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Abstract: This research evaluates the effect of temperature and time austempering on microstructural
characteristics and hardness of ductile iron, validating the results by means of a statistical method for
hardness prediction. Ductile iron was subjected to austenitization at 950 ◦C for 120 min and then
to austempering heat treatment in a salt bath at temperatures of 290, 320, 350 and 380 ◦C for 30, 60,
90 and 120 min. By increasing austempering temperature, a higher content of carbon-rich austenite
was obtained, and the morphology of the thin acicular ferrite needles produced at 290 ◦C turned
completely feathery at 350 and 380 ◦C. A thickening of acicular ferrite needles was also observed
as austempering time increased. An inversely proportional behavior of hardness values was thus
obtained, which was validated through data analysis, statistical tools and a regression model taking
temperature and time austempering as input variables and hardness as the output variable, which
achieved a correlation among variables of about 97%. The proposal of a mathematical model for
the prediction of hardness in austempered ductile iron represents a numerical approximation which
validates the experimental results at 95.20%.

Keywords: austempered ductile iron; heat treatments; statistical model

1. Introduction

Austempered ductile irons (ADIs) are noticeable materials in the industrial market
since the spheroidal shape of graphite provides high fatigue resistance compared to other
graphitic morphologies, such as lamellar in gray cast iron, offering better continuity of the
iron metal matrix [1]. Likewise, austempering heat treatment affords an excellent combina-
tion of properties, e.g., high toughness, good ductility and high wear resistance [2,3]. The
successful production of high-performance components from ADI requires a solid under-
standing of microstructural changes caused by alterations in processing parameters, such
as austempering heat treatment variables and chemical composition, as they considerably
modify mechanical properties.

Currently, the industrial sector aims to satisfy economic and ecological initiatives of
cost and environmental footprint reduction in manufacturing processes by creating materi-
als with excellent mechanical properties and low density and proposing new materials to
replace those commonly used [3]. ADIs are attractive as substitutes for steel and aluminum
components due to low manufacturing costs and lower environmental impact as well as
mechanical properties comparable to steel and superior to aluminum [3–8].

Metals 2022, 12, 676. https://doi.org/10.3390/met12040676 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12040676
https://doi.org/10.3390/met12040676
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0001-5385-2192
https://doi.org/10.3390/met12040676
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12040676?type=check_update&version=1


Metals 2022, 12, 676 2 of 20

The outstanding mechanical properties of ADI derive from the unique ausferritic
microstructure composed of graphite nodules (G), carbon-rich austenite (γhC) and acicular
ferrite (αac). These phases are yielded through the application of a thermal cycle comprising:

1. Ductile iron is heated to an austenitizing temperature (Tγ), between 850 and 1200 ◦C,
for a sufficient time so as to homogenize the austenitic microstructure.

2. Subsequently, it is rapidly cooled in a molten salt bath to austempering temperature
(TA), above the martensitic transformation onset temperature (TMs), between 250 and
450 ◦C, in order to avoid pearlitic transformation.

3. Afterwards, material is isothermally kept at TA, for a certain austempering time (tA),
to allow the formation of an ausferritic matrix. Finally, it is removed from the salt bath
and air-cooled to room temperature.

Transformation of ausferritic microstructure takes place upon austempering and is
related to the nucleation and growth of ferrite plates within an austenitic matrix. Trans-
formation kinetics is affected by the chemical composition of the melt and heat treatment
temperatures as well as the shape, size and distribution of graphite [9]. These austempering
phase transformations can be described as a two-stage reaction.

In stage I, known as hardening and represented by reaction (1), the austenite (γ)
transforms to a αac, which has a lower carbon solubility than austenite, so the excess
of carbon atoms in ferrite diffuse into the surrounding austenite. At this stage, ferrite
nucleation is triggered by subcooling from Tγ to TA and happens preferentially at the γ/G
interface and austenitic grain boundaries. Thereafter, the growth of this phase occurs in
needle-like form promoted by the carbon concentration gradient between αac/γ and γ/G
interfaces [10]. The incremental rate of αac needles is regulated via the rate of diffusion
of carbon atoms from the αac/γ interface into γ [11]. As transformation proceeds, carbon
atoms enrich γ converting it to γhC, increasing its stability and avoiding the transition of γ
to martensite (α’) during air quenching [12].

γ→ αac + γhC (1)

At stage II, known as embrittlement and represented by reaction (2), produced when
the material is subjected to a long isothermal maintenance, γhC slows down αac growth as
it becomes saturated with carbon; thus, it continues to increase through the precipitation of
iron carbides. For short tA of less than 30 min, ausferritic transformation reaction is not
completed, and transformation from γ into α’ occurs. For long tA of more than 2 h, there
exists the risk of reaching Stage II, where precipitation of carbides occurs, deteriorating
mechanical properties of the casting [13].

γhC → αac + iron carbides (2)

Time elapsed from the end of stage I to the beginning of stage II is known as the
processing window [14,15]. The processing window for temperatures close to TMs is smaller
because kinetics of ausferritic transformation reaction is higher given the elevated carbon
saturation of austenite, which is a consequence of a greater αac needle nucleation [16].

Time and temperature of heat treatment modify phase transformations occurring
through austempering since during the ausferritic transformation reaction shearing takes
place, in addition to carbon atom diffusion [17]. TA affects mainly the nucleation of
αac needles and the diffusion capacity of carbon atoms. For a TA near TMs a higher
αac needle nucleation occurs. Nevertheless, carbon diffusion is limited due to the low
temperature resulting in an ADI with high hardness and mechanical strength but weak
ductility. Meanwhile, at higher temperatures, αac needle nucleation decreases but carbon
diffusion is favored [9,18], leading to an ADI with high ductility and poor mechanical
strength [19,20].

Industrial use of ADI is complicated when controlling and establishing the variables
of production processes, as part and heat treatment design requires a large number of
experimental tests in order to validate successful production. Thus, the study of new
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processing methods, e.g., two-step austempering and usage of mathematical models for
predicting final properties and microstructure will contribute to reducing the uncertainty
associated with the production, development and implementation of new applications.

Data interpretation has become an important task to be considered within research
and development activities of new products. Tools such as the statistical data-driven model
(SDDM) enable the prediction and discovery of the repercussions of certain processing
variables involved in manufacturing and experimental processes for the validation of
prototypes or new products on certain characteristics or properties of interest [21–24]. This
allows a better approach to the design of experiments (DOE) and the search for process
optimization based on prediction by statistical analysis. Some related works relying on the
SDDM are presented below.

Sivaiah et al. [25] proposed the selection of optimal cutting conditions for 17-4 PH
stainless steel turning using the Taguchi method. From statistical analysis results and
considering the impact of cutting speed and feed rate, depth of cut and type of coolant,
the authors concluded that the optimization of this machining technique is absolutely
sustainable, reducing environmental footprint and material waste and enhancing produc-
tivity. Montes et al. [26] applied a statistical mathematical model to establish the effect of
rotational speed and feed rate on corrosion resistance for dissimilar Al-Cu welds by FSW.
By means of this model they determined there is a greater change in corrosion rate as feed
rate increases, established the parameters to acquire good quality joints and outlined a
microstructural study of their repercussions. Application of statistical analysis in industrial
processes such as welding was also carried out by Chandran et al. [27], who proposed laser
beam welding parameters with direct influence on tensile and hardness values based on
analysis of variance (ANOVA). Analogous to the aforementioned researchers, Choi [28]
performed the same kind of statistical analysis method to evaluate the result of using
different thicknesses of AZ31 magnesium alloy parts on fatigue crack growth. The author
concluded that this procedure could ascertain the impact of part thickness on the character-
istics of crack growth as well as on the propagation velocity. Another industrial process
implementing ANOVA is parameter optimization in the powder metallurgy process of
Al-MoO3 composites, where Sudha et al. [29] sought to obtain the lowest corrosion rate
in combination with high compressive strength. They discovered MoO3 reinforcement
content has a considerable effect on compressive strength, and corrosion resistance is mostly
affected by sintering temperature.

In addition to such statistical studies, artificial intelligence techniques such as fuzzy
logic and artificial neural networks are an option for process data analysis as reviewed by
Kalpanapriya [30]. These approaches have recently been employed to predict the hardness
values in ADI [31,32].

This research provides a novel approach to microstructural studies and their effect
on hardness for ADI supported by the statistical data-driven model (SDDM). In this case,
ANOVA determines the significant degree of the input variables (time and temperature)
for ADI hardness. In addition, if the upper and lower confidence intervals are calculated
narrowly, the results of each experiment can be statistically replaced with the mean in each
configuration.

Therefore, the prediction of the hardness in ADI is represented by a numerical ap-
proximation. The model estimates the hardness for the heat treatments with data exper-
imentation presented in this research, and even it can deal with values outside the DOE
domain. In addition, the proposed regression model requires fewer data to predict the
hardness in comparison to artificial neural network (ANN) techniques, as the ANN needs
an extensive database and a high cost of computation for the training stage. On the other
hand, fuzzy logic estimation is based on the human experience; therefore, a unique model
for the process is complicated to establish.
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2. Materials and Methods
2.1. Heat Treatments

Three samples per heat treatment condition of 20 mm × 20 mm × 10 mm were
obtained from a ductile iron profile provided by the company Questum Castings (Santa
Catarina, Mexico) of class 100-70-03, according to ASTM A536 [33], with the chemical
composition described in Table 1.

Table 1. Chemical composition (wt.%) of ductile iron.

C Si Mn P S Cr Cu Sn Mg Fe

3.250 2.600 0.850 0.018 0.013 0.080 0.710 0.015 0.053 92.411

Two muffle furnaces were utilized for austenitizing and austempering heat treatments
of ductile iron, a Thermo Scientific FD1535M (Facultad de Ingeniería, Arteaga, Mexico)
for austenitizing, carried out at 950 ◦C for 120 min, and a TL-EMISOR furnace (Facultad
de Ingeniería, Arteaga, Mexico) for austempering, varying the temperature every 30 ◦C
from 290 to 380 ◦C for 30, 60, 90 and 120 min, and finally cooling to room temperature. A
combination of potassium nitrate (KNO3) and sodium nitrate (NaNO3) salts in a 1:1 ratio
was used for austempering heat treatment. Figure 1 illustrates the schematic diagram of
heat treatments performed to obtain ADIs.
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Figure 1. Schematic diagram of heat treatment cycles to obtain ADIs.

2.2. Microstructural Characterization

On completion of heat treatments, samples were prepared metallographically. Mi-
crostructural characterization of ductile iron, before and after heat treatments, was con-
ducted under an Olympus optical microscope (I.T. Saltillo, Saltillo, Mexico) and ImagePro
image analyzer (I.T. Saltillo, Saltillo, Mexico). Samples were etched in a solution of nitric
acid and 2% ethyl alcohol at room temperature, for approximately 10 s, to reveal microstruc-
ture. To quantify the γhc of each sample, 10 micrographs were taken at 500× magnification
to guarantee the reliability of results.

2.3. Hardness Tests

Rockwell C hardness measurements were made on a Buehler Macromet 5100 and a
diamond tip indenter, under a load of 150 kgf for 10 s on the previously polished surface,
as per ASTM E18 standard specification [34], with a distance of 3 mm between each
indentation, extending from the center to both sides of the material. A total of 15 hardness
measurements were performed for each heat treatment condition.
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3. Results and Discussion
3.1. Microstructural Analysis and Hardness

According to the chemical analysis developed by the company Questum Castings,
presented in Table 1, C and Si contents are within the recommended composition for ductile
iron; notwithstanding, Mn content is slightly high, ranging from 0.2 to 0.7%. While adding
this element improves mechanical properties without affecting the machining process,
there is a risk of carbide formation for contents above 0.7%. Notably, Mn has a very severe
positive segregation, so the addition of copper helps to counteract it. Further, Mn and Cu
together enhance the hardenability of the castings, preventing the occurrence of pearlite,
which reduces mechanical properties, during severe quenching in the salt bath [35,36].

The microstructure of the metal matrix of ductile iron prior to the austempering heat
treatment is completely pearlitic, as shown in Figure 2. This is attributed to the addition of
Cu and Mn in ductile iron promoting the appearance of the pearlitic matrix, and together
with Sn, the transformation to pearlite is ensured during solidification because it reduces
the minimum subcooling for pearlite nucleation [37–39]. The nodularity is 96%, and nodule
count equals 90 nodules/mm2. The total volume of graphite is 10.33%, and that of the
metal matrix is 89.67%.
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Figure 2. Microstructure of ductile iron before austempering heat treatment.

Microstructures obtained after austempering heat treatments exhibit a characteristic
ausferritic metallic matrix composed of αac needles and γhC phase, as seen in Figure 3.
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Morphology, distribution, and size of ausferrite depend on the site where nucleation
occurs, carbon saturation of austenite during growth and austempering temperature.
Figure 4 depicts the different morphologies of the phases found in some samples. Figure 4a
shows for the sample treated at 320 ◦C for 30 min, in a faint gray color, the appearance
of α’ between the αac needles. This happens even though the temperature is above the
martensitic transformation starting one, since austenite is not completely enriched with
carbon, leaving some untransformed austenite, which upon cooling to room temperature is
transformed into martensite, in addition to material internal stresses [12]. In Figure 4b it can
be noted how in the sample treated at 290 ◦C for 90 min, αac needles converge at the same
nucleation site, giving the appearance of αac needle bundles. Another type of αac needle
arrangement consists of clusters, as observed in the sample treated at 320 ◦C for 90 min in
Figure 4c, which is composed of parallel αac needles separated by γhC, similar to results of
other researchers [40–43]. Meanwhile, Figure 4d,e illustrate the two types of αac needles,
fine (lower ausferrite) and feathery (upper ausferrite), respectively, within the samples
treated at 290 and 380 ◦C for 60 min, as reported by Putantunda and Olawale [19,44].
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The microstructures obtained under all treatment conditions are shown in Figure A1
in Appendix A, demonstrating an increase in the presence and size of γhC blocks caused by
an increment in TA. This behavior has been also documented in several investigations and
is attributed to carbon atoms diffusing longer distances and stabilizing a greater amount
of austenite, resulting in lower nucleation of αac needles [45–47]. The TA effect is also
evidenced by this figure as it is possible to observe the enlargement and thickening of αac
needles as time elapses, with a redistribution of carbon and achieving a transformation
of γhC into αac [19,48,49]. Moreover, for the same tA, ferrite inserts become thick when
produced at higher temperatures given that the austempering process is highly dependent
on the rate of carbon diffusion.

Change in ausferritic morphology is exhibited in Figure 5. At a temperature of
290 ◦C (Figure 5a) the presence of lower ausferrite indicated by red circles is evident,
at 320 ◦C (Figure 5b) a combination of lower and upper ausferrite can be observed and
finally at temperatures of 350 and 380 ◦C (Figure 5c,d) an all upper ausferritic morphology
is indicated by yellow circles. Such a transition in ausferritic morphology is primarily
influenced by TA and occurs because at temperatures around TMs the transformation is
dominated by αac needle nucleation, and at higher temperatures the transformation is
dominated by their growth, as reported by [19,45,50].
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Throughout the austempering process, cooling is performed from Tγ to TA with its
impact being observed in terms of αac needle nucleation. Figure 6 depicts the microstruc-
tural outcome of this cooling, which demonstrates that as TA goes up, there is a limit in
αac nucleation and, therefore, a rise in γhC stabilization. At temperatures ranging from
290 to 350 ◦C, regions that have not been enriched with sufficient carbon to prevent the
transformation from γ to α’are detected. As TA increases, the formation of these zones
decreases until reaching 380 ◦C, where they disappear since the diffusion of carbon atoms
is facilitated by the effect of temperature. For all 30 min TAs, α’ is found between the
αac needles.
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Figure 7a shows the γhC quantification for the different heat treatment conditions.
It is observed that increasing TA increases the amount of γhC, for a constant time. On
the other hand, as tA increases at the same TA there is a maximum in γhC content after
which diffusional transformation of γhC to αac is favored. These results are similar to those
found by other researchers both in ADI [51,52] and in steel subjected to austempering
treatment [53].
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The lowest level of γhC is at 30 min of treatment, attributed to the γ low carbon
stabilization, so during post-austempering air-cooling, a large part of this γ transforms into
α’ [12], as exposed in Figure 6. After 60 min a decrease in γhC is noticed for temperatures
of 290 and 320 ◦C, and for 350 ◦C this reduction takes place until 120 min, while at 380 ◦C
γhC content stabilizes. This behavior derives from transformation kinetics, i.e., as the TA
diminishes, the ausferritic transformation reaction proceeds faster, consuming γhC for αac
formation and at possible carbide precipitation [54–56]. Figure 7b shows hardness values
decreasing as TA increases, consequence of a higher amount of γhC and the change of
ausferritic morphology in the metal matrix. A decrease in hardness can also be noticed as
tA increases, given that carbon redistribution and coarsening of ausferritic microstructure
are present [48,49].

3.2. Mathematical Model

This section introduces the SDDM evaluation of hardness values retrieved from ex-
perimentation. In the first analysis, an ANOVA was performed to determine tA and TA
effect on sample hardness. For the second analysis, a regression model was used to nu-
merically describe the process and predict hardness values for each tA and TA condition.
The third analysis determined the quality of both the proposed regression model and the
experimental data through the residual error between them. Experimental data and results
must satisfy the following assumptions:

Assumption 1. The probability distribution (Students’s t) of analyzed data is a normally distributed
distribution for small experimental sample sizes as is the case of ADI studied in this research.

Assumption 2. The alternative hypothesis from ANOVA validates the significance impact of tA
and TA on hardness degree of the samples.

Theorem 1. If the number of samples for each experiment is n < 30 and the confidence intervals
in a Student’s t distribution with a significance level α = 0.05 are narrow, then the number of
experiments to be statistically analyzed is reduced to the mean y of each experimental setup.

Proof of Theorem 1. Two-tailed confidence intervals with a probability α
2 , using the t-

distribution for samples smaller than 30 are calculated according to Equation (A1). For
the 16 experimental setups in Table A1, 15 hardness tests each were performed, meaning a
total of 240 experiments. Given n = 15 and the distribution random variable t = 2.1448, the
upper and lower bounds are found with a 95% confidence level, i.e., t (α, n). Table A1 sets
out the confidence limits quite close to the mean UiLj ∼ y. All this denotes an acceptable
experimental design enabling the report of 240 experiments to be statistically replaced with
the mean at each of the 16 configurations. Details of can be seen in Appendix B. �
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Figure 8 depicts the normal probability of average hardness versus the percentile
sample of each test. A 97.13% linear trend across the distribution suggests an acceptable
experimentation for statistical analysis.
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3.3. ANOVA

Based on Figure 8 it is possible to implement a Pearson correlation analysis (r)
to examine the relationship between variable x (time and temperature) and variable y
(hardness), involving −1 ≤ r ≤ 1. If r > 0, “y” tends to increment as “x” increments; if
r < 0, and “y” tends to decrement as “x” increments. The stronger the linear relationship
of “x” and “y”, the closer r is to −1 or 1; the weaker the linear relationship, the closer
it is to 0. This means that the inversely proportional behavior from tA and TA causes a
higher effect of the temperature on the hardness values in comparison to the time effect.
This can also be clearly observed in the microstructural results, where the TA modifies the
ausferritic morphology, and the tA affects the ausferritic transformation progress. Therefore,
the hardness values need to be adjusted according to quality standards requirements. As a
consequence, tempering temperatures are recommended. This coefficient is estimated as
in Equation (3) and results from Tables 2 and 3, which list the temperature–time and ADI
hardness Pearson correlation, that is, the type of relationship between variables and the
kind of increase among them, respectively, in agreement with [56,57].

r =
sxy

sxsy
(3)

where sx and sy are the standard deviations, and sxy the covariance of “x” and “y”, corre-
spondingly [57].

Table 2. Pearson correlation matrix between time and temperature variables for hardness.

Variables Temperature (◦C) Time (min) Hardness

Temperature (◦C) 1.0000 0.0000 −0.8511
Time (min) 0.0000 1.0000 −0.4573
Hardness −0.8511 −0.4573 1.0000
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Table 3. Type of relationship and increases.

Variables Relationship Increase

Hardness–Temperature Strong Negative
Hardness–Time Weak Negative

Temperature–Time Null Null

ANOVA was conducted to identify the influence of one or more factors on the mean
hardness, i.e., whether or not they have a significant effect on the experiment. Similarly,
sampling theory seeks to compare the dissimilarities of two or more sample means, based
on the assumption that populations have the same variance. It is often necessary to test
the hypothesis which assumes that means are equal [56,58]. The significance level α is
the probability of rejecting the null hypothesis when it is true and helps us to establish
whether the contrast statistic is in the rejection zone or not, for this study and as mentioned
in Theorem 1, α = 0.05.

The null hypothesis (H0) points to the absence of significant differences, produced by
the variables, in the phenomenon. This is accepted if:

Fcalculated < Fcritical

The alternative hypothesis (Hi) states that significant differences do exist in the phe-
nomenon produced by the variables. This hypothesis is accepted if:

Fcalculated > Fcritical

Fcritical is attained from the Fisher F distribution conditioned on the degrees of freedom.
The statistical factor between sample variances S2

1/S2
2 is considered in this distribution.

When ratio is large or small it indicates a huge difference across the variances; conversely,
when near 1 it indicates a small difference between analyzed samples. If we have two
samples of size N1 and N2, S1 and S2 represent the sample variances, respectively, taken
from two normal populations with variances σ1

2 and σ2
2. F-statistic is defined as in

Equation (4):

Fcalculated =
Ŝ1

2/σ1
2

Ŝ2
2/σ2

2
, Ŝn

2 =
NnSn

2

Nn − 1
(4)

Fisher’s F distribution degrees of freedom are calculated as vn = Nn − 1.
Such a Fisher statistical distribution is given by Equation (5) according to [50,52]

T =
CF(

v1
2 )−1

(v1F + v2)
(v1+v2)/2

(5)

with C being a constant dependent on v1 and v2, so the area under the curve equals 1. In
the distribution tables, v1 stands for the degrees of freedom in the numerator (vR y vC) and
v2 for those in the denominator (vE) [56,58]. Assuming population variances σ1 = σ2 or H0,
Fcalculated is obtained from:

SR
2/SE

2 and SC
2/SE

2 (6)

Variation among treatments is as follows:

VR = b
a

∑
i=1

(
Xi − XT

)2
(7)
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where a is the number of rows, b the number of columns, Xi the average of the rows and
XT the total average. Block-to-block variation is described as:

VC = a
b

∑
i=1

(
X j − XT

)2
(8)

where X j is the average of the columns. The total data variance is defined as:

V = ∑
(

xi,j − XT

)2
(9)

with xi,j representing the values from Table A1. Therefore, the residual variance of collected
data becomes:

VE = V −VR −VC (10)

The mean square between treatments is:

SR
2 =

VR
a− 1

(11)

while inter-block mean square equals:

SC
2 =

VC
b− 1

(12)

and the mean square between residuals is expressed:

SE
2 =

VE

(a− 1)(b− 1)
(13)

in which SR = STemperature and SC = STime.
From Table 4, H1 is validated for ADI treatment results, meaning that Fcalculated ≥ Fcritical

for TA and tA, i.e., there is an effect of these two variables on sample hardness degree.

Table 4. Results of the analysis of variance across factors of time and temperature affecting hardness.

Variable Variation (Sum of Squares)
Quadratic Sum dof Mean

Quadratic Fcalculated Probability Fcritical

Temperature 328.47185 3.00 109.49062 122.55530 0.0000001 3.86255
Time 110.62773 3.00 36.87591 41.27603 0.0000138 3.86255
Error 8.04058 9.00 0.89340
Total 447.14016 15.00

Probability displayed in Table 4 variance analysis comes from the right tail of F
distribution corresponding to the Fcalculated value for treatments and blocks with their re-
spective degrees of freedom. This probability is computed via the Excel function distr.F.CD
(Fcalculated, treatment or block degrees of freedom (do f ), error degrees of freedom).

3.4. Least Squares Regression

The model to approximate the hardness value in terms of the austempering time and
temperature is obtained through a power equation based on the least square method as is
presented below:

Corollary 1. When the analyzed data set exhibits substantial errors, the use of polynomial inter-
polation is inappropriate in view of the unsatisfactory prediction level at intermediate values. In
contrast, an approximation of a general trend of the data, by a power regression, is more useful for
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minimizing the sum of residual squared errors between y measured and y calculated, estimated with
the model.

The squared error sum is presented in Equation (14) as reported in [58]:

Sr =
n

∑
i=1

e2
i = (y, measured − ycalculated)

2 (14)

A regression model with a power equation is proposed as in Equation (15), in which a
hardness function in terms of temperature and time is provided for ADI heat treatment:

D = a0TA
a1 tA

a2 → ln(D) = ln(a0) + a1 ln(TA) + a2 ln(tA) (15)

where a0, a1, a2 are the coefficients for describing the function of this process and D is the
hardness. Using the properties of natural logarithms, Equation (15) can be linearized. In a
multiple regression, the linearized power equations are the most suitable to fit experimental
data. Upon applying Equations (14) and (15), the sum of the quadratic errors is determined
for the particular case of the study carried out in this research.

Sr =
n

∑
i=1

ei
2 =

n

∑
i=1

[ln(Di)− ln(a0)− a1 ln(TAi)− a2 ln(tAi)]
2 (16)

To compute the coefficient values, Equation (16) is derived with respect to each
coefficient, recalling that ∂Sr

∂a0
, ∂Sr

∂a1
, ∂Sr

∂a2
must equal zero to minimize the error between

measured and calculated data in Equation (14). Once the parameters are estimated, the
following model emerges:

D = e10.393TA
−1.0599tA

−0.1173 (17)

3.5. Quantification of Error in Regressions

In accordance with [57,59], the magnitude of residual error associated with the depen-
dent variable before regression is

St =
n

∑
i=1

(y, measured − ymean)
2 (18)

where St is the total sum of squares around dependent variable ′y′ mean. Subsequent to
regression, Sr is estimated, which represents the sum of squares of the residuals around the
regression function. This characterizes the residual error remaining after regression. The
difference between these two summations, St− Sr, quantifies error through data description
in terms of a straight line rather than an average value. Because the magnitude of this
quantity depends on the scale, the difference is normalized to St to obtain:

r2 =
St − Sr

St
(19)

Here, r2 is known as the coefficient of determination, and r is the correlation coefficient
(
√

r2). A perfect data fit, Sr = 0 and r = r2 = 1, indicates that function explains 100% of data
variability. If r = r2 = 0 and St = Sr the fit does not imply any improvement.

Standard error is formulated as in Equation (18). Said number is divided by n− (m + 1)
since (m + 1) coefficients drawn from the data, a0, a1, . . . . . . . . . , am, were employed to
calculate Sr; m + 1 degrees of freedom are lost. Briefly it can be stated that:

Sy/x =

√
Sr

n− (m + 1)
(20)
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where m + 1 = total degrees of freedom and n = number of experiments.
Adjusted coefficient of determination r2

adjusted is used in multiple regression to observe
the intensity or effectiveness of independent variables (TA and tA) with regard to the
dependent one (D). The computation of r2

adjusted is set out in Equation (21):

r2
adjusted = 1− n− 1

n−m + 1

(
1− r2

)
(21)

Table 5 reveals the direct relationship of hardness degree and the magnitude of TA
and tA. Based on the coefficient of determination r2, it is established that the proposed
power equation model is able to describe 95.2% of the phenomenon uncertainty. As per
r2

odjusted, contemplated variables occupy 94.46% of model effectiveness, which means that
there are some other factors that impact the remaining 5.54% of the phenomenon. The
power equation model has an estimation error of ±1.2845.

Table 5. Results of the statistical analysis for the proposed hardness estimation regression model.

Regression Statistics Values

r 0.9757
r2 0.9520

r2
adjusted 0.9446
Sy/x 1.2845

n 16

Theorem 2. If the variability of the experimental data r2 is ~1 and standard error converges
towards zero Sy/x → 0 , then the upper (U) and lower (L) interval values of the power regression
coefficients a0,a1,a2 in Equation (15), evaluated at a 95% confidence level, converge to values near
each other in very close intervals.

Proof of Theorem 2. For the regression model (17), the coefficient of determination r2 = 95.20%,
the standard error Sy/x = 1.2845 and the values of upper U and lower L intervals are
determined by Equations (A5) and (A6), Results are listed in Table A3 for each coefficient
a0, a1, a2. Details can be noticed in Appendix C. �

Remark 1. On the basis of Theorem 2, the Equation (17) model holds for increasing numbers of
experimental data and in domains outside tested data. This prevents excessive experimentation.

Figure 9 compares the experimental results and those estimated by the model demon-
strating the impact of TA and tA on hardness. Model results are reliable at least in the
experimental range.

Figure 10 depicts the surface simulation of the data reconstructed by the proposed
model for each TA and tA hardness value. For the domain 30 < tA < 60 and 290 < TA
< 315, the highest hardness values are attained, ascribed to the presence of α’ and lower
ausferrite, respectively, as 53.78 HRC was yielded from the application of a treatment at
290 ◦C for 30 min. In the case of the domain 70 < tA < 120 and 340 < TA < 380, the
lowest hardness values are achieved, a consequence of a coarsening of the microstructure
and a higher amount of γhC, correspondingly. In other words, the higher the temperature,
the lower the hardness and vice versa, and the longer the treatment time, the lower the
hardness and vice versa. This behavior has also been documented by other authors [60–62],
and these materials exhibited excellent wear resistance and tensile strength properties for
their possible application as high-performance components.
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Figure 10. Simulated reconstruction of hardness grade data as a function of time and temperature
through the regression model.

4. Conclusions

1. The effect of austempering time and temperature on hardness shows an inversely
proportional behavior, which was verified by the SDDM. This relationship is attributed
to the microstructural characteristics acquired during the heat treatment.

2. ANOVA quantifies the statistical influence of the time and temperature of tempering
on the degree of hardness for ADI samples. The correlation study shows there is a
strong inverse relationship between hardness and temperature, i.e., this is consistent
with the microstructural characteristics found in the treatment. In the power regression
model indicates that the multiple correlation between variables is around 97.57%, the
adjusted coefficient of determination is 94.46% and the standard error is ±1.2845.

3. By means of ANOVA, it was possible to quantify the significant influence of austem-
pering time and temperature on the hardness degree of ductile iron samples. Multiple
correlation among variables is about 97%. The correlation study shows there is a
strong inverse relationship between hardness and temperature, i.e., the higher temper-
ature lowered the hardness and vice versa. This is consistent with the microstructural
characteristics found in the treatment.

4. A model representing the numerical response of hardness degree as a function of time
and temperature in the austempering treatment of ductile irons is presented. Model
variability is 95.20% in the face of uncertainties, and according to Theorem 2, the
proposed model can avoid excessive experimentation for this process. Additionally,
quality of the data and model was analyzed, and confidence intervals were defined
for both cases.
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Future work including the effect of alloying elements on hardness in a new mathemat-
ical model is being considered.
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Appendix B. Confidence Interval for Samples n < 30

For this investigation, the number of samples n in each experimental setup in Table A1
was less than 30. In this case, the t distribution was utilized to obtain the confidence
levels. Said t distribution is a modification of the normal distribution. When the number of
samples in each experimental configuration n tends to be small, distribution tends to be
flatter, and wider and more conservative confidence intervals are derived. On the other
hand, when n becomes larger, t distribution converges to normal. Two-tailed confidence
intervals via t distribution for samples smaller than 30 were computed from Equation (A1)
and are in agreement with [56,58]:

y−
sy√

n
t α

2 ,n−1 < µ < y +
sy√

n
t α

2 ,n−1 (A1)

where y is the sample mean, sy the sample standard deviation, µ the population mean, n
the number of samples, α the significance level and t the standard random variable of the
distribution for a probability α

2 .
Confidence intervals arise from Equation (A1) as in Table A1, with α = 0.05; that is, up-

per and lower limits have a 95% confidence level given n = 15 and t = 2.1448. Consequently,
in each experiment configuration, these limits are quite close to the mean. The variable t
represents the two-tailed inverse Student’s distribution and relies on the significance level
and the n− 1 degrees of freedom; in Excel it is found with the function inv.t.2c (α, n − 1).

Table A1. Results of the statistical analysis for the proposed hardness estimation regression model.

TA (◦C) tA(min) Hardness
(Mean)

Sample Std.
Dev.

Lower Limit
(Li)

Upper Limit
(Ui)

290

30 52.88 0.7043 52.4900 53.2700
60 47.69 0.5768 47.3673 48.0061
90 46.73 0.4131 46.4979 46.9554

120 47.25 0.5276 46.9545 47.5389

320

30 48.26 0.8806 47.7723 48.7477
60 44.36 0.7944 43.9201 44.7999
90 44.09 0.6933 43.7094 44.4773

120 43.44 0.7366 43.0321 43.8479

350

30 44.84 0.7744 44.4111 45.2689
60 39.69 0.7588 39.2651 40.1056
90 37.53 1.0055 36.9765 38.0901

120 36.78 0.9930 36.2301 37.3299

380

30 41.78 0.6879 41.3991 42.1609
60 37.89 0.6717 37.5147 38.2587
90 34.65 0.6093 34.3159 34.9907

120 33.67 0.6230 33.3217 34.0117

Appendix C. Statistical Aspects of Least Squares Theory

To assess the quality and reliability of the models, confidence intervals were estimated,
but it is necessary to define the following concepts.

In a general way, K = coefficient matrix, {K}−1 = coefficient matrix inverse, X = vector
of variables or unknowns, Y = right hand side vector and t = standard random variable of
the t distribution for a probability of α

2 .

Furthermore, s
(
ai,j
)

= standard error of coefficient ai,j=
√

var
(
ai,j
)
, with ai,j being an

element of the diagonal of the inverse matrix {K}−1.
The least squares method for linear forms formulates the following matrix system:

{K}{X} = {Y} (A2)
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so that the solution to the system is:

{K}−1{K}{X} = {K}−1{Y} (A3)

Consistent with [52], it is possible to prove that the terms on the diagonal of {K}−1

matrix give the variances of an:

var
(
ai,j
)
= {K}−1

i,jSy/x
2 s
(
ai,j
)
= Typical error =

√
var
(
ai,j
)

(A4)

For our present purposes, we illustrate how they are applied to develop confidence
intervals for “y”-axis intersection. Lower and upper bounds for the “y”-intercept can be
found as below (Equation (A5) for lower bound L and Equation (A6) for upper bound U):

L = an − t α
2 ,n−m+1s

(
ai,j−1

)
(A5)

U = an + t α
2 ,n−m+1s

(
ai,j−1

)
(A6)

st.t =
an√

var
(
ai,j−1

) (A7)

The statistic t is computed as in Equation (A7). For the critical value of t in Excel, the
INV.T.2C function is used (probability = significance level; degrees of freedom = n− (m + 1)).

Probability values for each coefficient in Table A1 come from the two-tailed Student’s
t-distribution and depend on the |statistic t| of each coefficient and its degrees of freedom
= n − (m + 1). Probability is available in Excel with the function distr.t.2c(|statistic t| ,
n− (m + 1)).

We then evaluated and examined the confidence intervals of the models provided in
Tables A2 and A3, where for m + 1 = 3, n = 16, and α = 0.05, we have t = 2.1604.

Table A2. Confidence intervals of regression model coefficients.

Coefficients var(ai−1) Standard
Error Statistic t Probability L U

ln(a0) 10.3930 0.1912 0.4373 23.7682 4.25954 × 10−12 9.4484 11.3377
a1 −1.0599 0.0056 0.0745 −14.2197 2.66365 × 10−9 −1.2209 −0.8989
a2 −0.1173 0.00021 0.0144 −8.1311 1.8708 × 10−6 −0.1485 −0.0861

In the model statistical analysis, confidence intervals for the coefficients (L,U) are
extremely tight with 95% confidence. This suggests that if the study were implemented
with more data, they would fall around the marked intervals and could further narrow
the interval and raise r2. However, the possibility of their convergence radius reaching
its limit also exists, and excessive experimentation would just be more expensive with no
improvement in results.

Table A3. Linear and power model comparison in a random domain.

i T (◦C) t (min) Powers Linear Difference

1 350 168 35.9894 33.8796 2.1098
2 429 52 33.2836 31.6430 1.6406
3 301 74 46.4906 47.2279 0.7373
4 382 58 37.1604 37.5154 0.3550
5 424 58 33.2709 31.8813 1.3896
6 442 81 30.6134 27.8089 2.8045
7 213 36 72.9883 61.7717 11.2166
8 246 125 54.1428 50.9300 3.2127
9 358 47 40.8000 41.5277 0.4839

10 331 145 38.8478 38.0861 0.6808
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Besides the D = e10.393T−1.0599t−0.1173 model, another linear model D = 92.9394−
0.1341T − 0.0721t was calculated which, despite having statistically favorable results, was
slightly inferior to the power one. With these two models, 10 totally random simulations
were created in a wider domain than that performed in the experimentation, where results
of both models were very similar. Because of the nature of the function, the power model
was also chosen over a polynomial, since the latter would never yield negative values in
any range of values. Moreover, due to the exponents a1 and a2, values t ≥ 0 and T ≥ 0
would be accepted which is consistent with reality.
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