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Abstract: Treatment for cancer can induce a series of secreted factors into the tumor 

microenvironment, which can affect cancer progression. Wingless-type MMTV (mouse 

mammary tumor virus) integration site 16B (WNT16B) is a new member of the WNT 

family and has been reported to play growth-related roles in previous studies. In this study, 

we found WNT16B could be expressed and secreted into the microenvironment by human 

ovarian fibroblasts after DNA damage-associated treatment, including chemotherapy drugs 

and radiation. We also demonstrated that fibroblast-derived WNT16B could result in 

accumulation of β-catenin in dendritic cells and secretion of interleukin-10 (IL-10) and 

transforming growth factor beta (TGF-β), which contributed to the differentiation of 

regulatory T cells in a co-culture environment. These results shed light on the roles of 

WNT16B in immune regulation, especially in regard to cancer treatment. 
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1. Introduction 

In recent years, much attention has been given to the tumor microenvironment in an effort to better 

understand and explain the malignant characteristics of cancer [1–3]. The tumor microenvironment is 

an intricate network that is composed of various types of stromal cells such as fibroblasts, 

lymphocytes, macrophages, dendritic cells, endothelial cells, as well as the extracellular matrix [4,5]. 

There are dynamic interactions between cancer cells and microenvironment cells, which orchestrate a 

series of events to promote tumor evolution toward progression, metastasis and immune evasion [6–8]. 

The fibroblast is an important cell type that is known to contribute to tumor progression through the 

secretion of factors in a paracrine manner [9,10]. These factors such as matrix metalloproteinases 

(MMPs), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF), play roles 

in enhancing tumor growth, promoting angiogenesis and generating treatment resistance [2,11–13]. 

More recently, Sun et al. [14] found chemotherapy and radiation could induce fibroblasts to secrete a 

series of factors including wingless-type MMTV (mouse mammary tumor virus) integration site 

family, member 16B (WNT16B), which was demonstrated to promote the survival of cancer cells and 

epithelial to mesenchymal transition (EMT) in epithelium through paracrine signalling. 

WNT16B is a new member of wingless-related MMTV integration site (WNT) family and has been 

found to play growth-related roles in previous studies. Binet et al. [15] found WNT16B is an 

overexpressed marker in cells undergoing stress-induced premature senescence. Mazieres et al. [16] 

found that targeted-WNT16B inhibition led to apoptosis of human acute lymphoblastoid leukemia 

cells using the anti-WNT16B antibody and specific short interfering RNA (siRNA). However, 

previous studies on WNT16B mainly focused on the field of cell growth, and not its involvement in 

immune regulation. In this study, we found that WNT16B could be expressed and secreted by ovarian 

fibroblasts following DNA damage-associated treatment. We further demonstrated that fibroblast-derived 

WNT16B could activate the canonical β-catenin signal in dendritic cells (DCs) and consequently 

regulate the regulatory T cells (Tregs) differentiation in a co-culture system. Our data sheds light on 

WNT16B functions in immune regulation and tumor immune tolerance in addition to its known cell 

growth functions. 

2. Results and Discussion 

2.1. Treatment Induces WNT16B Expression in Ovarian Fibroblast 

To assess the treatment-induced responses in ovarian fibroblasts, primary ovarian fibroblasts were 

collected from ovarian tissue and cultured in vitro. Vimentin (mesenchymal markers) and E-cadherin 

(epithelial marker) were examined to distinguish between fibroblasts and epithelial cells, respectively. 

Western blot showed higher expression of Vimentin in ovarian fibroblasts; however, abundant  

E-cadherin was detected in ovarian epithelial cells (Figure 1a). After treatment including cisplatin, 

bleomycin, H2O2 and radiation, WNT16B of ovarian fibroblasts was obviously detected in cytoplasm 
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and the extracellular space (Figure 1b). These results demonstrated that DNA damage treatment for 

ovarian fibroblasts could induce WNT16B expression and secretion. 

Figure 1. DNA damage-associated treatment to primary ovarian fibroblasts induced 

expression and secretion of WNT16B. (a) Biomarker identification of primary ovarian 

fibroblasts by Western blot. Fibroblast presented higher level of Vimentin; however, 

epithelium presented higher level of E-cadherin; (b) WNT16B expression and secretion of 

ovarian fibroblast was induced following DNA damage-associated treatment. Western blot 

showed that obvious elevation of WNT16B in intracellular space after treatment including 

cisplatin (Cisp), bleomycin (Bleo), H2O2 and radiation (Rad). Western blot also showed 

WNT16B was secreted into the extracellular space after the same treatment (equal volume  

per well). PBS (phosphate buffered saline) was used as control. 

 

2.2. WNT16B from Fibroblasts Activates β-Catenin Pathway in DCs (Dendritic Cells) 

Stabilization of β-catenin is considered to be canonical signal in WNT pathways. On the other hand, 

activation of β-catenin in DCs has been reported to regulate tolerance. Therefore, we also wanted to 

know whether WNT16B derived from fibroblasts activate β-catenin in DCs. For this reason, the 

conditioned medium containing WNT16B was prepared from WNT16B-overexpressing ovarian 

fibroblasts (Figure 2a). The DCs were separated from peripheral blood mononuclear cells (PBMCs) 

and cultured as described in the Methods section. These cells were analysed for expression levels  

of CD86 and CD83 in immature and mature status by Western blot (Figure 2b). When  

granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 were introduced into the 

culture medium, the DCs developed into mature status on the fourth day; in the absence of GM-CSF 

and IL-4 DC development remained at the immature stage. 

To explore the effects of WNT16B, the DCs were cultured in X-VIVO serum-free medium 

supplemented with GM-CSF and IL-4 for 3 days. On the fourth day, the supernatant was carefully 

removed and replaced with different conditioned medium. After 24 h of culture in different 

conditioned medium, including phosphate buffered saline (PBS), the levels of vector, WNT16B or 

WNT16B depletion, β-catenin in DCs were assessed. Western blot assays revealed higher β-catenin 

levels in DCs cultured with WNT16B-conditioned medium, compared with DCs cultured with PBS 

and vector-conditioned medium (Figure 2c). However, when WNT16B-depleted medium was used, 

the β-catenin level in DCs was significantly reduced (Figure 2c). These results indicate that WNT16B 

from fibroblasts could activate the canonical β-catenin pathway in DCs. 
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Figure 2. WNT16B from fibroblast activated β-catenin signaling in DCs (Dendritic Cells). 

(a) Western blot showed WNT16B was secreted into culture supernatant by fibroblasts 

after transfection of recombinant plasmid containing the WNT16B gene; (b) Biomarker 

identification of DCs by Western blot. The levels of CD86 and CD83 were obviously 

increased in mature DCs; and (c) Western blot showed β-catenin was increased in DCs 

after culture with WNT16B-conditioned medium. 

 

2.3. Different Cytokine Secretion of DCs Occurs Following WNT16B Induction 

In order to further investigate the potential effects of WNT16B on DCs, we examined the cytokine 

secretion of DCs after culture in different conditioned medium including PBS, vector, WNT16B or 

WNT16B depletion, respectively. After 3 days of culture, IL-6, IL-10, TNF-α and TGF-β in cell 

culture supernatant were determined by enzyme-linked immunosorbent assay (ELISA). Compared with 

controls (PBS and vector), IL-6 and TNF-α presented no significant changes in culture supernatant from 

DCs that were cultured in WNT16B-conditioned medium, but IL-10 and TGF-β increased significantly 

in the culture supernatant from DCs that were cultured in WNT16B-conditioned medium (Figure 3). 

However, when WNT16B-depleted medium was used, IL-10 and TGF-β levels nearly recovered to 

control levels (Figure 3). These results indicated WNT16B could induce the different cytokine-secretion 

of DCs, and the induction occurred in a WNT16B-dependent manner. 
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Figure 3. Different cytokine secretion occurred following WNT16B-induced DC 

differentiation. DCs were cultured in different conditioned medium including PBS, vector, 

WNT16B or WNT16B depletion, respectively for 3 days. IL-6, IL-10, TNF-α and TGF-β 

in cell culture supernatant were determined by ELISA (enzyme-linked immunosorbent 

assay). (Asterisks indicate statistically significant difference versus the vector group,  

p < 0.05). 

 

2.4. Tregs Differentiation 

Since the characteristic cytokine-secretion of DCs occurred after culture with WNT16B-conditioned 

medium, we further assessed the potential effects on Treg differentiation by DCs under the conditions 

of WNT16B existence. After 5 days of co-culture of PBMCs and DCs and the subsequent 3 days of 

expansion in the presence of CD3 antibody, CD28 antibody and IL-2, flow cytometry was used  

to assess the percentage of CD4+CD25+Foxp3+ T cells. Compared with PBS (1.6%) and  

vector-conditioned medium (1.9%), the percentage of Tregs under WNT16B-conditioned co-culture 

was significantly increased (Figure 4), up to 8.7%. However, when WNT16B-depleted medium was 

used, the percentage of Tregs significantly decreased to 2.3% (Figure 4). Above data demonstrated that 
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WNT16B derived from fibroblasts could regulate Tregs differentiation through DCs, and the Tregs 

differentiation was also inhibited by WNT16B depletion. 

Figure 4. WNT16B induced Tregs differentiation through DCs. After co-culture of 

PBMCs and DCs, flow cytometry was used to assess the percentage of 

CD4+CD25+Foxp3+ T cells. Compared with PBS (a) and vector-conditioned medium (b); 

the percentage of Tregs under WNT16B-conditioned co-culture was significantly increased 

(c); However, when WNT16B-depleted medium was used, the percentage of Tregs 

significantly recovered (d). 

 

2.5. Discussion 

In this study, we focused on the potential effects of WNT16B in the cellular network of tumor 

microenvironment using a co-culture system of fibroblasts and DCs. We demonstrated DNA  

damage-associated treatment could induce WNT16B expression and secretion of ovarian fibroblasts. 

We further assessed the characteristic cytokine secretion of DCs and provided evidence concerning  

DC-induced Tregs in the presence of WNT16B and revealed a new aspect of WNT16B function in the 

area of immune regulation; interestingly, this function may play a role in tumor progression through 

immune evasion. 

Fibroblasts are an essential cell type in the tumor microenvironment, which could produce a number 

of important cytokines to support the growth of tumor cells [17,18]. Straussman et al. [2] found  

that fibroblasts could secrete HGF in tumor microenvironment to elicit resistance of tumor cells to 

treatment of rapidly accelerated fibrosarcoma (RAF) inhibitors through HGF/mesenchymal-epithelial 
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transition factor (MET) and its downstream signaling pathways such as mitogen activated  

protein kinase (MAPK) and phosphoinositide 3-kinase/protein kinase B (PI(3)K/AKT) signaling. 

Subsequently, dual inhibition of RAF and HGF/MET resulted in reversal of drug resistance, 

suggesting that combined therapy of anticancer drugs plus inhibitors of microenvironment factors is a 

potential therapeutic strategy for cancer. On the other hand, since fibroblasts are adjacent to tumor 

cells in the microenvironment, anti-tumor treatment usually affects peripheral cells including 

fibroblasts [14,19,20]. Yu Sun et al. [14] found that fibroblasts could produce WNT16B following 

DNA-damage treatment such as H2O2, bleomycin and gamma radiation, which activated the canonical 

WNT/β-catenin pathway in prostate cancer cells, eventually resulting in cancer growth and  

therapy resistance.  

An important function of fibroblasts is the repair of tissue injury [21–23]. In some cases of repair, 

disordered secretion of cytokines from fibroblasts occurs, often causing side effects. For radiotherapy 

of cancer, the radiation usually damages fibroblasts, inducing increased release of several factors such 

as TGF-β and PDGF, and resulting in abnormal accumulation of ECM and finally the formation of 

pulmonary fibrosis [24–26]. In this study, we found that ovarian fibroblasts could produce and secrete 

WNT16B into the microenvironment after DNA damage-treatment. It is noteworthy that the low dose 

of treatment was introduced in our experiments, which could not completely kill fibroblasts, but switch 

on its repair process. Unlike previous perspectives concerning the proliferation to cancer cells, we 

found fibroblast-derived WNT16B could regulate DCs, another important cell type in the tumor 

microenvironment, through the activation of the canonical Wnt/β-catenin pathway in DCs. Our findings 

demonstrate a cross-talk between fibroblasts and DCs through factors in the microenvironment following 

anticancer treatment, which suggests that WNT16B could be involved in immune regulation in 

addition to its growth-promoting effect on tumor cells. 

Activation of β-catenin in DCs was reported to regulate immune tolerance in previous studies [27,28]. 

Manicassamy et al. [29] found that β-catenin activation in DCs was required for the production of  

anti-inflammatory factors such as retinoic acid-metabolizing enzymes, IL-10 and TGF-β that stimulate 

Tregs to suppress immunity. Since β-catenin activation mediated by WNT16B was also found in DCs 

in our study, we further focused on the secretion of various cytokines including IL-6, IL-10, TNF-α and 

TGF-β from DCs. The characteristic changes of IL-10 and TGF-β prompted us to further explore Tregs 

induction in co-culture system, because these cytokines are essential to Tregs differentiation [30–32]. As 

we speculated, Tregs induction coincided with characteristic cytokine profiling of DCs under conditioned 

medium containing WNT16B from fibroblasts. Our data suggested that treatment-induced WNT16B 

from ovarian fibroblasts could suppress immunity through Tregs that were induced by a series of 

cytokines from DCs in the tumor microenvironment. Our findings shed light on a new function of 

WNT16B involved in immune regulation in the tumor microenvironment, which provides a reference 

on anticancer strategy. In addition to cancer cells, treatment-induced WNT16B from fibroblasts in the 

tumor microenvironment should also be taken into account. 

In summary, we found WNT16B expression and secretion of ovarian fibroblasts could be induced 

following DNA damage-associated treatment. We demonstrated that a signaling pathway involving 

WNT16B/β-catenin in DCs could regulate Tregs differentiation in the microenvironment. The present 

study suggested that WNT16B could be critical for maintaining DCs in a tolerogenic state through 

induction of various anti-inflammatory factors such as IL-10 and TGF-β. Our data also indicated the 
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suppression of WNT16B could be an attractive strategy for improvement in tumor immunity, 

especially in the course of treatment associated with DNA damage. 

3. Experimental Section 

3.1. Materials 

Cisplatin, Bleomycin (BLEO) and hydrogen peroxide (H2O2) were from Sigma-Aldrich (St. Louis, 

MO, USA). The open reading frames of human WNT16B (GenBank entry: NM_057168.1) were 

subcloned into pcDNA3.1(+) (Invitrogen, Carlsbad, CA, USA) between BamHI and XhoI sites to 

obtain recombinant plasmid pc3.1-WNT16B. Primary antibodies were from Abcam (Cambridge, MA, 

USA) (Vimentin, E-cadherin, CD83 and CD86), Santa Cruz (Dallas, TX, USA) (WNT16B and  

β-catenin) and eBioscience (San Diego, CA, USA) (CD3 and CD28), respectively. Horseradish 

peroxidase-conjugated secondary antibodies against immunoglobulin of mouse or rabbit were from 

Santa Cruz. Human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-4  

(IL-4) and interleukin-2 (IL-2) were from Gibco (Carlsbad, CA, USA). ELISA sets to assess 

interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and transforming growth 

factor-β (TGF-β) were from R&D Systems (Minneapolis, MN, USA). 

3.2. Isolation of Ovarian Fibroblasts 

Fresh tissues of ovarian cancer were obtained from nine ovarian cancer patients who underwent 

surgical resection, and the adjacent normal ovarian tissues were carefully separated under sterile 

conditions. After removal of extraneous tissues, the ovarian tissues were minced to 1-mm pieces and 

washed in sterile PBS for several times until the supernatant was clear. Then, the pieces were 

suspended in sterile PBS containing 0.5% trypsin, and incubated with gentle stirring at 37 °C for  

20 min. The digestion was terminated by supplement of the equal volume of Dulbecco’s modified 

eagle’s medium (DMEM) containing 10% fetal calf serum. Dispersed cells were collected by filtration 

through a sterile stainless steel 150 µm-strainer. The collected cells were washed twice with DMEM 

containing 10% fetal calf serum and re-suspended in this media for culture in a 5% CO2 incubator at 

37 °C. After 2 h, unattached epithelial cells were removed to another plate by washing with fresh 

media, and attached cells were cultured for 24 h. The above steps were repeated twice to fully remove 

unattached cells, and the remaining cells were continued to be cultured until passage. After four 

passages, the ovarian fibroblasts were examined and used in the further experiments. The study was 

approved by the Institutional Ethics Committee of Sichuan University. 

3.3. Cell Treatment 

Ovarian fibroblasts were seeded in a 10-cm dish at a density of 5 × 104 cells/cm2. The cells were 

grown until 80% confluent and respectively treated with 5 µM cisplatin (Cisp), 5 µM Bleomycin 

(BLEO), 10 µM hydrogen peroxide (H2O2) for 2 h, or a single radiation dose of 2 Gy with X-rays. 

After treatment, the cells were rinsed 3 times with DMEM containing 10% fetal calf serum and left  

to recover for 3 days in medium. Finally, the culture supernatant was subjected to Western-blot to 

analyze WNT16B expression and secretion. The experiments were performed in triplicate. 
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3.4. Preparation of Conditioned Medium 

Ovarian fibroblasts were plated on a 10-cm dish at a density of 5 × 104 cells/cm2, and cultured in  

X-VIVO serum-free medium (Lonza, Basel, Switzerland). The cells were grown to 90%–95% 

confluence, and transiently transfected with pc3.1-WNT16B using Lipofectamine 2000 (Invitrogen) 

according to the instructions of manufacturer. PBS and vector were used as controls to assess the 

effects of WNT16B. At 72 h after transfection, cell culture supernatants were collected, half of which 

was used to flow through a spin column-coupled with WNT16B antibody in order to deplete WNT16B 

in culture supernatants. The above two kinds of culture supernatants were mixed with an equal volume 

of X-VIVO medium, which was used as conditioned medium and stored at 4 °C for next applications. 

3.5. DCs Culture and Cytokine Assay 

Peripheral blood mononuclear cells (PBMCs) were isolated from the blood of the same ovarian 

cancer patients by the lymphocyte separation medium (Haoyang Ltd., Beijing, China). Briefly, blood 

samples containing heparin were centrifuged (450× g, 10 min, 4 °C), and the cells in middle layer  

were collected and mixed with an equal volume of lymphocyte separation medium. After another 

centrifugation (450× g, 30 min, 4 °C), the cells in middle layer were collected and washed twice with  

X-VIVO medium. Then, the PBMCs (2 × 105 cells/well) were plated in a 6-well plate and cultured in 

X-VIVO medium supplemented with 50 ng/mL GM-CSF and 50 ng/mL IL-4. After 24 h of culture, 

the supernatant was carefully removed and replaced with X-VIVO medium supplemented with the 

same GM-CSF and IL-4. On the fourth day, the supernatant was carefully removed and replaced  

with X-VIVO medium or different conditioned medium from transfected fibroblasts including PBS, 

vector, WNT16B-conditioned medium or WNT16B-depleted medium. These types of medium were 

supplemented with the same factors as described above. On the ninth day, the cells were respectively 

collected and subjected to Western blot and co-culture with PBMCs to induce Tregs. At the same time, 

the collected supernatants were subjected to analysis of IL-6, IL-10, TNF-α and TGF-β through ELISA 

according to the manufacturer’s instructions. Three independent experiments were repeated to assess 

the factors. 

3.6. Western Blot 

The cells or supernatant were collected, lysed in radio-immunoprecipitation assay (RIPA) buffer  

on ice, and centrifuged at 12,000× g for 30 min at 4 °C to extract the proteins in supernatant.  

The extracted proteins were electrophoresed by 12% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) under denaturing conditions, and subsequently transferred onto PVDF 

(polyvinylidene difluoride) membranes (Bio-Rad, Hercules, CA, USA). The membranes were blocked 

in phosphate buffered saline with Tween 20 (PBST) containing 5% skimmed milk for 2 h, washed with 

PBST three times, and incubated with primary antibodies for 2 h at room temperature. Then, the 

membranes were washed with PBST three times and incubated with secondary antibodies for 1 h at 

room temperature. After washing the membranes three times with PBST, the immunoblots were 

visualized with Immobilon Western Chemiluminescent reagent (Millipore, Billerica, MA, USA). 

Three independent experiments were repeated to assess the relative protein abundance. 



Int. J. Mol. Sci. 2014, 15 12937 

 

 

3.7. Co-Culture of PBMCs (Peripheral Blood Mononuclear Cells) and DCs 

The preparation of PBMSc and DCs were described in the previous steps. The PBMCs were  

co-cultured with DCs that prepared as described for six days at a ratio of 1:1 in X-VIVO medium or 

different conditioned medium from treated fibroblasts including PBS, vector, WNT16B-conditioned 

medium or WNT16B-depleted medium. Then, the cells were given 1 µg/mL anti-CD3, 1 µg/mL  

anti-CD28 and 500 U/mL IL-2, and cultured for 3 days. For flow cytometry, the cells were labeled 

with CD4-FITC, CD25-APC and Foxp3-PE (eBioscience) according to the manufacturer’s 

instructions. CD4+CD25+Foxp3+ Tregs were analysed using a FACScalibur (BD Biosciences, 

Franklin Lakes, NJ, USA) with CELLQUEST software (BD Biosciences). Three independent 

experiments were repeated to assess the CD4+CD25+Foxp3+ Tregs. 

4. Conclusions 

WNT16B secretion from ovarian fibroblasts can be induced by DNA damage-associated treatment. 

WNT16B triggers canonical β-catenin signalling in DCs and induces characteristic cytokine secretion 

of DCs, which can regulate Tregs differentiation. 
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