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Abstract: A series of 2-arylbenzofurans and 2-arylbenzothiophenes was synthesized carrying three
different side chains in position five. The synthesized compounds were tested for NF-κB inhibition
to establish a structure activity relationship. It was found that both, the side chain in position five
and the substitution pattern of the aryl moiety in position two have a significant influence on the
inhibitory activity.
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1. Introduction

Inflammation is a protective host response to infection or tissue damage (including stress
or dyshomeostasis) [1,2]. Whereas an acute response resulting in the elimination of the noxious
agent is beneficial, long lasting chronic inflammatory states contribute to the development of many
pathologies like autoimmune, metabolic, cardiovascular and neurodegenerative diseases or cancer [2,3],
PAMPs (pathogen-associated molecular patterns) as well as DAMPs (damage-associated molecular
patterns) activate pattern recognition receptors (PRR) that transduce signals to NF-κB signaling
pathways [2], which play a pivotal role in chronic and acute inflammation [4]. Thus, dampen NF-κB
signaling will interfere with an inflammatory response.

Krameria lappacea (Dombey), Krameriaceae, is a tropical perennial shrub growing across South
America. The extract of the Rhatany root was introduced into European medicine over 200 years ago
as a remedy against stomach aches, diarrhea, menstrual problems, nose bleeds and oropharyngeal
inflammation [5,6]. In a study on constituents of the Rhatany root, the group of Stuppner isolated
eleven lignans from the dichloromethane extract of the root (Figure 1) [7].

These isolated lignan derivatives were pharmacologically characterized in topical anti-inflammatory
in vivo experiments [8]. Two of the most potent compounds, 2-(2-hydroxy-4-methoxyphenyl)-5-(3-
hydroxypropyl)benzofuran 1 and (+)-conocarpan 3 (Figure 1) inhibited edema development and
infiltration by neutrophils time-dependently and comparably to indomethacin. In addition, all lignans
were tested in vitro for their potential to inhibit the activation of the NF-κB signaling pathway and the
activity of the pro-inflammatory enzymes COX-1, COX-2, 5-LO and mPGES-1. Determination of the
IC50 values for all compounds showed that inhibition of NF-κB is the most relevant mechanism likely
contributing to the observed in vivo activity [8].
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Figure 1. Lignan derivatives found in DCM extract of Rhatani root. 
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2. Materials and Methods 

2.1. Chemical Synthesis 

2.1.1. Synthesis of 5-Allylbenzo[b]furan (14) 

From 5-bromobenzo[b]furan 12: Compound 12 (98 mg, 0.5 mmol), allyl-B(pin) (140 µL, 0.75 
mmol, 1.5 equiv.), K2CO3 (138 mg, 1.0 mmol, 2.0 equiv.) and Pd(PPh3)2Cl2 (18 mg, 0.025 mmol, 5 mol 
%) was mixed in 1 mL DMAc at 100 °C and stirred for 24 h. The reaction mixture was then cooled to 
room temperature and filtered through celite, washed with EtOAc. The product was washed with 
saturated aq. NH4Cl and a last time with 10 mL brine then dried over Na2SO4 and the solvent was 
evaporated under reduced pressure to obtain coupling product 14 (67 mg, colorless oil), 85% yield. 

From 5-chlorobenzo[b]furan 17: Compound 17 (76 mg, 0.5 mmol), allyl-B(pin) (126 mg, 140 µL, 
0.75 mmol, 1.5 equiv.), Cs2CO3 (326 mg, 1.0 mmol, 2.0 equiv.), SPhos (21 mg, 0.05 mmol, 10 mol %) 
and Pd2(dba)3 (23 mg, 0.025 mmol, 5 mol %) was mixed in 2 mL DMAc and at 100 °C and stirred for 
6 h. The reaction mixture was then cooled to room temperature and filtered through celite and 
washed with EtOAc. The product was washed with saturated aq. NH4Cl and a last time with 10 mL 
brine then dried over Na2SO4 and the solvent was evaporated under reduced pressure to obtain 
coupling product 14 (54 mg, colorless oil), 68% yield. 

1H-NMR (200 MHz, CDCl3) δ (ppm) 3.51 (d, J = 6.7 Hz, 2H), 5.08–5.17 (m, 2H), 5.95–6.15 (m, 1H), 
6.73–6.75 (m, 1H), 7.16 (d, J = 8.6 Hz, 1H), 7.44–7.48 (m, 2H), 7.62 (d, J = 2.1 Hz, 1H). 13C-NMR (50 
MHz, CDCl3) δ (ppm) 40.1, 106.4, 111.1, 115.6, 120.7, 125.1, 127.6, 134.5, 138.0, 145.1, 153.7. MS analyst, 
m/z (Int.) 158(100), 157(46), 129(82), 128(50), 115(18), 102(10), 89(10), 77(22), 63(15). 
  

Figure 1. Lignan derivatives found in DCM extract of Rhatani root.

2. Materials and Methods

2.1. Chemical Synthesis

2.1.1. Synthesis of 5-Allylbenzo[b]furan (14)

From 5-bromobenzo[b]furan 12: Compound 12 (98 mg, 0.5 mmol), allyl-B(pin) (140 µL, 0.75 mmol,
1.5 equiv.), K2CO3 (138 mg, 1.0 mmol, 2.0 equiv.) and Pd(PPh3)2Cl2 (18 mg, 0.025 mmol, 5 mol %) was
mixed in 1 mL DMAc at 100 ◦C and stirred for 24 h. The reaction mixture was then cooled to room
temperature and filtered through celite, washed with EtOAc. The product was washed with saturated
aq. NH4Cl and a last time with 10 mL brine then dried over Na2SO4 and the solvent was evaporated
under reduced pressure to obtain coupling product 14 (67 mg, colorless oil), 85% yield.

From 5-chlorobenzo[b]furan 17: Compound 17 (76 mg, 0.5 mmol), allyl-B(pin) (126 mg, 140 µL,
0.75 mmol, 1.5 equiv.), Cs2CO3 (326 mg, 1.0 mmol, 2.0 equiv.), SPhos (21 mg, 0.05 mmol, 10 mol %) and
Pd2(dba)3 (23 mg, 0.025 mmol, 5 mol %) was mixed in 2 mL DMAc and at 100 ◦C and stirred for 6 h.
The reaction mixture was then cooled to room temperature and filtered through celite and washed
with EtOAc. The product was washed with saturated aq. NH4Cl and a last time with 10 mL brine
then dried over Na2SO4 and the solvent was evaporated under reduced pressure to obtain coupling
product 14 (54 mg, colorless oil), 68% yield.

1H-NMR (200 MHz, CDCl3) δ (ppm) 3.51 (d, J = 6.7 Hz, 2H), 5.08–5.17 (m, 2H), 5.95–6.15 (m,
1H), 6.73–6.75 (m, 1H), 7.16 (d, J = 8.6 Hz, 1H), 7.44–7.48 (m, 2H), 7.62 (d, J = 2.1 Hz, 1H). 13C-NMR
(50 MHz, CDCl3) δ (ppm) 40.1, 106.4, 111.1, 115.6, 120.7, 125.1, 127.6, 134.5, 138.0, 145.1, 153.7. MS
analyst, m/z (Int.) 158(100), 157(46), 129(82), 128(50), 115(18), 102(10), 89(10), 77(22), 63(15).

2.1.2. General Procedure of C-H Activation Reaction on 5-Chlorobenzo[b]furan (17)

Procedure A: Benzo-fused starting material (1.0 mmol, 1.0 equiv.), aryl bromide (1.5 mmol,
1.5 equiv.), cesium pivalate (350 mg, 1.5 mmol, 1.5 equiv.), Pd(OAc)2 (9 mg, 0.04 mmol, 0.04 equiv.)
and SPhos (16.4 mg, 0.08 mmol, 0.08 equiv.) was mixed in 2 mL of degassed DMAc. The mixture was
stirred at 140 ◦C for 24 h in argon atmosphere. The reaction mixture was cooled to room temperature
and then diluted with 15 mL diethyl ether or ethyl acetate (depending on the polarity of the product)
and filtered through a pad of celite. The organic phase was washed with saturated NH4Cl solution,
once with brine and then dried over Na2SO4. The solvent was removed under reduced pressure.
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Purification was performed on silica gel eluting with LP or LP/EtOAc mixtures (depending on the
polarity of the product).

2.1.3. 5-Chloro-2-(4-(methoxymethoxy)phenyl)benzo[b]furan (18a)

Prepared according to the general procedure A. mp 138–141 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 3.50 (s, 3H), 5.22 (s, 2H), 6.82 (s, 1H), 7.09–7.13 (m, 2H), 7.19 (dd, J = 8.7, 2.1 Hz, 1H), 7.39
(d, J = 8.7 Hz, 1H), 7.50 (d, J = 2.1 Hz, 1H), 7.76 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 56.1,
94.3, 99.5, 111.9, 116.5 (2C), 120.1, 123.8, 123.9, 126.5 (2C), 128.4, 130.8, 153.1, 157.4, 157.9. HR-MS analyst
[M + H]+ m/z (predicted) = 289.0631, m/z (measured) = 289.0636, difference = −1.90 ppm.

2.1.4. 5-Chloro-2-(4-methoxyphenyl)benzo[b]furan (18c)

Prepared according to the general procedure A. mp 144–146 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 3.86 (s, 3H), 6.81 (s, 1H), 6.95–7.00 (m, 2H), 7.18 (dd, J = 8.7, 2.1 Hz, 1H), 7.39 (d, J = 8.4 Hz,
1H), 7.50 (d, J = 2.1 Hz, 1H), 7.76–7.80 (m, 2H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 55.4, 99.2, 111.9,
114.3 (2C), 120.1, 122.8, 123.8, 126.6 (2C), 128.3, 130.9, 153.1, 157.5, 160.3.

2.1.5. 5-Chloro-2-(3,5-dimethoxyphenyl)benzo[b]furan (18d)

Prepared according to the general procedure A. 1H-NMR (400 MHz, CDCl3) δ (ppm) = 3.86 (s, 6H),
6.48 (t, J = 2.3 Hz, 1H), 6.93 (d, J = 0.8 Hz, 1H), 6.99 (d, J = 2.3 Hz, 2H), 7.23 (dd, J = 8.7, 2.1 Hz, 1H), 7.42
(d, J = 8.7 Hz, 1H), 7.53 (d, J = 2.1 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 55.5 (2C), 101.3, 101.4
(2C), 103.2, 112.1, 120.5, 124.5, 128.5, 130.5, 131.7, 153.2, 157.2, 161.2 (2C).

2.1.6. 5-Chloro-2-phenylbenzo[b]furan (18e)

Prepared according to the general procedure A. mp 125–128 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 6.96 (s, 1H), 7.20–7.55 (m, 6H), 7.81–7.87 (m, 2H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 100.8,
112.1, 120.4, 124.4, 125.0 (2C), 128.5, 128.8 (2C), 129.0, 130.0, 130.6, 153.2, 157.4.

2.1.7. 5-Chloro-2-(4-fluorophenyl)benzo[b]furan (18f)

Prepared according to the general procedure A. mp 119–122 ◦C. 1H-NMR (200 MHz, CDCl3)
δ (ppm) = 6.86 (s, 1H), 7.09–7.24 (m, 3H), 7.38–7.52 (m, 2H), 7.76–7.83 (m, 2H). 13C-NMR (50 MHz,
CDCl3) δ (ppm) = 100.5, 112.1, 116.0 (d, 2JC-F = 21.9 Hz), 120.4, 124.4, 126.3 (d, 4JC-F = 3.4 Hz), 126.9
(d, 3JC-F = 8.3 Hz, 2C), 128.6, 130.5, 153.2, 156.5, 163.1 (d, 1JC-F = 247.9 Hz).

2.1.8. 5-Chloro-2-(4-(difluoromethyl)phenyl)benzo[b]furan (18g)

Prepared according to the general procedure A. mp 121–124 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 6.69 (t, JH-F = 56.4 Hz, 1H), 7.02 (s, 1H), 7.26 (dd, J = 8.7, 2.1 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.55–7.62
(m, 3H), 7.90–7.93 (m, 2H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 102.1, 112.2, 114.4 (t, 1JC-F = 237.6 Hz),
120.7, 125.0, 125.2 (2C), 126.1 (t, 3JC-F = 6.1 Hz), 128.7, 130.3, 132.2, 134.6 (t, 2JC-F = 22.5 Hz), 153.4, 156.1.
HR-MS analyst [M + H]+ m/z (predicted) = 279.0388, m/z (measured) = 279.0392, difference = −1.62 ppm.

2.1.9. 5-Chloro-2-(2-chlorophenyl)benzo[b]furan (18h)

Prepared according to the general procedure A. 1H-NMR (200 MHz, CDCl3) δ (ppm) = 7.26–7.54
(m, 6H), 7.61 (d, J = 1.9 Hz, 1H), 8.04 (dd, J = 7.7, 1.8 Hz, 1H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 106.8,
112.0, 120.9, 125.1, 127.0, 128.4, 128.5, 129.0, 129.5, 130.4, 130.9, 131.5, 152.5, 153.4.

2.1.10. 5-Chloro-2-(4-(methoxymethoxy)phenyl)benzo[b]thiophene (22a)

Prepared according to the general procedure A. mp 175–177 ◦C. 1H-NMR (400 MHz, CDCl3)
δ (ppm) = 3.51 (s, 3H), 5.22 (s, 2H), 7.09–7.12 (m, 2H), 7.25 (dd, J = 8.7, 2.0 Hz, 1H), 7.34 (s, 1H),
7.60–7.63 (m, 2H), 7.69–7.71 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 56.1, 94.4, 116.7 (2C),
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117.7, 122.8, 123.2, 124.4, 127.7, 127.8 (2C), 130.7, 137.3, 142.0, 146.1, 157.7. HR-MS analyst [M + H]+ m/z
(predicted) = 305.0403, m/z (measured) = 305.0396, difference = 2.02 ppm.

2.1.11. 5-Chloro-2-(4-methoxyphenyl)benzo[b]thiophene (22c)

Prepared according to the general procedure A. mp 163–165 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 3.86 (s, 3H), 6.96 (d, J = 8.8 Hz, 2H), 7.21–7.26 (m, 1H), 7.34 (s, 1H), 7.63 (d, J = 8.7 Hz, 2H),
7.68–7.72 (m, 2H). 13C-NMR (100 MHz, benzene-d6) δ (ppm) = 54.6, 114.5 (2C), 118.6, 122.3, 123.4, 124.5,
127.7, 127.9 (2C), 130.6, 137.4, 141.3, 146.4, 160.1. HR-MS analyst [M + H]+ m/z (predicted) = 275.0297,
m/z (measured) = 275.0300, difference = −1.04 ppm.

2.1.12. General Procedure of the Suzuki-Miyaura Coupling of Chloro Benzo-Fused Derivatives

Procedure B: 5-chloro benzo-fused (1.0 mmol, 1.0 equiv.), allylboronic acid pinacol ester (1.5 mmol,
1.5 equiv.), cesium carbonate (486 mg, 1.5 mmol, 1.5 equiv.), Pd2(dba)3 (45 mg, 0.05 mmol, 0.05 equiv.) and
SPhos (41 mg, 0.1 mmol, 0.1 equiv.) was mixed in 2 mL of dried dioxane. The mixture was stirred at 100 ◦C
for 5 h in argon atmosphere. The reaction mixture was cooled to room temperature and then diluted with
15 mL diethyl ether or ethyl acetate (depending on the polarity of the product) and filtered through a pad
of celite. The organic phase was washed with saturated NH4Cl solution, once with brine and then dried
over Na2SO4. The solvent was removed under reduced pressure. Purification was performed on silica gel
eluting with LP or LP/EtOAc mixtures (depending on the polarity of the product).

2.1.13. 5-Allyl-2-(4-(methoxymethoxy)phenyl)benzo[b]furan (16a)

Prepared according to the general procedure B. mp 126–129 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 3.47–3.51 (m, 5H), 5.07–5.23 (m, 4H), 6.04 (ddt, J = 16.8, 10.1, 6.7 Hz, 1H), 6.85 (s, 1H), 7.07–7.14
(m, 3H), 7.36–7.44 (m, 2H), 7.76–7.81 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 40.2, 56.1, 94.4,
99.9, 110.8, 115.5, 116.5 (2C), 120.2, 124.5, 124.7, 126.3 (2C), 129.6, 134.6, 138.1, 153.6, 156.1, 157.5.
HR-MS analyst [M + H]+ m/z (predicted) = 295.1329, m/z (measured) = 295.1323, difference = 2.1 ppm.

2.1.14. 5-Allyl-2-(4-methoxyphenyl)benzo[b]furan (16c)

Prepared according to the general procedure B. mp 130–132 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 3.49 (d, J = 6.6 Hz, 2H), 3.86 (s, 3H), 5.07–5.17 (m, 2H), 6.05 (ddt, J = 16.8, 10.1, 6.7 Hz, 1H),
6.84 (s, 1H), 6.93–7.00 (m, 2H), 7.09 (dd, J = 8.4, 1.7 Hz, 1H), 7.36–7.45 (m, 2H), 7.77–7.82 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ (ppm) = 40.2, 55.4, 99.6, 110.7, 114.3 (2C), 115.5, 120.2, 123.5, 124.6,
126.4 (2C), 129.7, 134.6, 138.1, 153.5, 156.3, 160.0. HR-MS analyst [M + H]+ m/z (predicted) = 265.1223,
m/z (measured) = 265.1221, difference = 0.93 ppm.

2.1.15. 5-Allyl-2-(3,5-dimethoxyphenyl)benzo[b]furan (16d)

Prepared according to the general procedure B. 1H-NMR (400 MHz, CDCl3) δ (ppm) = 3.37
(d, J = 6.7 Hz, 2H), 3.76 (s, 6H), 4.98–5.03 (m, 2H), 5.92 (ddt, J = 16.8, 10.1, 6.7 Hz, 1H), 6.37 (t, J = 2.3 Hz,
1H), 6.84 (d, J = 0.8 Hz, 1H), 6.91 (d, J = 2.3 Hz, 2H), 7.01 (dd, J = 8.4, 1.7 Hz, 1H), 7.27–7.34 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ (ppm) = 40.2, 55.5, 101.2, 101.8, 103.0 (2C), 110.9, 115.6, 120.5, 125.3,
129.3, 132.3, 134.8, 138.0, 153.7, 155.0, 161.1 (2C). HR-MS analyst [M + H]+ m/z (predicted) = 295.1329,
m/z (measured) = 295.1328, difference = 0.17 ppm.

2.1.16. 5-Allyl-2-phenylbenzo[b]furan (16e)

Prepared according to the general procedure B. mp 118–120 ◦C. 1H-NMR (200 MHz, CDCl3)
δ (ppm) = 3.37 (d, J = 6.5 Hz, 2H), 4.96–5.04 (m, 2H), 5.92 (ddt, J = 16.8, 10.1, 6.7 Hz, 1H), 6.83 (s,
1H), 7.00 (d, J = 8.4 Hz, 1H), 7.21–7.35 (m, 5H), 7.72–7.75 (d, J = 7.2 Hz, 2H). 13C-NMR (50 MHz,
CDCl3) δ (ppm) = 40.2, 101.2, 110.9, 115.6, 120.5, 124.9 (2C), 125.1, 128.5, 128.8 (2C), 129.5, 130.6, 134.7,
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138.1, 153.8, 156.2. HR-MS analyst [M + H]+ m/z (predicted) = 235.1117, m/z (measured) = 235.1119,
difference = −0.8 ppm.

2.1.17. 5-Allyl-2-(4-fluorophenyl)benzo[b]furan (16f)

Prepared according to the general procedure B. mp 113–115 ◦C. 1H-NMR (400 MHz, CDCl3)
δ (ppm) = 3.50 (d, J = 6.7 Hz, 2H), 5.09–5.16 (m, 2H), 6.05 (ddt, J = 16.8, 10.1, 6.7 Hz, 1H), 6.90
(s, 1H), 7.11–7.16 (m, 3H), 7.39–7.45 (m, 2H), 7.81–7.84 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ

(ppm) = 40.2, 100.9, 110.9, 115.6, 115.9 (d, 2JC-F = 21.9 Hz), 120.5, 125.2, 126.7 (d, 3JC-F = 8.5 Hz), 126.9
(d, 4JC-F = 3.0), 129.4, 134.8, 138.0, 153.7, 155.3, 162.9 (d, 1JC-F = 248.7). HR-MS analyst [M + H]+ m/z
(predicted) = 253.1023, m/z (measured) = 253.1034, difference = −4.4 ppm.

2.1.18. 5-Allyl-2-(4-(difluoromethyl)phenyl)benzo[b]furan (16g)

Prepared according to the general procedure B. mp 116–118 ◦C. 1H-NMR (400 MHz, CDCl3)
δ (ppm) = 3.50 (d, J = 6.6 Hz, 2H), 5.08–5.17 (m, 2H), 6.04 (ddt, J = 17.0, 10.4, 6.7 Hz, 1H), 6.68
(t, JH-F = 56.4 Hz, 1H), 7.04 (s, 1H), 7.15 (dd, J = 8.4, 1.6 Hz, 1H), 7.41–7.60 (m, 4H), 7.90–7.94 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ (ppm) = 40.1, 102.6, 111.0, 114.5 (t, 1JC-F = 238.8 Hz), 115.7, 120.7, 125.0
(2C), 125.8, 126.1 (t, 3JC-F = 6.1 Hz), 129.2, 132.8, 134.1 (t, 2JC-F = 22.4 Hz), 135.0, 137.9, 153.9, 154.9.
HR-MS analyst [M + H]+ m/z (predicted) = 285.1091, m/z (measured) = 285.1088, difference = 1.08 ppm.

2.1.19. 5-Allyl-2-(2-chlorophenyl)benzo[b]furan (16h)

Prepared according to the general procedure B. 1H-NMR (200 MHz, CDCl3) δ (ppm) = 3.57
(d, J = 6.2 Hz, 2H), 4.90–5.03 (m, 2H), 5.95 (ddt, J = 17.0, 10.4, 6.7 Hz, 1H), 6.74 (d, J = 0.7 Hz, 1H),
7.17–7.67 (m, 6H), 7.76 (d, J = 8.1. Hz, 1H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 38.3, 104.5, 112.1,
116.3, 120.5, 124.4, 126.6, 129.1, 129.2, 129.5 (2C), 130.4, 130.7, 136.8, 138.0, 153.0, 157.1. HR-MS analyst
[M + H]+ m/z (predicted) = 269.0733, m/z (measured) = 269.0730, difference = 1.11 ppm.

2.1.20. 5-Allyl-2-(4-(methoxymethoxy)phenyl)benzo[b]thiophene (23a)

Prepared according to the general procedure B. mp 164–166 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 3.46–3.48 (m, 5H), 5.07–5.13 (m, 2H), 5.19 (s, 2H), 6.01 (ddt, J = 16.8, 10.1, 6.7 Hz, 1H), 7.06–7.13
(m, 3H), 7.35 (s, 1H), 7.53 (d, J = 0.7 Hz, 1H), 7.59–7.61 (m, 2H), 7.70 (d, J = 8.2 Hz, 1H). 13C-NMR
(100 MHz, CDCl3) δ (ppm) = 40.2, 56.1, 94.4, 115.8, 116.7 (2C), 118.4, 122.1, 123.0, 125.3, 127.7 (2C),
128.3, 136.5, 137.2, 137.7, 141.3, 144.3, 157.4. HR-MS analyst [M + H]+ m/z (predicted) = 311.1100,
m/z (measured) = 311.1108, difference = −2.62 ppm.

2.1.21. 5-Allyl-2-(4-methoxyphenyl)benzo[b]thiophene (23c)

Prepared according to the general procedure B. mp 146–147 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 3.49 (d, J = 6.7 Hz, 2H), 3.80 (s, 3H), 5.06–5.16 (m, 2H), 6.02 (ddt, J = 16.8, 10.2, 6.7 Hz, 1H),
6.90–6.98 (m, 2H), 7.13 (dd, J = 8.2, 1.6 Hz, 1H), 7.36 (s, 1H), 7.54 (s, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.71
(d, J = 8.2 Hz, 1H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 40.2, 55.4, 114.3 (2C), 115.8, 118.0, 122.0,
122.9, 125.1, 127.2, 127.7 (2C), 136.4, 137.1, 137.7, 141.3, 144.4, 159.8. HR-MS analyst [M + H]+ m/z
(predicted) = 281.0995, m/z (measured) = 281.1000, difference = −1.98 ppm.

2.1.22. General Procedure for Hydroboration-Oxidation on Allyl Benzo-Fused Heterocycles

Procedure C: 5-allyl benzo-fused derivatives (0.5 mmol, 1.0 equiv.) was dissolved in 0.5 mL dry
THF then the solution was cooled to 0 ◦C. A 1M solution of BH3

.THF (0.5 mL, 0.5 mmol, 1.0 equiv.)
was added slowly. Afterwards, the reaction solution was warmed to room temperature and stirred
for 24 h. On the other hand, a solution of 3M NaOH and H2O2 30% was mixed in ratio of 2:3 and
then cooled to 0 ◦C. After 24 h of reaction time, the reaction was cooled again to 0 ◦C and then the
prepared solution of NaOH and H2O2 (1.20 mL, 1.2 mmol NaOH and 7.8 mmol H2O2) was added
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slowly. The reaction mixture was stirred at room temperature for 4 more hours, then diluted with 5 mL
diethyl ether. The organic phase was washed with a saturated NH4Cl solution for 3 times, once with
brine and dried over Na2SO4. The solvent was removed under reduced pressure. Purification was
performed on silica gel eluting with LP/EtOAc mixtures.

2.1.23. 3-(2-(4-(Methoxymethoxy)phenyl)benzo[b]furan-5-yl)propan-1-ol (19a)

Prepared according to the general procedure C. mp 155–156 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 1.33 (s, 1H), 1.88–2.01 (m, 2H), 2.81 (t, J = 7.3 Hz, 2H), 3.51 (s, 3H), 3.70 (t, J = 6.4 Hz, 2H), 5.23 (s,
2H), 6.85 (s, 1H), 7.08–7.13 (m, 3H), 7.38–7.43 (m, 2H), 7.78 (d, J = 8.7 Hz, 2H). 13C-NMR (50 MHz, CDCl3)
δ (ppm) = 32.0, 34.8, 56.1, 62.3, 94.4, 99.8 110.7, 116.5 (2C), 120.0, 124.4, 124.5, 126.3 (2C), 129.6, 136.3,
153.4, 156.1, 157.5. HR-MS analyst [M + H]+ m/z (predicted) = 313.1434, m/z (measured) = 313.1431,
difference = 0.93 ppm.

2.1.24. 3-(2-(4-Methoxyphenyl)benzo[b]furan-5-yl)propan-1-ol (19c)

Prepared according to the general procedure C. mp 150–152 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 1.41 (s, 1H), 1.94 (ddt, J = 12.9, 8.9, 6.4 Hz, 2H), 2.80 (t, J = 7.2 Hz, 2H), 3.70 (t, J = 6.4 Hz,
2H), 3.86 (s, 3H), 6.83 (d, J = 0.8 Hz, 1H), 6.95–7.00 (m, 2H), 7.09 (dd, J = 8.4, 1.8 Hz, 1H), 7.36–7.41
(m, 2H), 7.76–7.80 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 32.0, 34.8, 55.4, 62.3, 99.5, 110.7,
114.2 (2C), 119.9, 123.5, 124.4, 126.4 (2C), 129.7, 136.3, 153.4, 156.3, 159.9. HR-MS analyst [M + H]+ m/z
(predicted) = 283.1329, m/z (measured) = 283.1339, difference = −3.63 ppm.

2.1.25. 3-(2-(3,5-Dimethoxyphenyl)benzo[b]furan-5-yl)propan-1-ol (19d)

Prepared according to the general procedure C. mp 66–68 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 1.43 (s, 1H), 1.94 (ddt, J = 12.9, 8.9, 6.4 Hz, 2H), 2.80 (t, J = 7.4 Hz, 2H), 3.70 (t, J = 6.4 Hz,
2H), 3.87 (s, 6H), 6.47 (t, J = 2.2 Hz, 1H), 6.95 (s, 1H), 7.01 (d, J = 2.2 Hz, 2H), 7.12 (dd, J = 8.4, 1.6 Hz,
1H), 7.39–7.44 (m, 2H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 32.0, 34.7, 55.5 (2C), 62.2, 101.0, 101.7,
103.0 (2C), 110.9, 120.3, 125.1, 129.5, 132.3, 136.5, 153.5, 155.9, 161.1 (2C). HR-MS analyst [M + H]+ m/z
(predicted) = 313.1434, m/z (measured) = 313.1430, difference = 1.32 ppm.

2.1.26. 3-(2-Phenylbenzo[b]furan-5-yl)propan-1-ol (19e)

Prepared according to the general procedure C. mp 128–129 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 1.39 (s, 1H), 1.95 (ddt, J = 12.9, 8.9, 6.4 Hz, 2H), 2.81 (t, J = 7.6 Hz, 2H), 3.71 (t, J = 6.4 Hz,
2H), 6.97 (d, J = 0.8 Hz, 1H), 7.13 (dd, J = 8.4, 1.8 Hz, 1H), 7.33–7.47 (m, 5H), 7.84–7.87 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ (ppm) = 32.0, 34.8, 62.3, 101.1, 110.9, 120.2, 124.9 (2C), 125.0, 128.5,
128.8 (2C), 129.4, 130.6, 136.5, 153.6, 156.2. HR-MS analyst [M + H]+ m/z (predicted) = 253.1223,
m/z (measured) = 253.1220, difference = 1.05 ppm.

2.1.27. 3-(2-(4-Fluorophenyl)benzo[b]furan-5-yl)propan-1-ol (19f)

Prepared according to the general procedure C. mp 124–126 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 1.41 (s, 1H), 1.94 (ddt, J = 12.9, 8.9, 6.4 Hz, 2H), 2.81 (t, J = 7.6 Hz, 2H), 3.72 (t, J = 6.4 Hz, 2H),
6.89 (d, J = 0.4 Hz, 1H), 7.11–7.15 (m, 3H), 7.33 (m, 2H), 7.80–7.84 (m, 2H). 13C-NMR (100 MHz, CDCl3)
δ (ppm) = 32.0, 34.8, 62.3, 100.9, 110.9, 115.9 (d, 2JC-F = 22.0 Hz, 2C), 120.2, 125.0, 126.7 (d, 3JC-F = 8.2 Hz,
2C), 126.9 (d, 4JC-F = 3.4 Hz), 129.4, 136.6, 153.6, 155.3, 162.9 (d, 1JC-F = 248.6 Hz). HR-MS analyst
[M + H]+ m/z (predicted) = 295.1329, m/z (measured) = 295.1327, difference = 0.69 ppm.

2.1.28. 3-(2-(4-(Difluoromethyl)phenyl)benzo[b]furan-5-yl)propan-1-ol (19g)

Prepared according to the general procedure C. mp 127–129 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 1.59 (s, 1H), 1.95 (ddt, J = 12.9, 8.9, 6.4 Hz, 2H), 2.82 (t, J = 7.6 Hz, 2H), 3.71 (t, J = 6.4 Hz, 2H),
6.68 (t, J = 56.4 Hz, 1H), 7.04 (s, 1H), 7.16 (dd, J = 8.4, 1.8 Hz, 1H), 7.41–7.45 (m, 2H), 7.58 (d, J = 8.2 Hz,
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2H), 7.92 (d, J = 8.5 Hz, 2H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 32.0, 34.7, 62.2, 102.5, 111.0, 114.5
(t, 1JC-F = 238.8 Hz), 120.5, 125.0 (2C), 125.6, 126.1 (t, 3JC-F = 6.1 Hz), 129.1, 132.8, 134.1 (t, 2JC-F = 22.4 Hz),
136.8, 153.8, 154.9. HR-MS analyst [M + H]+ m/z (predicted) = 303.1191, m/z (measured) = 303.1185,
difference = 2.17 ppm.

2.1.29. 3-(2-(2-Chlorophenyl)benzo[b]furan-5-yl)propan-1-ol (19h)

Prepared according to the general procedure C. 1H-NMR (400 MHz, CDCl3) δ (ppm) = 1.39 (s, 1H),
1.95 (ddt, J = 12.9, 8.9, 6.4 Hz, 2H), 2.81 (t, J = 7.6 Hz, 2H), 3.71 (t, J = 6.4 Hz, 2H), 6.61 (d, J = 1.9 Hz,
1H), 7.26–7.54 (m, 6H), 7.83 (dd, J = 7.7, 1.8 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 31.8, 36.0,
64.2, 104.1, 113.3, 120.4, 124.0, 127.4, 127.8, 128.4, 129.1, 129.1, 131.9, 132.5, 134.3, 151.8, 153.5. HR-MS
analyst [M + H]+ m/z (predicted) = 287.0833, m/z (measured) = 287.0826, difference = 2.71 ppm.

2.1.30. 3-(2-(4-(Methoxymethoxy)phenyl)benzo[b]thiophen-5-yl)propan-1-ol (24a)

Prepared according to the general procedure C. mp 170–172 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 1.44 (s, 1H), 1.95 (ddt, J = 12.9, 8.9, 6.4 Hz, 2H), 2.82 (t, J = 7.4 Hz, 2H), 3.50 (s, 3H), 3.71
(t, J = 6.4 Hz, 2H), 5.22 (s, 2H), 7.07–7.16 (m, 3H), 7.38 (s, 1H), 7.57 (d, J = 0.9 Hz, 1H), 7.57–7.64 (m, 2H),
7.72 (d, J = 8.2 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 32.0, 34.5, 56.1, 62.2, 94.4, 116.6 (2C),
118.3, 122.1, 122.8, 125.1, 127.7 (2C), 128.3, 137.0, 138.2, 141.2, 144.3, 157.4. HR-MS analyst [M + H]+ m/z
(predicted) = 329.1206, m/z (measured) = 329.1211, difference = −1.91 ppm.

2.1.31. 3-(2-(4-Methoxyphenyl)benzo[b]thiophen-5-yl)propan-1-ol (24c)

Prepared according to the general procedure C. mp 151–153 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 1.29 (s, 1H), 1.96 (ddt, J = 12.9, 8.9, 6.4 Hz, 2H, H-2′′), 2.82 (t, J = 7.4 Hz, 2H, H-1′′), 3.71 (t, J = 6.4 Hz,
2H), 3.85 (s, 3H), 6.94–6.96 (m, 2H), 7.08–7.16 (m, 1H), 7.36–7.38 (m, 1H), 7.57 (s, 1H), 7.62–7.64 (m, 2H),
7.71 (d, J = 8.2 Hz, 1H). 13C-NMR (50 MHz, C′DCl3) δ (ppm) = 32.0, 34.5, 55.4, 62.3 (C-3′′), 114.4 (2C),
118.0, 122.1, 122.7, 125.0, 127.71, 127.72 (2C), 136.9, 138.2, 141.2, 144.4, 159.8. HR-MS analyst [M + H]+ m/z
(predicted) = 299.1100, m/z (measured) = 299.1072, difference = 9.57 ppm.

2.1.32. General Procedure for Isomerization on Allyl Benzo-Fused Heterocycles

Procedure D: 5-allyl benzo-fused derivatives (0.5 mmol, 1.0 equiv.), Pd(dba)2 (5.8 mg, 0.01 mmol,
0.02 equiv.), P(tBu3).HBF4 (5.8 mg, 0.02 mmol, 0.04 equiv.) and iPrCOCl (10 µL, 10.6 mg, 0.1 mmol,
0.2 equiv.) was mixed in 1 mL of degassed DMAc. The mixture was stirred at 100 ◦C for 6 h in argon
atmosphere. The reaction mixture was cooled to room temperature and then diluted with 15 mL
ethylacetate and filtered through a pad of celite. The organic phase was washed with a saturated
NH4Cl solution for 3 times, once with brine and dried over Na2SO4. The solvent was removed under
reduced pressure. Purification was performed on silica gel eluting with LP or LP/EtOAc mixtures
(depending on the polarity of the product).

2.1.33. (E)-2-(4-(Methoxymethoxy)phenyl)-5-(prop-1-en-1-yl)benzo[b]furan (20a)

Prepared according to the general procedure D. mp 151–153 ◦C. 1H-NMR (200 MHz, CDCl3)
δ (ppm) = 1.90 (dd, J = 6.6, 1.5 Hz, 3H), 3.50 (s, 3H), 5.22 (s, 2H), 6.20 (dq, J = 15.6, 6.5 Hz, 1H),
6.48 (dd, J = 15.7, 1.3 Hz, 1H), 6.85 (s, 1H), 7.09–7.12 (m, 2H), 7.25–7.27 (m, 1H), 7.39–7.47 (m, 2H),
7.76–7.79 (m, 2H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 18.5, 56.1, 94.4, 100.1, 110.9, 116.5 (2C), 117.7,
122.1, 124.4, 124.5, 126.3 (2C), 129.7, 131.2, 133.2, 154.1, 156.3, 157.6. HR-MS analyst [M + H]+ m/z
(predicted) = 295.1329, m/z (measured) = 295.1328, difference = 0.22 ppm.

2.1.34. (E)-2-(4-Methoxyphenyl)-5-(prop-1-en-1-yl)benzo[b]furan (20c)

Prepared according to the general procedure D. mp 145–147 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 1.91 (dd, J = 6.6, 1.5 Hz, 3H), 3.86 (s, 3H), 6.22 (dq, J = 15.6, 6.5 Hz, 1H), 6.50 (dd, J = 15.7, 1.3 Hz,
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1H), 6.83 (d, J = 0.6 Hz, 1H), 6.96–6.99 (m, 2H), 7.25–7.28 (m, 1H), 7.40–7.47 (m, 2H), 7.77–7.79 (m, 2H).
13C-NMR (100 MHz, CDCl3) δ (ppm) = 18.5, 55.4, 99.7, 110.9, 114.3 (2C), 117.7, 122.0, 123.4, 124.3,
126.4 (2C), 129.8, 131.2, 133.2, 154.1, 156.4, 160.0. HR-MS analyst [M + H]+ m/z (predicted) = 265.1223,
m/z (measured) = 265.1223, difference = −0.01 ppm.

2.1.35. (E)-2-(3,5-Dimethoxyphenyl)-5-(prop-1-en-1-yl)benzo[b]furan (20d)

Prepared according to the general procedure D. 1H-NMR (200 MHz, CDCl3) δ (ppm) = 1.91
(d, J = 6.4 Hz, 3H), 3.88 (s, 6H), 6.22 (dq, J = 15.9, 6.5 Hz, 1H), 6.47–6.55 (m, 2H), 6.97–7.03 (m, 3H),
7.27–7.50 (m, 3H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 18.5, 55.5 (2C), 101.0, 101.9, 102.9 (2C), 111.0,
118.0, 122.6, 124.6, 129.4, 131.1, 132.2, 133.3, 154.1, 156.1, 161.1 (2C). HR-MS analyst [M + H]+ m/z
(predicted) = 313.1434, m/z (measured) = 313.1430, difference = 1.32 ppm.

2.1.36. (E)-2-Phenyl-5-(prop-1-en-1-yl)benzo[b]furan (20e)

Prepared according to the general procedure D. mp 126–128 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 1.92 (dd, J = 6.4, 1.8 Hz, 3H), 6.22 (dq, J = 15.9, 6.5 Hz, 1H), 6.51 (d, J = 15.9 Hz, 1H), 7.00 (s, 1H),
7.27–7.52 (m, 6H), 7.87 (m, 2H). 13C-NMR (50 MHz, CDCl3) δ (ppm) =18.5, 101.3, 111.0, 118.0, 122.5,
124.5, 124.9 (2C), 128.5, 128.8 (2C), 129.5, 130.5, 131.1, 133.3, 154.2, 156.3. HR-MS analyst [M + H]+ m/z
(predicted) = 235.1117, m/z (measured) = 235.1123, difference = −2.28 ppm.

2.1.37. (E)-2-(4-Fluorophenyl)-5-(prop-1-en-1-yl)benzo[b]furan (20f)

Prepared according to the general procedure D. mp 123–125 ◦C. 1H-NMR (400 MHz, CDCl3)
δ (ppm) = 1.91 (dd, J = 6.6, 1.5 Hz, 3H), 6.22 (dq, J = 15.6, 6.5 Hz, 1H), 6.50 (dd, J = 15.7, 1.3 Hz,
1H), 6.89 (s, 1H), 7.11–7.16 (m, 2H), 7.29–7.31 (dd, J = 8.6, 1.7 Hz, 1H), 7.41–7.49 (m, 2H), 7.80–7.83
(m, 2H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 18.5, 101.1, 111.0, 115.9 (d, 2JC-F = 21.8 Hz), 118.0,
122.6, 124.6, 126.7 (d, 3JC-F = 8.3 Hz), 126.8 (d, 4JC-F = 3.2 Hz), 129.5, 133.4, 136.5, 154.2, 155.4, 161.3
(d, 1JC-F = 247.2 Hz, 1C). HR-MS analyst [M + H]+ m/z (predicted) = 253.1023, m/z (measured) = 253.1027,
difference = −1.41 ppm.

2.1.38. (E)-2-(4-(Difluoromethyl)phenyl)-5-(prop-1-en-1-yl)benzo[b]furan (20g)

Prepared according to the general procedure D. mp 125–128 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 1.91 (dd, J = 6.6, 1.5 Hz, 3H), 6.23 (dq, J = 15.6, 6.5 Hz, 1H), 6.50 (dd, J = 15.7, 1.3 Hz, 1H),
6.68 (t, JH-F = 56.4 Hz, 1H), 7.05 (s, 1H), 7.32–7.34 (m, 2H), 7.51–7.59 (m, 3H), 7.92 (d, J = 8.4 Hz, 2H).
13C-NMR (50 MHz, CDCl3) δ (ppm) = 18.5, 102.7, 111.2, 114.5 (t, 1JC-F = 237.3 Hz), 118.2, 123.1, 124.8,
125.0 (2C), 126.1 (t, 3JC-F = 6.2 Hz), 129.2, 131.0, 132.7, 133.5, 134.1 (t, 2JC-F = 22.4 Hz), 154.4, 155.1.
HR-MS analyst [M + H]+ m/z (predicted) = 285.1091, m/z (measured) = 285.1084, difference = 2.13 ppm.

2.1.39. (E)-2-(2-Chlorophenyl)-5-(prop-1-en-1-yl)benzo[b]furan (20h)

Prepared according to the general procedure D. mp 66–68 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 1.94 (d, J = 6.5 Hz, 3H), 6.33 (dq, J = 15.6, 6.5 Hz, 1H), 6.55 (dd, J = 15.7, 1.3 Hz, 1H), 6.67–6.77
(m, 2H), 7.42–7.54 (m, 5H), 7.77–7.83 (m, 1H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 18.7, 105.6, 112.1,
120.4, 124.4, 125.1, 127.0, 127.4, 128.3, 128.5, 128.9, 129.0, 129.1, 130.0, 130.6, 153.0, 153.3. HR-MS analyst
[M + H]+ m/z (predicted) = 269.0728, m/z (measured) = 269.0730, difference = −0.88 ppm.

2.1.40. (E)-2-(4-(Methoxymethoxy)phenyl)-5-(prop-1-en-1-yl)benzo[b]thiophene (25a)

Prepared according to the general procedure D. mp 173–174 ◦C. 1H-NMR (400 MHz, CDCl3) δ
(ppm) = 1.91 (dd, J = 6.6, 1.5 Hz, 3H), 3.50 (s, 3H), 5.21 (s, 2H), 6.28 (dq, J = 15.6, 6.5 Hz, 1H), 6.50 (dd,
J = 15.8, 1.5 Hz, 1H), 7.08–7.10 (m, 2H), 7.32 (dd, J = 8.4, 2.6 Hz, 1H), 7.39 (s, 1H), 7.61–7.64 (m, 3H),
7.70 (d, J = 8.4 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ (ppm) = 18.5, 56.1, 94.4, 116.6 (2C), 118.5, 120.6,
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122.1 (2C), 125.3, 127.7 (2C), 128.2, 131.1, 134.7, 137.7, 141.3, 144.4, 157.4. HR-MS analyst [M + H]+ m/z
(predicted) = 310.1022, m/z (measured) = 310.1025, difference = −1.01 ppm.

2.1.41. (E)-2-(4-Methoxyphenyl)-5-(prop-1-en-1-yl)benzo[b]thiophene (25c)

Prepared according to the general procedure D. mp 154–156 ◦C. 1H-NMR (200 MHz, CDCl3)
δ (ppm) = 1.93 (d, J = 6.5 Hz, 3H), 3.86 (s, 3H), 6.29 (dq, J = 15.6, 6.5 Hz, 1H), 6.51 (d, J = 15.6 Hz,
1H), 6.96 (d, J = 8.6 Hz, 2H), 7.27–7.39 (m, 2H), 7.62–7.74 (m, 4H). 13C-NMR (50 MHz, CDCl3) δ

(ppm) = 18.5, 55.4, 114.3 (2C), 118.2, 120.6, 122.0, 122.1, 125.2, 127.1, 127.7 (2C), 131.1, 134.6, 137.6,
141.3, 144.5, 159.8. HR-MS analyst [M + H]+ m/z (predicted) = 281.0995, m/z (measured) = 281.1004,
difference = −3.48 ppm.

2.1.42. General Procedure for De-Protection of MOM Group

Procedure D: MOM protected substrate (0.1 mmol, 1.0 equiv.) was dissolved in 0.5 mL MeOH.
A 1N solution of HCl (50 µL, 0.05 mol, 0.5 equiv.) was added subsequently. The mixture was stirred at
65 ◦C for 30 min. The reaction mixture was cooled to room temperature and then diluted with 15 mL
Et2O. The organic phase was washed with a saturated NH4Cl solution for 3 times, once with brine and
dried over Na2SO4. The solvent was removed under reduced pressure. Purification was performed on
silica gel eluting with LP/EtOAc 3:1 to obtain the desired product.

2.1.43. 4-(5-Allylbenzo[b]furan-2-yl)phenol (16b)

Prepared according to the general procedure E. mp 165–168 ◦C. 1H-NMR (400 MHz, acetone-d6) δ
(ppm) = 3.33 (d, J = 6.7 Hz, 2H, H-1′′), 4.88–4.99 (m, 2H, H-3′′), 5.88 (ddt, J = 16.8, 10.4, 6.7 Hz, 1H,
H-2′′), 6.82–6.84 (m, 2H), 6.89 (s, 1H), 6.96 (dd, J = 8.5, 1.2 Hz, 1H), 7.26–7.31 (m, 2H), 7.63–7.65 (m, 2H),
8.60 (s, 1H, ArOH). 13C-NMR (100 MHz, acetone-d6) δ (ppm) = 39.8 (C-1′′), 99.1, 110.4, 114.7, 115.8
(2C), 120.2, 122.2, 124.5, 126.4 (2C), 129.9, 134.8, 138.3, 153.4, 156.6, 158.2. HR-MS analyst [M + H]+ m/z
(predicted) = 251.1067, m/z (measured) = 251.1062, difference = 1.82 ppm.

2.1.44. 4-(5-(3-Hydroxypropyl)benzo[b]furan-2-yl)phenol (19b)

Prepared according to the general procedure E. mp 194–196 ◦C. 1H-NMR (200 MHz, acetone-d6) δ
(ppm) = 1.89 (ddt, J = 12.9, 8.9, 6.4 Hz, 2H), 2.80 (t, J = 7.2 Hz, 2H), 2.95 (s, 1H), 3.62 (t, J = 6.4 Hz, 2H),
6.95–6.97 (m, 3H), 7.10–7.13 (m, 1H), 7.39–7.40 (m, 2H), 7.75–7.77 (m, 2H), 8.66 (s, 1H). 13C-NMR (50 MHz,
acetone-d6) δ (ppm) = 31.9, 35.1, 61.0, 99.1, 110.3, 115.7 (2C), 119.9, 122.2, 124.4, 126.3 (2C), 129.7, 137.0,
153.2, 156.5, 158.0. HR-MS analyst [M + H]+ m/z (predicted) = 269.1172, m/z (measured) = 269.1183,
difference = −3.87 ppm.

2.1.45. (E)-4-(5-(Prop-1-en-1-yl)benzo[b]furan-2-yl)phenol (6)

Prepared according to the general procedure E. mp 198–199 ◦C. 1H-NMR (200 MHz, acetone-d6) δ
(ppm) = 1.87 (dd, J = 6.6, 1.2 Hz, 3H), 6.26 (dq, J = 15.6, 6.6 Hz, 1H), 6.51 (d, J = 15.8 Hz, 1H), 6.98–7.02
(m, 3H), 7.32 (dd, J = 8.6, 1.1 Hz, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.54 (s, 1H), 7.78–7.80 (m, 2H), 8.76
(s, 1H). 13C-NMR (50 MHz, acetone-d6) δ (ppm) = 17.7, 99.3, 110.6, 115.8 (2C), 117.7, 121.9, 122.1, 123.9,
126.5 (2C), 130.0, 131.2, 133.3, 153.9, 156.8, 158.2. HR-MS analyst [M + H]+ m/z (predicted) = 251.1067,
m/z (measured) = 251.1057, difference = 3.71 ppm.

2.1.46. 4-(5-(3-Hydroxypropyl)benzo[b]thiophen-2-yl)phenol (24b)

Prepared according to the general procedure E. mp 217–219 ◦C. 1H-NMR (400 MHz, acetone-d6) δ
(ppm) = 1.74 (tt, J = 7.5, 6.2 Hz, 2H), 2.67 (t, J = 7.6 Hz, 2H), 2.73 (s, 1H), 3.46 (t, J = 5.8 Hz, 2H), 6.79–6.81
(m, 2H), 7.06 (dd, J = 8.2, 1.6 Hz, 1H), 7.38 (s, 1H), 7.47–7.65 (m, 4H), 8.54 (s, 1H). 13C-NMR (100 MHz,
acetone-d6) δ (ppm) = 31.9, 34.9, 60.8, 115.9, 117.8, 121.8, 122.7, 125.1, 125.9, 127.6 (2C), 136.3, 139.0,
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141.5, 144.4, 157.9. HR-MS analyst [M + H]+ m/z (predicted) = 285.0944, m/z (measured) = 285.0934,
difference = 3.56 ppm.

2.1.47. (E)-4-(5-(Prop-1-en-1-yl)benzo[b]thiophen-2-yl)phenol (25b)

Prepared according to the general procedure E. mp 212–213 ◦C. 1H-NMR (200 MHz, CDCl3) δ
(ppm) = 1.74 (dd, J = 6.6, 1.6 Hz, 3H), 6.21 (dq, J = 15.7, 6.6 Hz, 1H), 6.38 (dd, J = 15.8, 1.5 Hz, 1H),
6.79–6.81 (m, 2H), 7.23 (dd, J = 8.4, 1.7 Hz, 1H), 7.37 (s, 1H), 7.47–7.49 (m, 2H), 7.56 (d, J = 1.2 Hz, 1H),
7.63 (d, J = 8.4 Hzt, 1H), 8.54 (s, 1H). 13C-NMR (50 MHz, CDCl3) δ (ppm) = 17.8, 115.9 (2C), 117.9, 120.6,
122.0, 124.8, 125.7, 127.6 (2C), 127.6, 131.1, 134.8, 137.3, 141.6, 144.8, 158.0. HR-MS analyst [M + H]+ m/z
(predicted) = 267.0838, m/z (measured) = 267.0830, difference = 3.22 ppm.

2.2. NF-κB Transactivation Activity

Measurement of the NF-κB transactivation activity was essentially performed as described previously [9].
Briefly, HEK-293 cells stably transfected with a NF-κB luciferase reporter (HEK293/NF-κB-luc cells, Panomics,
RC0014) were loaded with CTG CMFDA (5-chloromethylfluorescein diacetate, Invitrogen) to stain living
cells. 4 × 104 cells were seeded in 96-well plates and incubated at 37 ◦C and 5% CO2 overnight. On the
next day, the medium was exchanged with a serum-free DMEM and cells were treated with the respective
test compounds dissolved in dimethyl sulfoxide (DMSO). To avoid nonspecific effects of the solvent,
the final concentration of DMSO was always adjusted to 0.1%. One hour after the treatment, cells were
stimulated with 2 ng/mL human recombinant TNF-α for 4 h. Then cells were lysed by a reporter lysis
buffer (Promega, Madison, WI, USA). The luminescence of the firefly luciferase and the CTG fluorescence
were quantified on a GeniosPro plate reader (Tecan, Grödig, Austria). The luciferase signal derived from
the NF-κB reporter was normalized by the CTG-derived fluorescence to account for differences in the cell
number or transfection efficiency.

3. Results and Discussion

Based on the results presented in the introduction, we were interested to synthesize and evaluate
benzofuran-based lignans of general structure I (Figure 2). The synthetic strategy should be modular,
efficient, and applicable to the synthesis of a wide range of derivatives, ideally from common
intermediates. Breaking the strategic bonds as indicated in Figure 2, three fragments A, B, and C,
are obtained which suggest the application of a direct arylation/cross coupling strategy, which introduces
the aryl moiety in position two of general structure II via direct arylation and the alkyl or alkenyl
chain in position five of the same fragment via a cross-coupling methodology, e.g., with an allyl
boronic acid ester such as IV. For the direct arylation protocol we had previously developed an
efficient protocol optimized for benzo-fused heterocyclic systems [10]. Hence, the main synthetic
task was developing a suitable cross-coupling method introducing the desired residues in position
five of building block II and subsequent elaboration of the olefin function towards the substituents
identified for the naturally occurring compounds. Naturally, there are many ways to synthesize
substituted benzofurans [11], and also the type of structure we are aiming for has been synthesized
previously. For example, Duan et al. used a strategy in which the benzofuran core was constructed
individually for each derivative synthesized [12]. This strategy is conveniently applicable for a small
set of compounds, however, when a larger library of derivatives is targeted, it is lacking the modularity
we were aiming for.

Consequently, fragment B was designed as a 5-halo-benzo[b]furan (general structure II, Figure 2).
This building block offers two possibilities: Initial allylation at C5 and subsequent C2 arylation,
or, alternatively, initial C2 arylation followed by C5-allylation. Since the direct arylation protocol
uses aryl bromides as coupling partners, the allylation reaction should be carried out first to avoid
homo-coupling between two 5-bromobenzofuran entities. The resulting 5-allyl benzofuran should
then be arylated in position two, however it has to be considered that the terminal double bond
could react in an undesired Mizoroki-Heck reaction. In case the order of events should be reversed,
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5-chlorobenzofuran would need to be applied to avoid or at least suppress the aforementioned problem.
To develop the most efficient protocol, it was decided to investigate both approaches. For introducing
the side chain in position five, introduction of an allyl substituent is the ideal option, since the
allyl substituent can be further transformed into 3-hydroxyl-propyl by a hydroboration-oxidation
sequence [13–15] or to a 2-propenyl residue by an isomerization reaction [16–23].
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Initially, 5-bromobenzo[b]furan 12 was tested as starting material (Scheme 1) [24–27]. The subsequent
allylation reaction with 13 worked well using a Suzuki-Miyaura protocol with Pd(PPh3)2Cl2 as catalyst,
K2CO3 as base and in DMAc solvent. Product 14 was obtained in 58% yield. Next, a direct arylation
should introduce the aryl residue in position two, giving rise to 16. Unfortunately, the direct arylation
reaction did not take place and only product 15 derived from competing Mizoroki-Heck coupling was
found, instead.
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Hence, the alternative approach using 5-chlorobenzo[b]furan 17 as starting material was investigated
(Scheme 2) [24,28]. In our previous publication [10], it was observed that aryl chlorides were unreactive as
coupling partners under the reaction conditions and, hence, homo-coupling of the benzofuran starting
material should not be an issue.
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Before direct arylation was tested on this substrate, the allylation in position five had to be
established. Using the same allylation conditions as for 5-bromobenzofuran 12 did not lead to any
conversion towards 14 and, hence, the Suzuki-Miyaura reaction had to be optimized. Several conditions
for Suzuki-Miyaura reactions on chloride substrates have been reported [29–32], mainly using elaborate
catalyst/ligand systems. However, the method of Thimmaiah et al. used common catalysts and ligands
and was therefore very appealing for our purposes of an efficient and simple protocol [30]. After a
quick optimization, 5-allylbenzo[b]furan 14 could be synthesized using Pd2 (dba)3 as catalyst, SPhos as
ligand, Cs2CO3 as base in dioxane, 100 ◦C and for 5 h giving an isolated yield of 14 of 68% (Scheme 2).

Subsequently, the direct arylation protocol was tested on 5-chlorobenzofuran 17 using our previously
developed protocol [10]. Gratifyingly, 17 reacted selectively with 1-bromo-4-(methoxymethoxy) benzene
giving product 18a as sole compound in 60% yield after only three hours reaction time. Compound 18a
was subsequently submitted to the optimized Suzuki-Miyaura conditions to obtain product 16a in 69%
yield (Scheme 2).

Product 16a represents a key compound for the synthetic route. From 16a, a hydroboration-oxidation
sequence [13–15] using BH3

.THF 1M for the first step and NaOH, H2O2 in THF for the second step was
utilized in situ to obtain alcohol 19a with 42% isolated yield. The MOM protecting group was cleaved in
methanol with traces of concentrated HCl subsequently to obtain the final product 19b (Scheme 3).

For the isomerization of 16a several different methods are reported using transition metal
catalyst [16–23]. Only Gauthier et al. [23] used palladium catalyst with bulky ligand [23] to migrate
the double bond into conjugation with the aryl ring with very good stereoselectivity. Using Pd(dba)2

as catalyst and P(tBu)3
.HBF4 as ligand product 20a was obtained in E configuration with 75% yield.

De-protection by concentrated HCl in methanol removed the MOM protective group to get final
product 6 (Scheme 3).

For structure activity relationship studies, the developed synthetic sequence should also be applied
for the synthesis of bioisosteric benzo[b]thiophene derivatives. Required 5-chlorobenzo[b]thiophene 21
was synthesized according to a literature protocol [33]. The direct arylation reaction on 21 was also
selective giving 22a in 58% yield. Allylation via Suzuki-Miyaura coupling on 22a worked under the
identical conditions as developed for the benzofuran series, albeit in somewhat lower yield giving 23a
in 46% (Scheme 4).
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With a practical synthesis route for benzo[b]furan and benzo[b]thiophene compounds at hand,
a group of lignan-like compounds based on those heterocyclic rings was prepared to evaluate their
biological properties as anti-inflammatory agents.

Initially, a series of direct arylation reactions was conducted (Table 1) with aryl moieties carrying
electron donating and electron withdrawing substituents. The nature of the substituent had only a
minor influence on the yield of this transformation. In the benzofuran series, aryl bromides carrying
electron donating substituents such as OMOM or methoxy gave 10–15% higher yields in the arylation
step (see Table 1 examples 18a, 18c and 18d) as compared to substituents with no or an electron
withdrawing effect (see Table 1 examples 18e–h). In the benzothiophene series only two examples
were synthesized and hence a general trend cannot be deduced.

Table 1. Direct arylation and subsequent allylation.
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Entry X R1 Product Yield (%) Product Yield (%)

1 O 4-OMOM 18a 60% 16a 69%
2 O 4-OH 18b n.s. 16b 91% 1

3 O 4-OMe 18c 58% 16c 70%
4 O 3,5-dimethoxy 18d 51% 16d 66%
5 O H 18e 44% 16e 74%
6 O 4-F 18f 41% 16f 72%
7 O 4-CHF2 18g 45% 16g 69%
8 O 2-Cl 18h 44% 16h 51%
9 S 4-OMOM 22a 58% 23a 46%
10 S 4-OMe 22c 31% 23c 58%

n.s. not synthesized; 1 via MOM-deprotection from 16a, the yield refers only to the deprotection step.

The subsequent allylation reactions worked well on all benzofuran substrates giving yields in
the range of 66–74%. Only the 2-Cl product 16h was obtained in somewhat lower yield of 51%.
Important to note: compound 16b was obtained via MOM-deprotection of 16a in 91% yield rather than
via allylation of the corresponding 4-OH-aryl precursor 18b. The direct arylation procedure turned out
not to tolerate a free OH group, hence, requiring this alternate approach to 18b.

The hydroboration-oxidation sequence towards the terminal alcohol products 19a–h (benzofuran
series) and 24a–c (benzothiophene series) proceeded with similar efficiency (40–53% yield) independent
of the substituents present on the aryl ring (Table 2, left). Again, it should be noted that the 4-OH
products 19b and 24b were obtained in excellent yield via MOM-deprotection of 19a and 24a respectively.
The same is true for the double bond isomerization (Table 2, right). Benzofuran products 20a–h and
benzothiophene compounds 25a–c were obtained in yields between 57–77% yield. Also, in this case
the 4-OH products 6 and 25b were obtained in excellent yield via MOM-deprotection of 20a and
25a, respectively.

Since the pharmacological characterization of the lignan derivatives isolated from Krameria lappaceae
revealed as most relevant in vitro anti-inflammatory activity inhibition of the NF-κB signaling pathway,
we decided to use again a luciferase reporter model to quantify the transactivation activity of NF-κB [8].
For this, we used HEK293 cells stably transfected with a NF-κB-driven luciferase reporter gene that
were loaded with fluorescent Cell Tracker Green to allow luciferase-derived signal normalization to
the amount of viable cells. Cells were then treated with test compounds at the indicated concentration
or vehicle for 30 min and then stimulated with TNF-α (2 ng/mL) for four hours. Luminescence and
fluorescence was quantified in cell lysates by a Genios Pro plate reader (Tecan) [34].
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Table 2. Hydroboration-oxidation and isomerization.

Biomolecules 2020, 10, x 15 of 21 

6 O 4-F 18f 41% 16f 72% 
7 O 4-CHF2 18g 45% 16g 69% 
8 O 2-Cl 18h 44% 16h 51% 
9 S 4-OMOM 22a 58% 23a 46% 

10 S 4-OMe 22c 31% 23c 58% 
n.s. not synthesized; 1 via MOM-deprotection from 16a, the yield refers only to the deprotection step. 

The hydroboration-oxidation sequence towards the terminal alcohol products 19a–h 
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9 S 4-OMOM 24a 46% 25a 71% 

10 S 4-OH 24b 89%2 25b 90%4 
11 S 4-OMe 24c 45% 25c 57% 

1 the yield refers to the MOM-deprotection step of 19a; 2 the yield refers to the MOM-deprotection 
step of 24a; 3 the yield refers to the MOM-deprotection step of 20a; 4 the yield refers to the MOM-
deprotection step of 25a. 
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signaling pathway, we decided to use again a luciferase reporter model to quantify the 
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luciferase-derived signal normalization to the amount of viable cells. Cells were then treated with 
test compounds at the indicated concentration or vehicle for 30 min and then stimulated with TNF-
α (2 ng/mL) for four hours. Luminescence and fluorescence was quantified in cell lysates by a Genios 
Pro plate reader (Tecan) [34]. 
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The biological data are compiled in Table 3. With the current synthetic route towards target 
compounds, structural diversity at position five of the benzo-heteroaromatic core could be further 
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3 the yield refers to the MOM-deprotection step of 20a; 4 the yield refers to the MOM-deprotection step of 25a.

4. Discussion

The biological data are compiled in Table 3. With the current synthetic route towards target
compounds, structural diversity at position five of the benzo-heteroaromatic core could be further
extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested
carrying an allyl group (entry 1, 16e), a 1-propenyl group (entry 2, 20e), or a 1-hydroxy-propan-3-yl group
(entry 3, 19e) in position five of the benzofuran scaffold. NF-κB inhibition was measured initially at
concentrations of 10 µM and/or at 20 µM. IC50 values were determined for compounds with a significant
and concentration-dependent inhibitory activity at these concentrations. Within this initial series, it was
found that the propanol substituted derivative 19e (entry 3) showed the highest inhibition (0.1-fold
activation at 10 µM and 0.03-fold activation at 20 µM) and already a low IC50 value of 1.42 µM. The 5-allyl
substituted derivative 16e as well as the 5-(1-propenyl) derivative 20e showed significantly lower inhibition,
whereas the latter one gave the lowest activity (0.36 at 10 µM entry 1 vs. 0.66 at 10 µM entry 2).

Table 3. Pharmacological data.

Entry Compound Structure Fold Activation
NF-κB (10 µM)

Fold Activation
NF-κB (20 µM)

IC50
(NF-κB, µM)
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extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested 
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extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested 
carrying an allyl group (entry 1, 16e), a 1-propenyl group (entry 2, 20e), or a 1-hydroxy-propan-3-yl 
group (entry 3, 19e) in position five of the benzofuran scaffold. NF-κB inhibition was measured 
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extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested 
carrying an allyl group (entry 1, 16e), a 1-propenyl group (entry 2, 20e), or a 1-hydroxy-propan-3-yl 
group (entry 3, 19e) in position five of the benzofuran scaffold. NF-κB inhibition was measured 
initially at concentrations of 10 µM and/or at 20 µM. IC50 values were determined for compounds 
with a significant and concentration-dependent inhibitory activity at these concentrations. Within 
this initial series, it was found that the propanol substituted derivative 19e (entry 3) showed the 
highest inhibition (0.1-fold activation at 10 µM and 0.03-fold activation at 20 µM) and already a low 
IC50 value of 1.42 µM. The 5-allyl substituted derivative 16e as well as the 5-(1-propenyl) derivative 
20e showed significantly lower inhibition, whereas the latter one gave the lowest activity (0.36 at 10 
µM entry 1 vs. 0.66 at 10 µM entry 2). 
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extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested 
carrying an allyl group (entry 1, 16e), a 1-propenyl group (entry 2, 20e), or a 1-hydroxy-propan-3-yl 
group (entry 3, 19e) in position five of the benzofuran scaffold. NF-κB inhibition was measured 
initially at concentrations of 10 µM and/or at 20 µM. IC50 values were determined for compounds 
with a significant and concentration-dependent inhibitory activity at these concentrations. Within 
this initial series, it was found that the propanol substituted derivative 19e (entry 3) showed the 
highest inhibition (0.1-fold activation at 10 µM and 0.03-fold activation at 20 µM) and already a low 
IC50 value of 1.42 µM. The 5-allyl substituted derivative 16e as well as the 5-(1-propenyl) derivative 
20e showed significantly lower inhibition, whereas the latter one gave the lowest activity (0.36 at 10 
µM entry 1 vs. 0.66 at 10 µM entry 2). 
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Table 3. Cont.

Entry Compound Structure Fold Activation
NF-κB (10 µM)

Fold Activation
NF-κB (20 µM)

IC50
(NF-κB, µM)
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extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested 
carrying an allyl group (entry 1, 16e), a 1-propenyl group (entry 2, 20e), or a 1-hydroxy-propan-3-yl 
group (entry 3, 19e) in position five of the benzofuran scaffold. NF-κB inhibition was measured 
initially at concentrations of 10 µM and/or at 20 µM. IC50 values were determined for compounds 
with a significant and concentration-dependent inhibitory activity at these concentrations. Within 
this initial series, it was found that the propanol substituted derivative 19e (entry 3) showed the 
highest inhibition (0.1-fold activation at 10 µM and 0.03-fold activation at 20 µM) and already a low 
IC50 value of 1.42 µM. The 5-allyl substituted derivative 16e as well as the 5-(1-propenyl) derivative 
20e showed significantly lower inhibition, whereas the latter one gave the lowest activity (0.36 at 10 
µM entry 1 vs. 0.66 at 10 µM entry 2). 
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extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested 
carrying an allyl group (entry 1, 16e), a 1-propenyl group (entry 2, 20e), or a 1-hydroxy-propan-3-yl 
group (entry 3, 19e) in position five of the benzofuran scaffold. NF-κB inhibition was measured 
initially at concentrations of 10 µM and/or at 20 µM. IC50 values were determined for compounds 
with a significant and concentration-dependent inhibitory activity at these concentrations. Within 
this initial series, it was found that the propanol substituted derivative 19e (entry 3) showed the 
highest inhibition (0.1-fold activation at 10 µM and 0.03-fold activation at 20 µM) and already a low 
IC50 value of 1.42 µM. The 5-allyl substituted derivative 16e as well as the 5-(1-propenyl) derivative 
20e showed significantly lower inhibition, whereas the latter one gave the lowest activity (0.36 at 10 
µM entry 1 vs. 0.66 at 10 µM entry 2). 
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extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested 
carrying an allyl group (entry 1, 16e), a 1-propenyl group (entry 2, 20e), or a 1-hydroxy-propan-3-yl 
group (entry 3, 19e) in position five of the benzofuran scaffold. NF-κB inhibition was measured 
initially at concentrations of 10 µM and/or at 20 µM. IC50 values were determined for compounds 
with a significant and concentration-dependent inhibitory activity at these concentrations. Within 
this initial series, it was found that the propanol substituted derivative 19e (entry 3) showed the 
highest inhibition (0.1-fold activation at 10 µM and 0.03-fold activation at 20 µM) and already a low 
IC50 value of 1.42 µM. The 5-allyl substituted derivative 16e as well as the 5-(1-propenyl) derivative 
20e showed significantly lower inhibition, whereas the latter one gave the lowest activity (0.36 at 10 
µM entry 1 vs. 0.66 at 10 µM entry 2). 
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extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested 
carrying an allyl group (entry 1, 16e), a 1-propenyl group (entry 2, 20e), or a 1-hydroxy-propan-3-yl 
group (entry 3, 19e) in position five of the benzofuran scaffold. NF-κB inhibition was measured 
initially at concentrations of 10 µM and/or at 20 µM. IC50 values were determined for compounds 
with a significant and concentration-dependent inhibitory activity at these concentrations. Within 
this initial series, it was found that the propanol substituted derivative 19e (entry 3) showed the 
highest inhibition (0.1-fold activation at 10 µM and 0.03-fold activation at 20 µM) and already a low 
IC50 value of 1.42 µM. The 5-allyl substituted derivative 16e as well as the 5-(1-propenyl) derivative 
20e showed significantly lower inhibition, whereas the latter one gave the lowest activity (0.36 at 10 
µM entry 1 vs. 0.66 at 10 µM entry 2). 
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extended regarding the location of the olefinic system. Initially, 2-phenyl benzofurans were tested 
carrying an allyl group (entry 1, 16e), a 1-propenyl group (entry 2, 20e), or a 1-hydroxy-propan-3-yl 
group (entry 3, 19e) in position five of the benzofuran scaffold. NF-κB inhibition was measured 
initially at concentrations of 10 µM and/or at 20 µM. IC50 values were determined for compounds 
with a significant and concentration-dependent inhibitory activity at these concentrations. Within 
this initial series, it was found that the propanol substituted derivative 19e (entry 3) showed the 
highest inhibition (0.1-fold activation at 10 µM and 0.03-fold activation at 20 µM) and already a low 
IC50 value of 1.42 µM. The 5-allyl substituted derivative 16e as well as the 5-(1-propenyl) derivative 
20e showed significantly lower inhibition, whereas the latter one gave the lowest activity (0.36 at 10 
µM entry 1 vs. 0.66 at 10 µM entry 2). 
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Table 3. Cont.

Entry Compound Structure Fold Activation
NF-κB (10 µM)

Fold Activation
NF-κB (20 µM)

IC50
(NF-κB, µM)
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Naturally occurring benzofuran lignans contain at least one oxygen functionality (OH or OMe) in
the aryl ring in position two, compounds 16b, 19b, and 6 with a 4-hydroxyphenyl group in that position
and the three different side chains in position five were tested (entries 4–6). Obviously, the hydroxyl
group is very important for NF-κB inhibition since all three derivatives show significant inhibition
at both, 10 and 20 µM concentration. Due to the small differences in the inhibitory effect, a trend
between the three derivatives cannot be deduced, however, again the propanol substituted derivative
19b (entry 6) showed the lowest IC50 value with 1.24 µM, which is also the lowest value of all
tested compounds.

When a methoxy group is placed in position four of the phenyl ring instead of a hydroxy group,
the trend that the highest inhibition is found with 5-propanol substituted benzofurans (entry 9,
compound 19c) followed by 5-allyl (entry 7, compound 16c) and 5-propenyl (entry 8, compound
20c) is clearly reestablished. Compound 19c (entry 9) shows a similar inhibitory effect as the other
two propanol substituted derivatives (entries 3 and 6 compounds 19e and 19b) but with a significantly
higher IC50 value of 3.82 µM (vs. 1.42 entry 3, and 1.24 entry 6). Naturally, the methoxy group in 19c is
significantly larger than a proton (as in 19e) or a hydroxy group (as in 19b) and it was speculated that
this size difference might have an influence on the IC50 values. Hence, in a next set of compounds,
the methoxy group was substituted for a MOM group, which further increases the steric bulk.

In this set of compounds (entries 10–12, compounds 16a, 20a, and 19a respectively), significant
inhibitory effects were found with the 5-allyl- and 5-propanol substituted derivatives 16a and 19a,
but only at the higher concentration of 20 µM. The 0.03-fold NF-κB activation of 19a matches however
the best values obtained so far. However, as hypothesized, the IC50 value is significantly higher with
9.22 µM (entry 12). Interestingly, 16a gave a very low IC50 value of 1.31 µM. This supports the argument
that steric bulk in the phenyl ring influences the IC50 values.

Since naturally occurring benzofuran lignans often carry two oxygen functionalities (OH, OMe),
it was tried to access such compounds synthetically. Unfortunately, our synthetic method allowed us only
access to 3,5-dimethoxy substituted derivatives 16d, 20d, and 19d (entries 13–15). Again, the 5-propanol
substituted derivative 19d (entry 15) showed highest NF-κB inhibition (0.20 at 10 µM) and the overall
highest NF-κB inhibition of 0.003 at 20µM. The IC50 value for this compound was surprisingly low (1.92µM,
entry 15), which is contradicting the steric argument previously considered. However, this compound
is the only one carrying a 3,5-disubstituted phenyl ring and additional derivatives incorporation this
substitution pattern would be required to further establish structure-activity relationship. The two oxygen
moieties might lead to favorable interactions, which predominate over steric effects.

At this point it is safe to say that a propanol substituent in position five usually gives highest NF-κB
inhibition, which is sometimes matched by 5-allyl substituted derivatives. The propenyl derivatives
are largely inactive and were excluded in further biological evaluation.

So far only electron donating substituents on the phenyl ring were considered, in line with the
substitution pattern of the natural products. Since fluorine substituents often beneficially influence factors
such as lipophilicity and hence also biological activity, two fluorine containing derivatives were tested as
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well (19g entry 16 and 19f entry 17), both carrying the 5-propanol residue. NF-κB inhibition was mediocre
in both compounds (entries 16 and 17) at 10 µM concentration, however at 20 µm, especially 19f showed
significant inhibition. The IC50 values again showed the trend that the larger 4-CHF2 substituent gave a
significantly higher IC50 value (19g, entry 16, 8.52 µM) as compared to the 4-F substituted derivative (19f,
entry 17, 2.20 µM).

In one example (19h), ortho substitution in the phenyl ring was tested as well, but no significant
NF-κB inhibition was obtained (entry 18).

In a next series of compounds, we tested whether the benzofuran core could be substituted
by other benzothiophene. Hence, several benzothiophene derivatives were synthesized and the
4-hydroxyphenyl- (24b, entry 19), 4-methoxyphenyl- (24c, entry 20) and 4-MOM-phenyl- (24a, entry 21)
derivatives were tested. In all three examples position five was substituted by the propanol side-chain.
The MOM substituted derivative did not show NF-κB inhibition (entry 21), which is surprising since the
corresponding benzofuran derivative (entry 9) was amongst the most active ones. The 4-OH (entry 19)
and 4-MeO (entry 20) derivative showed NF-κB inhibition, especially at the higher concentration
of 20 µM, however the corresponding IC50 values were significantly higher as compared to their
benzofuran counterparts (see entry 6 vs entry 19 and entry 9 vs. entry 20).

A comparison of the pharmacological data of our synthesized compounds and the benzofuran
lignans isolated from krameria lappacea roots (Figure 1, compounds 1, 2, and 5–9) shows that the IC50

values of several compounds are in the same range (or even lower) as the most active natural product 6.
For compound 6 an IC50 of 1.4 µM was reported in literature for the natural product isolate and
we measured a similar value of 2.86 µM in our assay with a synthetic sample of 6. Compound 19b,
which differs from 6 only in the sidechain (19b: 3-hydroxypropyl, 6: prop-1-en-1-yl) gave an IC50 value
of 1.24 µM. The difference between synthetic and natural 6 should not be overinterpreted, since the
values stem from different measurement series carried out by different researchers.

5. Conclusions

It was found that the propanol side chain in position five is required for good inhibitory activity,
independent of the underlying scaffold (benzofuran or benzothiophene). Some 5-allyl compounds
do show activity as well, however those are the exception, and 5-propenyl derivatives are basically
inactive. The IC50 values seem to correlate with steric bulk in the aryl-moiety in position two, a finding
which we want to confirm further in subsequent studies. The larger the substituents get in this ring,
the higher the IC50 values become. It can be speculated that there is a certain size restriction in the
active site in this position. One examples does not follow this trend, however, in comparison to other
compounds, the aryl ring is disubstituted in this example: the 3,5-dimethoxy compounds shows a low
IC50 value, but other interactions induced by the two methoxy groups might be responsible for this.
Here, more examples with different substitution patterns are required to complete the picture. With the
established synthetic route towards this compound class, further elaboration of this scaffold has been
enabled and additional studies to establish refined structure activity relationship will be conducted in
our laboratories. The focus will lie on benzofurans carrying multiple oxygen-functionalities in the
aromatic ring in position two. Additionally, further substitution in the benzofuran system besides a
side chain in position five is not explored yet and will be investigated.
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