conducted and
recorded on paper were rescued, reprocessed and quality controlled to develop the solar radiation
climatology at the Actinometrical Station of Camagüey, in Cuba (21.422◦N; 77.850◦W; 122 m a.s.l.)
for the period 1981–2016. The diurnal cycle based on the average hourly values of the global, direct
and diffuse horizontal variables for the entire period have been determined and analyzed showing
the dependence on solar zenith angle (SZA) and clouds. The annual cycle of global solar component
given by the mean monthly daily values presents two maxima, one in April and another one in July
with values of 5.06 and 4.91 kWh m−2, respectively (18.23 and 17.67 MJ m−2 per day for insolation),
and the minimum in December (3.15 kWh m−2 or 11.33 MJ m−2). The maxima are governed by the
direct solar components and are modulated by cloudiness. Both, diurnal and annual cycles of the
diffuse solar component show a smoothed bell shaped behavior. In general solar radiation at this
station presents a strong influence of clouds, with little seasonal variation but with higher values
during the rainy season. Daily global radiation annual averages showed its maximum value in
the year 1983, with 17.45 MJ m−2 explained by very low cloudiness this year, and the minimum
value was reported in 2009 with a value of 12.43 MJ m−2 that could not explained by the cloud
coverage or the aerosols optical depths registered that year. The effects of the 1982 El Chichón and
1991 Mount Pinatubo volcanic eruptions on the solar radiation variables at Camagüey are also shown
and discussed. The results achieved in this study shown the characteristics of solar radiation in this
area and their potential for solar power applications.

Keywords: solar radiation; insolation; cloud cover; cuba; climatology; diffuse and direct radiation

1. Introduction

The solar radiation reaching the Earth’s surface is a topic of interest at global, regional
and local levels, due to the role it plays on the energy balance of the earth-atmosphere
system [1]. It is the main source of energy with dominant influence on the weather, climate,
and in the mechanisms and effects associated with climate change [2]. The amount of
solar radiation reaching the surface also impacts agriculture-forestry, hydrology, ecology,
and many other human activities. Solar energy is seen from at least four decades as an
alternative, renewable and non-polluting energy source, these characteristics make it a key
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element today as one of the absolutely necessary sources of clean energy for the current
and future period of decarbonisation [3].

The use of solar energy-derived production has been increasing all over the world in
the last decades [4] as assessed by recent reports [5] which show a growing number of solar
radiation applications in the energy sector. Worldwide, the concentrating solar thermal
power production in 2018 increased to 5.5 GW with respect to the 4.9 GW generated the
year before. At the same scale, the highest increase in 2018 occurred in photovoltaic energy;
1000 GW with respect to 405 GW generated in 2017, the highest annual rate of increase
ever recorded. A recent assessment of the solar energy potential at global scale, using solar
radiation satellite measurements and numerical model simulations outputs, determined
Cuba and in particular the Camagüey region have and excellent solar potential both for
the global horizontal and the direct normal irradiances [6]. The results from the present
study provide the information for a more realistic assessment of the solar energy potential
in the Camagüey region and in Cuba.

Most of surface solar radiation data are carried out by regional networks depending on
the National Meteorological Services, although other networks are under the management
of different institutions or centers, aimed at interest such as research, agricultural, ecology,
solar energy, or other applications, etc. Despite the advances in the observations of solar
radiation variables with remote sensing and surface-based instruments, there are regions
in the world where there are no high-quality, long term measured data on solar surface
radiation. Anyway, surface observations of solar radiation remain the recognized standard
to be compared to other solar radiation data-base. For example, to cover wide areas on the
Earth lacking of solar radiation data, these are supplied by satellite sensors [7–9], but these
data can not be directly measured from the space and the algorithms for their derivation
present different problems. The signal registered by the instruments onboard satellites
is the solar radiation reflected by the surface and modulated by the atmospheric radia-
tive transfer processes from the surface to the space, requiring the signal to be corrected.
These corrections make use of radiative transfer models or empirical relations, which in-
troduce high and variables uncertainties. These uncertainties are the reasons why the
state-of-art-satellite-produced surface solar radiation data does not fully agree with surface
observations [10,11]. In this context, research on solar radiation employing very different
methodologies for its estimation and forecasting is increasing every day [12]. Areas such
as the Great Caribbean have an enormous solar potential but few data are today available,
mainly surface measurements [1]. Therefore, analysis of existing surface data is of great
interest in order to characterize solar radiation components and to know the potential of
solar energy availability, mainly due to the great influence of clouds in this area.

A solar radiation data rescue project in Cuba was conducted, by the Grupo de Óptica
Atmosférica de Camagüey [13,14], which maximized the use of the limited available
resources and the local scientific expertise capacity in order to rescue and reconstruct
the 36 years of surface solar radiation observations recorded at Camagüey (Cuba) [13].
Here, one of four existing series of surface solar radiation observations in Cuba dating back
more than 30 years with still ongoing manual measurements with the same instrumental
technology and methodology is analyzed (see details in Antuña et al. [13]).

The main objective of this work is to analyze the recovered solar radiation data
series in the actinometric station of Camagüey during the period 1981–2016 to obtain
the characterization of solar radiation and its modulators that lead to establishing its
climatology. The present paper is structured as follows: Section 2 presents the main
characteristics of the instrumentation and measurements, Section 3 analyzes the solar
radiation database in detail showing the obtained results and Section 4 summarizes the
main conclusions.
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2. Instrumentation and Data
2.1. Instrumentation

The solar radiation station of Camagüey, Cuba (21.422◦N; 77.850◦W; 122 m a.s.l.)
is operated by the Meteorology Institute of Cuba. The solar radiation measurements at
Camagüey, located in the eastern section of the Cuba Island, are obtained from a manually
operated actinometric Yanishevsky station, which was provided by the Hydrometeorologi-
cal Service of the former Soviet Union, and operates based on the thermoelectric principle.
The instruments of these stations are pyrheliometers model M-3 for direct normal irradiance
(DNI) measurements and pyranometers models M-80-M and M-115-M for global horizontal
(GHI) and diffuse horizontal irradiance (DHI). The direct normal irradiance on a horizontal
surface (NHI) is obtained by multiplying the DNI by the cosine of the solar zenith angle
(SZA). GSA-1MA and GSA-1MB galvanometers are used to record the electrical signals
from the sensors [15]. Measurements are manually taken every hour from sunrise to sunset
(more detail about measurements can be seen in Antuña et al. [13]). It must be noted that
these solar radiation records are instantaneous values, given as irradiance data in Wm−2,
measured every hour during the day. Hence, they are not mean hourly values but we will
consider them as such and refer to them as hourly data, because the measured data has
been assumed to be constant for one hour around the measurement time, allowing the
data to be converted to irradiation/insolation values. Thus, the measured solar irradiances
values are transformed to energy unit (J or kWh) by its integration to a defined time interval,
as for example the mentioned constant hour, or a day, to determine in the latter case the
daytime insolation in MJ m−2 per day [16] and named GHIn, NHIn and DHIn.

The Soviet methodology used in the Yanishevsky stations for measuring solar radi-
ation variables at the surface “used as the regular value for GHI” is the one calculated
by the sum of NHI and DHI measured by the pyrheliometer and the shadowed pyra-
nometer respectively. In the cases when no clouds are present in the line of sight between
the pyrheliometer, to within a region of 5◦ around the sun, GHI is measured with the
pyranometer (GHIm). Then the pairs of values of GHI and GHIm are used for the quality
control of the GHI has been reported [16]. Recently it has been reported the application of
the cited quality control procedure to the 1981–2016 series of GHI values [17]. The results
showed similarity between the absolute magnitudes and the magnitudes and signs of
the trends from GHIm and GHI, and confirm the instrumental stability throughout the
series of observations. The results also show the consistency and quality of the GHI series.
In addition to the radiation variables, cloud cover (visually detected in tenths), temperature
and wind speed, among other quantities, are measured. Detailed information about these
measurements, instruments, and processed data can be found in Kirilov et al. [16] and
GOAC [18]. Similar instruments have collected valuable broadband solar radiation datasets
in other regions of the world, like at the Soviet Union [19] and Eastern Europe [20].

The measurements of solar radiation in the Camagüey station start in April 1st 1969
and continue until the present. After an exhaustive search, the authors of this work did not
find any records or documents about how the first observations were made and under what
conditions: for this reason all the meta-information about the measurements was obtained
by directly consulting the staff who worked during the earlier period of measurements [13]
and from the available books of actinometric observations. Due to the lack of information
and quality check at the beginning of the data series, for the present study it was decided
to use the period between 1 January 1981 and 31 December 2016. In this way, the need of at
least 30 years imposed for the establishment of normal climatological conditions is satisfied
as is regulated by the Guide of Climatological Practices (GCP) of the World Meteorological
Organization [21,22].

2.2. Available Data and Quality Control

As mentioned, the study period covers 36 years (1981–2016), which is composed
by a 13,148 total days in the period, with an effective number of 11,558 days on which
measurements were conducted (87.91% of the maximum, thus more than the 80% recom-
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mended by the GCP to establish a climatology). Different reasons like instrumentation
malfunction and maintenance but also the lack of recording books and loss of some of
them cause the lack of data. GCP guidelines recommend that the average monthly values
should not be calculated when there are more than 10 days without data; in addition, at
least 3 observations should be available during the day [22]. The quality control of the
data included the review and verification of all the instrument’s certificates, both from the
sensors and the recorders, the calibrations made in the period and the conversion factors
derived from them. The quality control procedures established for the observations of each
instrument where applied following the methodology from Kirilov [16]. Finally, the quality
control algorithms and procedures used by the BSRN network (Baseline Solar Radiation
Network; https://bsrn.awi.de) to guarantee the higher standards of quality of the surface
solar radiation measurements, were applied to the Camagüey dataset [23–26].

Figure 1 shows the number of annual total available days with at least 3 GHI observa-
tions, as well as the number of total annual available observations. The years 1996 and 2006
has been discarded since it only contains 111 and 206 days of measurements respectively.
Because the GCP do not provide criteria for the amount of months necessary to calculate
the normal’s of solar radiation, the authors decide to use the criteria of discarding the year
with less than 60% days of the year.

Figure 1. Number of annual total available days (orange dotted line) and number of annual total
available GHI measurements (blue line) for the entire period (1981–2016).

3. Results
3.1. Solar Irradiance: Hourly Values

Taking as base the hourly irradiance values, we have evaluated the monthly mean
for the whole period of measurements, 1981–2016, according to GCP recommendations.
Figure 2 shows these hourly monthly averages of GHI representing its climatologist values.
This figure points out the homogeneity in the GHI, typical of tropical areas. The highest
GHI values, above 500 Wm−2, are presented for a long time period from February to
October between 9 and 14 LT (local time). The maxima values appear in July with a
magnitude of 713.47 Wm−2 at 12.00 LT. However, the great cloudiness (Figure 7) across this
area can be inferred since the highest values are far from maxima hourly values observed
in other locations [27] where even the SZA does not reach lower values than Camagüey.
In addition, the footprint of clouds can be observed in a local GHI maximum appearing in
April at noon, but also given higher values in the afternoon than in May or June. This can
be explained by the presence of clouds because in absence of clouds the GHI variation is
mainly controlled by SZA values, which means that at northern hemisphere the GHI in
cloudless conditions is higher in May and June than in April. The GHI behavior in April
with respect to May and June could not be attributed to the AOD because the climatology
table of aerosol optical depth (AOD; version 3, level 2.0, period 2008–2016) at 500 nm from

https://bsrn.awi.de
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AERONET (Aerosol Robotic NETwork; https://aeronet.gsfc.nasa.gov; [28]) indicates that
aerosol presence is very similar for the three months, being the AOD at 500 nm equal
to 0.175.

Figure 2. Monthly hourly averages (Wm−2) section of the global solar irradiance (GHI) at Camagüey
for the entire measured period (1981–2016).

In order to study the diurnal variation of solar radiation during the entire period of
measurements and to perform a detailed characterization, the hourly values have been aver-
aged for different sky conditions according to the criteria of Manara [29]. These conditions
are based on cloud cover: cloud-free from 0 to 3 tenths, partially cloudy from 4 to 7 tenths
and cloudy from 7 to 10 tenths. Figure 3 shows the diurnal course of average hourly values
of global, diffuse and direct over the horizontal surface (GHI, DHI and NHI) for the above
different sky conditions. The diurnal cycle of the all three variables characterizing the solar
irradiance at the surface shows an almost perfect Gaussian behavior centered on 12:00 LT
for the four represented sky conditions. This indicates that the SZA variation during the
day is the main controller of the diurnal solar radiation cycle at Camagüey. The decreasing
magnitudes from cloud free to cloudy categories is the result of the cloudiness modulation
of the diurnal cycle. It is worth to note that 86.07% of data were binned into partially
cloudy or cloudy categories, indicating the predominance of cloudiness in the area.

As expected, for cloud-free cases the diffuse component is lower than in the other
conditions being always below 200 Wm−2, while the NHI and GHI values are greater than
in the other conditions, exceeding 600 Wm−2 and 800 Wm−2 during the peak heating hours
of the day, respectively. The most frequent condition is partially cloudy, hence it shows
similar values to the averages shown in all conditions. It could be seen that the increase
in cloudiness produces an increase in the scattered solar radiation decreasing the NHI
under cloudy conditions to around a half of its value under partially cloudy. The slightly
higher values of DHI under cloudy conditions than under the partially cloudy are caused
by the same increase in the scattering produced by the increase of cloudiness. Regarding
cloudy conditions, as expected, the values of DHI exceed the values of NHI at all times;
the DHI values are similar to those obtained with partially cloudy (around 200–300 Wm−2

from 9:00 to 15:00), while NHI under cloudy conditions is close to half of the DHI for
partially cloudy conditions. For all conditions together, DHI values are similar to NHI

https://aeronet.gsfc.nasa.gov
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but are highest only near sunrise and sunset. The highest averaged values of GHI, NHI
and DHI for all conditions together appear at 12:00 LT showing values of 616.6 Wm−2,
343.5 Wm−2 and 272.1 Wm−2, respectively. On the other hand, the lowest values for all
conditions are located as expected at the sunrise and sunset with values of 48.3 Wm−2

(sunrise), 0.4 Wm−2 (sunset) and 44.4 Wm−2 (sunrise), for GHI, NHI and DHI, respectively.

Figure 3. Averages of hourly irradiance values (Wm−2) for global (GHI), diffuse (DHI) and direct
(NHI) horizontal surface solar irradiances for the period 1981–2016 under different sky conditions:
(a) cloud-free sky, (b) partially cloudy, (c) cloudy, and (d) all sky conditions.

We compared the estimated solar energy potential in the Camagüey region derived
from satellite measurements and modeling [6] with the results reported on Table 1. Those
authors used a solar energy potential seven classes classification, shown on Figures 3 and 4
for GHI and DHI respectively [6]. The classes cover the ranges from lower (“Poor”) to
the higher (“Superb”) solar energy potential, with intermediate classes in increasing order
“Marginal”, “Fair”, “Good”, “Excellent” and “Outstanding.” For the region of Camagüey,
Cuba, both for GHI and DHI classified predominantly as “Excellent”. We multiplied by
365.25 the means of the monthly mean daily GHI and NHI irradiances to estimate the
annual mean values and then determine the corresponding class. The annual potential GHI
and NHI of 1534.1 kWh m−2 and 810.9 kWh m−2 fall in the “Fair” and “Poor” categories
respectively, correcting the previous estimates. The reason for the overestimation of the
potential solar energy in the region of Camagüey, Cuba, is produced by the well-known
limitations of numerical models to simulate the radiative process in presence of clouds.
It has been shown that for Camagüey 86% of the days in the 34 years series. In this case the
impact of this model limitation is double. Those radiative transfer models are also used for
inverting the irradiance measured by satellite instruments at the top of the atmosphere [11].
It is expected that the GHI and DHI classes corrected for the Camagüey region, would be
valid also in general for the most part of Cuba, considering the fact that the double sea
breeze from north and south coasts [30].
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Figure 4. Climatological annual cycle given by the mean monthly daily values for the three compo-
nents of solar radiation, GHI, NHI and DHI for the entire period 1981–2016 at Camagüey. Left axis
represents insolation quantity (in MJ m−2) and right axis irradiance values (in kWh m−2).

Table 1. Monthly mean daily values expressing the climatology of solar irradiance and insolation
for the three solar components and cloud cover mean for period of measured data (1981–2016) in
Camagüey (Cuba).

Insolation (MJ m−2) Irradiance (kWh m−2)
Month GHIn DHIn NHIn GHI DHI NHI Cloud Cover (tenths)

Jan 12.17 5.64 6.53 3.38 1.57 1.81 5.27
Feb 14.42 6.32 8.10 4.01 1.76 2.25 5.07
Mar 16.05 7.43 8.62 4.46 2.06 2.40 5.34
Apr 18.23 8.21 10.01 5.06 2.28 2.78 5.45
May 17.33 8.27 9.07 4.82 2.30 2.52 6.08
Jun 16.76 8.47 8.30 4.66 2.35 2.31 6.57
Jul 17.67 8.40 9.27 4.91 2.33 2.58 6.11

Aug 16.93 7.72 9.20 4.70 2.15 2.56 6.10
Sep 15.16 6.92 8.24 4.21 1.92 2.29 6.34
Oct 13.66 6.43 7.23 3.79 1.79 2.01 6.18
Nov 11.75 5.95 5.80 3.26 1.65 1.61 5.80
Dec 11.33 5.63 5.70 3.15 1.56 1.58 5.54

Mean 15.12 7.12 8.01 4.20 1.98 2.22 5.82

3.2. Solar Irradiance and Insolation: Daily and Monthly Values

Daily values may be generated as explained above, making an average of hourly
hours to evaluate the mean daily values of solar irradiances or making the time integration
of the day to obtain the solar irradiation or insolation. Figure 4 shows the representative
annual climatology of the site or the average monthly cycle taking both, the solar irradiance
(kWh m−2) in the right axis and the insolation (MJ m−2) in the left axis, for the three solar
radiation components, (GHI, NHI and DHI, for irradiance and GHIn, NHIn and DHIn,
for insolation).

The values of both quantities are reported in Table 1. Global horizontal solar radiation
component GHI (or GHIn) presents two maxima, the highest in April and the other in July
with 5.06 and 4.91 kWh m−2 respectively (18.23 and 17.67 MJ m−2 per day for insolation).
These results do not coincide with the previous study by Lecha [31], who found that
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July is the month with the maximum. April presents a lower mean cloud cover than the
following 4 months with 5 tenths, this is also seen in Figure 7. In the period analyzed we
found the maximum GHI in April for 12 years, with a frequency of 35.3%. Figure 2 shows
the amplitude of high GHI values in April during more hours of the day than the others
months. The minimum of GHI value appears at December (3.15 kWh m−2 or 11.32 MJ m−2),
which is in agreement with the obtained by Lecha but differs by 0.61 MJ m−2, followed by
November and January with values that did not differ from one another significantly.

As can be seen, not as much variation is observed between the values of the different
months throughout the year in this area if compared with middle latitudes, but two seasonal
periods may be clearly identified known as rainy and less-rainy (dry season) periods, from
May to October and from November to April, respectively. The shape of GHI (or insolation)
or its variability is given basically by the contribution of the direct component NHI, with
maxima in April, July and August defining the maxima of GHI. NHI is more variable if
compared with the diffuse component, DHI, which presents a more smooth behavior (like
a smooth bell shape) along the different months of the year, with the maxima during the
months of summer with few differences between them. Therefore, the values between
direct and diffuse solar components are not very different due to the high influence of
clouds in this area throughout the year (Figure 7).

In order to compare the solar radiation results of the present study with that of
Lecha et al. [31] in more detail, Figure 5 shows for each month the ratio between the DHI
and GHI from this study and from Lecha et al. [31]. The values from this study (orange
continuous line) have little variation, with the lowest value of 43.8% in February and the
highest value of 50.6% in November. However, according to the results in Lecha et al. [31],
the ratio is generally lower and has greater variation. There are similar values in the
months of January and May with differences of approximately 1%, but in the months of
March, April, July and August the differences can reach values as high as 9–13%, thus
the comparison shows notable differences. The results obtained in this work also point
out in Figure 7 (where monthly cloudiness for each year during the measured period are
illustrated) the higher cloud presence in May and June than in April, which causes a higher
ratio of DHI/GHI in these two months. This analysis indicates that in general, the sky
conditions do not show a strong variation of solar radiation with the season, which is also
an important consequence for solar power applications.

Figure 5. Ratio between the monthly averages of diffuse (DHI) and global (GHI) horizontal surface
solar irradiances for the entire period of measurements. Values from Lecha et al. [31] are included
(blue dot line).
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Even though there are the described differences between this study and Lecha [31]
the agreement for Camagüey is good. For example, the range of values of global solar
insolation, maxima, minima and average moves around similar values taking into account
that each database is referred to different periods. According to the mentioned study of
Lecha et al. [31] the insolation at Cuba varies between 5100 and 6600 MJ m−2 per year, with
annual maxima of 8590 MJ m−2 towards coastal areas, and minima towards the interior
regions of the country that reach values of 4800 MJ m−2. The present study obtains a
mean value of 5041 MJ m−2 per year for Camagüey, which is similar to the values given by
Lecha et al. [31] for the sites located in the interior regions of Cuba.

3.3. Year-to-Year Variability

The variability of this station of Camagüey related with solar variables can be seen
in Figure 6 where the monthly means of daily insolation for each year during the entire
measured period is illustrated. The maximum value for each year is expected in summer
months because sunshine duration is longer in these months (especially in June and July).
However, due to the proximity of the station to the Tropic of Cancer, the variation in
sunshine duration throughout the year is not large; hence, changes due to cloud presence
between months can lead to changes on the month showing the annual maximum insolation.
This can be appreciated in Figure 6, where yearly maxima appears in summer months but
also during the spring, especially in April, which exhibited low cloud presence, as previous
results point out.

Figure 6. Monthly mean global solar insolation (GHIn, in MJ m−2 per day) for each year during the
measured period, from 1981–2016.

One notable year was 2009, which had the lowest values of the entire period with a
minimum average of 12.43 MJ m−2. In fact, in this year 2009 minima and maxima are not
well-defined, showing all months of this year a similar insolation. The lowest monthly
value was observed at the end of 2008. The years 1994 and 1995 feature a behavior similar
to the one observed during 2009, but with values, on average, slightly higher. The possible
effect of aerosols due to volcanic eruptions on these results will be discussed later. The
insolation exceeds a value of 20 MJ m−2, in a total of 12 years. Most cases occur in one
or two months of the year, except 2002 where it occurs in three months. The maximum
insolation values occurred in May 1983, with a value of 23.96 MJ m−2, and in April 1986,
reaching a value of 23.56 MJ m−2.

Figure 7 shows the monthly means of cloud cover for the entire series in order to
study the role of clouds on the results shown in Figure 6 for the monthly means of solar
insolation. It can be seen that in general cloud cover varies between 5 and 7 tenths. June
and February usually show for each year the highest and the lowest cloud cover values
with a mean value of 7 and 5 tenths, respectively. The 1981–1984 period presents lower
cloud cover values in general than the other years with monthly mean values between
3 and 5 tenths. In fact, the low cloud cover in this period is in agreement with the high
insolation values shown in Figure 6 for this period; as an example, April 1986 showed
the highest insolation which is related with the lowest cloud cover in Figure 7 which is
observed for the same month and year. The 2014–2016 period also shows a lot of months
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with cloud cover below 6 tenths, which could be responsible in part of the relative high
insolation values observed in the same period. The cloud cover values for the year 2009 are
not very different from the values in other years (e.g., year 2001 presents more cloud cover),
therefore, cloud cover may not be the only reason for the low values of the insolation found
for this year. The occurrence of the maximum in April in the general climatology as given
in Figure 4 reveals the mentioned impact of clouds on solar radiation because April showed
lower cloud cover than other summer months.

Figure 7. Monthly mean values of cloudiness for each year during the measured period from
1981–2016.

In order to observe any variation or trend of solar irradiation with the year, the
insolation have been annually averaged for GHIn, DHIn and NHIn, and these averages
and their standard deviations are shown in Figure 8. The absolute maximum of GHIn is
observed in 1983, reaching 17.45 MJ m−2, followed by the second maximum in 2002 with a
value of 17.35 MJ m−2. However, the first maximum appears with DHIn higher than NHIn
while NHIn is higher than DHIn in the second maximum. Other well observed GHIn highs
occurred in 1986, 2012 and 2014. On the other hand, the minimum values of GHIn for the
whole period does happened in the years 2009 and 1995 (which can be also appreciated
in Figure 6), with 12.43 and 12.97 MJ m−2, respectively, with both cases having a lower
value of NHIn than DHIn. Regarding DHIn, the maximum value occurred in the year
1983, the only year the value exceeded 9.5 MJ m−2. We attribute this maximum in DHI
to the stratospheric aerosols from the eruption of the El Chichón volcano on 4 April 1982
in the state of Chiapas, México. During 1982, because of the dense stratospheric aerosols
cloud, estimated in 7 MegaTons of SO2, the scattering of solar radiation back to space to
predominate reducing NHI with respect to 1981 [32]. During 1983 the stratospheric aerosols
cloud was still present but less dense, allowing the solar radiation scattering process to take
place in all directions in addition to the back to space scattering, resulting in a decrease in
NHI respect to 1982 but and increase of DHI because of the increased scattering process
downward from the stratosphere. The effects of the volcanic stratospheric aerosols from El
Chichón 1982 eruption on DHI and NHI described above were also present in the same
Figure 8 for the 1991 Mt Pinatubo eruption in Philippines, the most intense of the XX
century. In 1991 both DHI and NHI decreased with respect to 1990 and the following
year DHI slightly increases but NHI continue decreasing, in this case reaching the value
of 6.45 MJ m−2, the minimum for this variable in the entire series, attributed to the very
dense stratospheric aerosols cloud, estimated in 7 MegaTons of SO2 [32]. The minimum
DHIn was recorded in the year 2009, in coincidence with the minimum value of GHIn
throughout the whole period, with a magnitude of 6.29 MJ m−2. There are 9 cases where
the NHIn is below DHIn: 1983, 1991, 1992, 1994, 1995, 1998, 1999, 2007 and 2009; all years
showing a DHIn/GHIn ratio between 50 and 55%. The maximum NHIn value occurred in
2014 with a value of 10.11 MJ m−2, followed by the year 2002 (9.74 MJ m−2). These years
had the lowest ratio of DHIn/GHIn, being around 39.75%.
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Figure 8. Annual averages of global (GHIn), diffuse (DHIn) and direct (NHIn) horizontal solar
insolation for the 1981–2016 period. Shaded areas correspond to standard deviation. GHIn is also
represented for rainy period (dotted green line) and less rainy period (dashed brown line).

For a seasonal analysis, in the case of Cuba the so-called rainy (May to October) and
less rainy (November to April) periods are more representative than seasonal periods;
therefore the annual averages of GHIn have been calculated and represented in Figure 8 for
both periods. As can be seen, the maxima of GHIn are always reached for the rainy season,
with the highest value in 1984 (19.82 MJ m−2) and the minimum in 2009 (12.55 MJ m−2).
For the less rainy period the maximum GHIn appears in 2002, but during this year there are
no measurements from January to May, therefore it is not representative and this leaves us
with the minimum in 2009 with 12.31 MJ m−2. The greatest differences between both rainy
and less rainy periods are for the year 1984 with values of 6.24 MJ m−2 and the smallest
difference is found in 2009 with a value of 0.24 MJ m−2, which is also the year with the
lowest GHIn values; this year also features the minimum DHIn value for the whole data.
Further, NHIn is even lower than DHIn. The unusual behavior of GHIn in 2009 could
be partially caused by aerosol influence, but the observed values related to aerosols and
extracted from the climatology table (version 3, level 2.0) from AERONET for 2009 are
similar to the averaged climatology (2008–2018) values. Hence, the main differences of
GHIn for 2009 and other years should be caused by clouds. Even though Figure 5 does
not show the highest monthly cloud cover means for this year, other cloud factors could
be affecting the unusually low value such as cloudiness near noon (when the attenuated
radiation should be greater) or a higher frequency of clouds blocking the solar disk. These
factors would not appear in the monthly mean value of cloud cover. This issue should be
addressed in future research.

4. Conclusions

Long-term solar radiation data in the Caribbean area are scarce despite the great
potential of this area as a source of solar resources. Besides, this type of data is also of
major interest in this area from a climate perspective. In the present study, 34 years of solar
radiation data at Camagüey (Cuba) have been analyzed based on instantaneous hourly
irradiance data of the three solar radiation components: global, direct and diffuse horizontal
variables. Averages of the hourly, daily, monthly and annual values of irradiance and solar
insolation have been determined in order to characterize the diurnal and annual cycles and
the year-to-year variability. The main factor on these solar radiation components is due to
cloudiness where its predominance is clearly patent but at the same time the homogeneity
of cloud cover is manifested in both, the diurnal and annual cycles. The annual cycle of
direct horizontal and diffuse components present relatively similar monthly and yearly
mean values, but in general the maxima of monthly mean of NHI gives rise to the maxima
of global solar radiation, with two maxima, in April and July. This behavior does not
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strictly follow the classical evolution of SZA during the year, likely because the Camagüey
site is close to the Tropic of Cancer and hence the SZA variation during the year is not
too strong.

Due to the fact that seasonal variation is not particularly accentuated along the year,
diffuse and direct components present very similar values and only the global component
gives distinguishable higher values during the rainy season. Because of the long data series,
the analysis of inter-annual evolution of the annual averages present fluctuations mainly
caused by clouds but it also allows to distinguish variations due to the aerosol presence,
such as high volcanic eruptions of great impact in the atmosphere.

The obtained results help to get a better understanding about the solar resource
in a Caribbean location like Camagüey. It can be useful in different applications like the
calculate dimension of photovoltaic installations, satellite solar data validation or in climatic
modeling studies which occasionally need this kind of information to make predictions or
evaluations. The planning of solar energy system in this region should take into account the
predominance role of cloud cover as the main factor in surface solar radiation. Applying
the results for the annual mean GHI and NHI, the estimates of the solar radiation potential
for Camagüey, Cuba, that were previously determined by combining modeling and satellite
measurements, have been improved.
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