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Abstract: This paper investigates the dynamic forecasting of lead-time, which can be performed by
a logistics company for optimizing temporal shipment consolidation. Shipment consolidation is
usually utilized to reduce outbound shipments costs, but it can increase the lead time. Forecasting in
this paper is performed in a make-to-order supply chain using real data, where the logistics company
does not know the internal production data of manufacturers. Forecasting was performed in several
steps using machine-learning methods such as linear regression and logistic regression. The last
step checks if the order will come in the next delivery week or not. Forecasting is evaluated after
each shipment delivery to check the possibility of delaying the current arriving orders for a certain
customer until the next week or making the delivery to the customer immediately. The results
showed reasonable accuracy expressed in different ways, and one of them depends on a type I error
with an average value of 0.07. This is the first paper that performs dynamic forecasting for the
purpose of shipment temporal consolidation optimization in the consolidation center.

Keywords: freight consolidation; lead-time forecasting; make-to-order; machine learning;
supply chain

1. Introduction

In temporal freight (shipment) consolidation, small orders are aggregated over time
in the consolidation center to make bigger shipments to the customer (retailer) [1]. This is
in addition to product-based consolidation in which products from several suppliers are
aggregated to be delivered for the same customer [2]. A sustainable supply chain is about
the achievement of an organization’s social, environmental, and economic goals. These
goals are supportive for the organization and the community. Reducing the number of
shipments and using larger shipments contributes to decreasing the traffic jam as one of
the social benefits. The environmental effect is attained by reducing the CO2 emissions by
reducing the number of shipments [3]. The economic goal is accomplished by reducing
transportation costs. This is achieved as long as the savings are larger than the increase
in inventory holding costs and as long as the lead time is not strongly affected. Moreover,
consolidation reduces the number of vehicles and the size of the workforce needed. This is
important in the time of the COVID-19 pandemic, where a shortage in the workforce in
logistics is a big problem. Moreover, it will be useful for customers because they will have
a lower number of shipments, and therefore, lower handling costs. All these three goals of
sustainability and the response to COVID-19 are some of the motivations for this study. In
addition, this study is the first one that considers temporal consolidation as the objective
for forecasting.
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However, temporal consolidation is only performed if there is a good chance that other
orders for the same customer will come in the few coming days, where the waiting period
is much smaller than the average lead time (time elapsed between making the order by the
customer and receiving the order on the warehouse) [4]. Therefore, accurate forecasting
of orders lead time is needed. Lead-time forecasting is an extremely challenging task [5].
The variability in production lead time can be due to factors such as machine breakdown
and maintenance [6]. Predicting longer lead times is more difficult and tends to be less
accurate because uncertainty leads to an increase in the variance of estimation [7]. Instead
of making traditional static forecasting for each order, dynamic forecasting is performed in
this paper, where the evaluation is recalculated after each delivery or each demand [8].

This research is inspired by a case study of a furniture design company, which makes
designs and sells products. The company outsources all the manufacturing activities to
external suppliers in the east of Europe, where customers of the company are mainly in
the west of Europe. The company follows this strategy to utilize the low manufacturing
costs in the east of Europe. There are more than 1000 customers (retailers) spread in
several countries in the west of Europe. Most of the demand by each customer is usually
one or a few pallets. One order by a customer might include items from several suppliers
at the same time. To aggregate the small orders together, a consolidation center (large
warehouse) is needed in the west of Europe to put the needed items for each group of
customers in the same small zone on the same truck to reduce transportation costs. This
strategy is called a milk run. The warehouse is managed by a third-party logistics provider
(3PL). This case study is similar to those described in Alnahhal et al. [4,9]. However, the
objectives in this paper are different.

The general aim of this paper is to make forecasting that satisfies the company’s special
needs of reducing the total costs by temporal consolidation. That means that forecasting
is an input for the temporal consolidation plan, in which aggregating larger shipments
is performed. To plan that, a special type of forecasting with binary results (come, not
come) is needed. Instead of evaluating the exact lead time for each order, the manager is
interested more in the probability of the arrival of the order in the next delivery week. Not
all current orders will come in the next delivery week because the lead time is relatively
long. If the probability that a certain order will come in the next delivery is high, then the
currently available order can wait until the next delivery, and the two shipments can be
aggregated together to reduce the shipment costs. Such a probability and a binary decision
(come next week, not come) is usually investigated by logistic regression, which is the
last and the most important type of forecasting in this study. To prepare for this stage,
linear regression is needed to estimate the total number of coming orders in the next week.
However, inventory costs, when temporal aggregation is used, will be higher because of
the extra waiting. However, such waiting also depends on the period for which the current
items available in the warehouse are waiting so far; if this period is not too long, waiting
can occur. If the acceptable lead time is, for example, 4 weeks, and the available items
have an order preparation time (OPT) of less than 3 weeks, then consolidation is possible.
Consolidation can be for all the items from all suppliers for the same customer. However, if
some of the current items have an OPT of more than three weeks, then all materials should
be shipped immediately to the customer. That means that not all customer demand needs
to be forecasted.

Such a type of forecasting for temporal consolidation purposes is performed for the
first time in this paper. Most of the studies in the literature about forecasting focus on
forecasting for other purposes such as inventory management and shop scheduling; the
forecasting process is performed by the manufacturing company itself based on large
datasets about production processes. However, in this study, the dynamic weekly fore-
casting process for each customer order is performed from the point of view of the 3PL,
depending on current and historical data of demand and lead time. The forecasting process
in this paper is performed for an environment that is overlooked by the previous studies,
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where the make-to-order supply chain contains four different parties, namely, the design
company, many suppliers, the 3PL, and more than 1000 customers (retailers).

2. Literature Review

The use of machine learning in supply chains is known in the literature. The main
focus of this paper is the forecasting of lead time. Customers usually require an accurate
estimation of lead time to ensure their production and delivery due date [10]. Usually,
companies make forecasting based on full knowledge of their production line conditions,
and this type of forecasting is called manufacturing lead-time forecasting (MLTF). However,
sometimes, the forecasting of supplier companies might not be available for customers or
3PLs, at least not for each order. Therefore, the customers or 3PLs might need to make their
own forecasting of lead time based on historical data about their suppliers. We call this
type customer lead-time forecasting (CLTF). Based on that, the definition of lead time is
different in both cases. The first one is the time that elapses between the release of an order
and its completion (arrival in the finished goods inventory) [11]. In the second definition,
transportation time until reaching the customer or the 3PL is added. Although MLTF is
well known in the literature, little was published on CLTF. In this study, we assume that
the exact situation in the supplier factory is a black box. For example, the production and
lead time for other customers are unknown, so historical data are only available for the
customers of the furniture design company under consideration.

The problem in this study is related to other decisions. In this study, forecasting
performed by the 3PL is for the purpose of shipment consolidation. One of the studies
that investigated this problem is the one by Hanbazazah et al. [12], who focused on
transshipping multiple products from multiple suppliers to a single end customer. The
3PL consolidates the inbound shipments so as to reduce costs. Consolidation sometimes
leads to aggregating less-than-pallet-size shipments from different suppliers. Therefore,
a pallet loading problem is needed. Such a problem was investigated in the study by
Aylak et al. [13] using machine learning. This means that different decision problems
in the supply chain are interconnected. The disadvantage of shipment consolidation is
that it increases procurement interdependencies. Therefore, Kosasih and Brintrup [14]
used Graph Neural Networks (GNN) to predict hidden links in the supply chain and
gain visibility to prepare contingency plans. Another direction is to increase cooperation
between different supply chain parties. Such cooperation can enhance innovation activities
and therefore competitiveness [15].

Most of the research was performed on make-to-stock environments to select the best
inventory control policy. However, there are some studies that investigated engineer-to-
order or make-to-order environments. Most of the studies used machine learning and
data mining with its different techniques for forecasting [16,17]. However, there are other
studies, which used simulation or operations research [18–21]. Moreover, Mean Absolute
Percentage Error (MAPE) is usually used to estimate the performance of forecasting meth-
ods [6]. Azadeh et al. [7] performed a comprehensive procedure for comparing several
machine-learning techniques for manufacturing lead-time estimation in the case of failure
of the machines. The best model is selected in a study by Asadzadeh et al. [6] based on
MAPE. They based their study on weekly lead times for a large complex electric-motor
assembly line, where data are taken for 70 weeks.

One of the make-to-stock studies is performed by Dosdoğru et al. [22], who used
artificial intelligence (AI)-based simulation to predict the lead time of supply chain mem-
bers. They used an Artificial Neural Network (ANN) together with a Genetic Algorithm
(GA). The objective was to design inventory and routing in the best way to assure ade-
quate inventory level and also provide an efficient route. This is part of using the correct
inventory control policy. The prediction of lead time was necessary for planned order
releases and shop scheduling in a study by Askin and Hanumantha [23]. Therefore, they
investigated the prediction of lead times under dynamic conditions. They assumed vari-
able product mixes and demands with equipment or staffing changes. On the other hand,
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Indrianti et al. [20] determined the delivery time of a set of customer orders in a repeti-
tive make-to-order manufacturing company that utilizes recycled waste products as raw
materials. A simulation approach was applied to find the minimum total flow time or
makespan to determine the delivery time of each order. Moreover, Mourtzis et al. [24]
proposed a methodology, which has been developed into a software tool, for complex
engineered-to-order products. This is achieved through the examination of the character-
istics of the product. Öztürk et al. [16] used regression trees for lead-time forecasting in
make-to-order manufacturing. Furthermore, Burggräf et al. [18] reviewed studies for the
prediction of lead times in engineer-to-order environments with a typically large number
of individual parts and complex production processes. In such studies, operations research
and machine learning are usually used. In a study by Li et al. [19] in a produce-to-order
environment, researchers quote a reliable lead time for a new job (or order) upon its arrival
to a manufacturing system.

Usually, MLTF forecasting is performed by the company itself or at least after knowing
enough details of the company production processes. For example, Gyulai et al. [25] investi-
gated manufacturing lead time in the optics industry using analytical and machine learning
techniques for customized products. Lingitz et al. [26] investigated manufacturing lead
time using supervised machine learning approaches depending on historical production
data from the manufacturing execution system (MES). Moreover, lead-time forecasting was
performed based on ANN, fuzzy regression (FR), and conventional regression (CR) in a
study by Asadzadeh et al. [6]. Their study estimates the weekly lead times of an actual
assembly shop. Another study that depends on MES data is the one by Pfeiffer et al. [27],
which combines simulation and statistical learning methods.

On the other hand, few studies focused on CLTF, which is the focus of this paper.
Forecasting of purchasing lead time was investigated in a study by de Oliveira et al. [5] in
the context of the pharmaceutical supply chain by machine learning regression algorithms.
The support vector machines approach was found to have the best performance. Their
work was motivated by the activity of a logistic company that receives the pharmaceuti-
cal products from the suppliers and then organizes the shipping to healthcare facilities.
Moreover, Kar and Jha [28] investigated material management and the effect of lead-time
estimation based on the identification of the factors that influence it, such as the price of
materials. They collected a large sample of procurement data from 16 building construction
projects, and cluster analysis and regression analysis were used. Furthermore, Yamini
and Marathe [29] considered determining a realistic delivery time in the supply chain by
reducing bias.

Lead-time estimation was expressed in the literature in different ways such as the
study by Gacek [30], who used ANN to estimate due date assignment in a small batch
and multi-assortment make-to-order production company. The study made a comparison
between different due date assignment methods. Moreover, Schuh et al. [31] investigated
the lead time prediction in a customer-individualized products’ environment, where plan-
ning complexity grew significantly in such a case. They investigated the prediction of
transition times (TT). As up to 99% of lead time consists of TT, which is the time between
two processing steps, they used a data mining methodology for order-specific TTs. Some
studies concentrated on special conditions such as Zhong et al. [10], who investigated an
RFID-enabled real-time manufacturing shopfloor environment, where a large number of
factors may greatly affect its precision. Actual processing time is hard to estimate due to the
dynamic manufacturing environment and uncertain disturbances. Their paper proposed a
data mining approach. Moreover, Berlec et al. [32] investigated the lead-time forecasting of
production orders in SMEs. Their work is based on the actual lead times of operational
and assembly orders processed in the company’s workplaces in the past.

In many cases, the forecasting lead time process was static, however, Ioannou and
Dimitriou [8] investigated the problem of dynamically updating the manufacturing lead
times estimates used in MRP systems. The estimate is performed when an order enters the
make-to-order manufacturing system. Moreover, Schneckenreither et al. [11] presented a
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flow time estimation procedure to set lead times dynamically using an ANN in a make-to-
order flow-shop environment. The timing of the order release decision (start of production)
is based on a planned lead time. To the best of the authors’ knowledge, this is the first paper
that investigates dynamic forecasting to manage shipment consolidation in a make-to-order
supply chain.

3. Materials and Methods

The main aim of the paper is to predict using machine learning which items already
ordered will come in the next week. This forecasting is performed just after receiving
the items in the consolidation center in the current week. This is for the purpose of
temporal consolidation. Therefore, when there are no previous items already waiting in
the warehouse for a certain customer, there is no need to make forecasting for the items
of that customer. Usually, the supplier makes delivery every week, most probably on
Wednesday. However, sometimes, the shipment comes to the warehouse one day later
or earlier. In some special cases, the delay is one week, and that means that the delivery
comes in two weeks. The warehouse has a notice from the supplier for that delay. The
decision makers in the warehouse do not know which item will come in the next delivery.
This is because the lead time is usually very long (some weeks), and any open order might
not come in the next delivery. For example, only 30% of the orders might come in the next
week. What makes it more difficult to forecast is that many orders do not come based on
the first come first served (FCFS) principle, because the supplier has limited capacity for
different production lines, and demand from other customers is not known.

There are several reasons why the lead time is longer than usual, which are as follows:

• The nature of the supply chain, which is make-to-order. In many cases, the design of
furniture is unique. Therefore, it needs more time.

• Customer demand can occur every day, but the supplier delivery is performed every
week and sometimes every two weeks. The supplier does this because of the shipment
consolidation inside the supplier factory to reduce transportation costs [4].

• Some of the products do not come based on FCFS, as mentioned before.
• Other customers’ orders compete for the same production lines of the suppliers.

In this study, the main affecting factors on forecasting are the size of demand in the
last few weeks, the number of orders not yet satisfied, and the period since the order is still
opened. Other factors such as customer, product type, and model types were investigated
in a primary stage, and it was found that their effects are negligible. Therefore, they were
neglected in the analysis in this paper.

In forecasting, it is important to distinguish two types of errors:

• Type I error, in which the forecasting result indicates delivery in the next week, but
delivery does not happen.

• Type II error, in which the forecasting results indicate no delivery in the next week,
but delivery is actually completed.

In this study, type I error is the most important one because it is not good for the
customer order in the consolidation center to wait the whole week, and then the next
order does not come, and therefore, larger inventory holding costs occur. Therefore, the
manager might set a value of 0.05 as an acceptable level for such an error. Type I error has
a close relationship to the objective of the study. The manager wants to let some shipments
wait, only if there is a high chance that another shipment is coming in the next week. The
probability of expecting that a shipment will not come in the next delivery, while it will not
come, does not have the same importance as type I error. This differentiation of types of
errors cannot be measured using common indices such as RMSA and MSE.

The available data are for the period from December 2014 until August 2016. In
this study, one of the suppliers will be investigated. The approach of this study can be
applied to any supplier. Forecasting is repeated after each delivery, which occurs almost
every week. The dynamic forecasting in the last step will use logistic regression since
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it is appropriate for the purpose of the study. The results will be 1 or 0, where 1 means
delivery of a certain order is expected to occur, and 0 means delivery does not occur. R
software was used to make the calculations. Generally, the popular algorithms that can
be used for binary classification include: logistic regression, k-nearest neighbors (KNN),
decision trees, support vector machine (SVM), and naïve Bayes. Logistic regression is
easier to implement, interpret, and very efficient to train. Moreover, it can interpret model
coefficients as indicators of feature importance. KNN is a non-parametric model, where
logistic regression is a parametric model. Moreover, KNN is comparatively slower than
logistic regression. In decision trees, you can have two or more decisions (for example,
option 1, option 2, and option 3). However, in logistic regression, there are only two options
(for example, come and not come). SVM works well with unstructured and semi-structured
data such as text and images, while logistic regression works with already identified
independent variables. However, in many cases, both of them can be used. Naïve Bayes
has a naive assumption that the algorithm expects the features to be independent which
not always is the case.

In the last step of forecasting (logistic regression), the glm function is used. The
continuous results from zero to one are first obtained. Then, they are rounded to 0 or 1.
For the optimal level of overall accuracy, normal rounding is used, where any value from
0.5 until 1 is 1, and the rest of the values are 0. However, to obtain results with a type I
error that is less, larger thresholds can be used. For example, 0.55 can be used. The study is
performed using the following steps:

1. The demand during the last three months. This step shows the pattern of demand
over the study period. Most of the demand is satisfied during six weeks. However,
sometimes, some orders need more than two months to be satisfied. This is why it
might be better to investigate the demand during the last three months.

2. The percentage of satisfied demand occurred in the last three months (PSDTM). The
moving average can be used with n = 3.

3. The demand for the next week (DNW). It is given, and it is simply the waiting demand
(the demand not satisfied so far). Such demand does not include the orders coming
after the current delivery date. Any order that comes after the current delivery date
will not be satisfied in the next delivery time, because of the long lead time. Therefore,
DNW will be used to forecast if a certain order will come in the next week or not, in
the final step.

4. The total number of orders delivered in the next delivery (expected satisfied demand
in the next week) (SDNW). Moving average can represent a fast and practical solution
since the changes in demand are relatively slow over time. However, simple linear
regression can also be used. The independent variable is the DNW. It is multiplied
by the estimated percentage of satisfied demand next delivery week (PSD), and
this percentage is found using moving average or using the linear regression. This
percentage is different from the one in step 2 for the last three months. Forecasting
PSD, and then SDNW from it, was found to have better accuracy than forecasting
SDNW directly.

5. The probability that a certain order will come in the next delivery week (PONW).
This is performed using logistic regression, and it is the most important step in
this research.

Figure 1 shows the methodology of the study. The results of forecasting are that there
are orders that are expected to come in the next week and others that are not coming
in the next week. For those coming in the next week, the question is if there are orders
already waiting in the warehouse for the same customer (come in the current week). If
yes, then the question is if waiting for one more week is possible without exceeding the
allowable lead time. If yes, then temporal aggregation is possible. It is clear that moving
average, linear regression, and logistic regression are used in the previous steps. A moving
average captures the average change in a data series over time. Linear regression is used
to predict the continuous dependent variable using a given set of independent variables.
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Logistic regression tries to find the optimal decision boundary that best separates the
classes. Logistic regression is not good when the training data size is small relative to the
number of features. Logistic regression is able to handle categorical and continuous input
variables. A key difference from linear regression is that the output value is a binary value
(0 or 1) rather than a numeric value. The reader might refer to the study by Walker and
Duncan [33] for more information about logistics regression. The forecasting process in
this paper is dynamic. This means that the forecasting process is completed every week.
The accuracy of the forecasted results is measured using the real available data in the next
week. The accuracy from one week to another can be different. Logistic regression is a
probabilistic classifier that makes use of supervised machine learning, so it trains the model
by providing it with pairs of input–output examples from which it can learn. Training a
logistic regression model means learning a mapping between the input variables and the
expected output. Training the logistic regression model and using it for predictions is very
simple, fast, and needs low computational requirements.
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A certain order achieves the satisfied order value (SOi) of 1 if it is satisfied in the next
week and 0 otherwise:

SOi =

{
1, i f the order i is satis f ied in the next week

0, otherwise

Percent of satisfied demand in the delivery week d (PSDd) can be found using the
following equation:

PSDd =
∑DNWd

i=1 SOi

DNWd
× 100% (1)

The next equation shows the moving average method to find SDNWd in step 4 when
n = 3:

SDNWd = PSDd × DNWd =
(PSDd−1 + PSDd−2 + PSDd−3)

3
× DNWd (2)

where d is the index for delivery week. The last type of forecasting depends mainly on
two variables:

1. Index for locating the order among the other orders (ILO). It is an indication of the
position of a certain order compared to other orders and the expected number of
satisfied orders in the next week. This index is found from the following equation:

ILOi =
(SDNWd − i)

SDNWd
(3)

where i is the order position, and it means the row number when data are arranged
from the oldest to the newest orders. ILOi starts with a value that is very close to 1
for the oldest not satisfied order and then starts to decrease until it is 0 for the order,
which has a position equal to SDNWd, and after that, recent orders have negative
ILOi values.

2. The order preparation time so far for order i (OPTSFi), which is the difference between
the current delivery date (CDDi) and the order date (ODi). So, the equation will be
as follows:

OPTSFi = CDDi −ODi (4)

The previous two measures are updated every delivery, where the new available data
is added to the original data. Forecasting will depend mainly on these two values plus the
SDNWd value found in Equation (2). The expected satisfied order (ESOi) is written in the
same way as SOi, and it is found using the logistic regression model. This can be written
as follows:

ESOi =

{
1, i f the order is expected to be satis f ied in the next week

0, otherwise

The variable Ai is used to check if the expected and real values are the same:

Ai =

{
1, i f SOi = ESOi
0, otherwise

Forecasting accuracy for the delivery week d (FAd) can be found using the
following equation:

FAd =
∑DNWd

i=1 Ai

DNWd
× 100% (5)
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Total satisfied demand next week (TSDd) can be found as follows:

TSDd =
DNWd

∑
i=1

SOi (6)

Ai is order expectation accuracy, which means that expectation about the order i is
correct if Ai = 1. FA is found by finding the percentage of orders that meet the expectations.
Adding the new data to the old data means that the same order might be in the old data
with a value of SO = 0, and in the new data, SO = 1. Therefore, the same order might
be repeated several times. All of them are with SO = 0, except the last one, with SO = 1.
The function glm in R software was used. The initial results for ESO are numbers from
0 to 1. Usually, numbers greater than or equal to 0.5 are set to be 1. The other numbers
less than 0.5 are set to be 0s. Therefore, the threshold value is usually 0.5 to optimize the
accuracy value.

In addition to the accuracy measure, which is FAd, the two types of errors (ε1d and ε2d)
can also be estimated according to the following equation:

ε1d + ε2d = 1− FAd
100

(7)

where,

ε1d =
∑DNWd

i=1 E1i

DNWd
(8)

ε2d =
∑DNWd

i=1 E2i

DNWd
(9)

where,

E1i =

{
1 i f SOi < ESOi
0 otherwise

E2i =

{
1 i f SOi > ESOi
0 otherwise

When SOi < ESOi, SOi = 0 and ESOi = 1. In addition, when SOi > ESOi, SOi = 1
and ESOi = 0. The estimated demand using the logistic regression (LREDd) is different
from the total estimated demand using moving average or simple regression (SDNWd). In
other words:

SDNWd > LREDd =
DNWd

∑
i=1

ESOi (10)

This is because most of the current orders will not be satisfied in the next week. On
average, only 30% will be satisfied. Therefore, reducing SDNWd is necessary to reduce type
1 error. Another accuracy measure is the accuracy of the total demand for the next delivery
week (ADNW), which can be found using the following equation:

ADNWd =
1− |TSDd − SDNWd|

∑N
d=1 TSDd

N

× 100% =
N(1− |TSDd − SDNWd|)

∑N
d=1 TSDd

× 100% (11)

Lead time is usually larger than the time between deliveries, which is usually one week.
In this case, there is a short lead time in which there is an order after the last delivery
and served during the next delivery. It will not be considered because it is not helpful for
temporal aggregation, and it is considered an outlier.

The effect of orders not coming according to FCFS is measured (% FCFS) in this paper
using the following method: For the previously known data, find the forecasting accuracy
assuming that the total satisfied demand is already known, and then orders are sorted from
the oldest to the newest. Then, assign the value of 1 for the first SDNWd orders. If the FCFS
principle is fully applied, this accuracy should be 100%.
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4. Results and Discussions

The demand of the last three months over time is shown in Figure 2. In the first few
weeks, the previous three months’ data are not complete and therefore the values are lower
than usual. This is why these few weeks are excluded from the calculations in this paper.
The last few weeks were also excluded. Generally, the demand follows a way in which it
increases in the first few months of the year as shown. However, the percent of satisfied
demand is more stable, except when the demand is more than 2500 orders, as shown in
Figure 3. The average percent of satisfied demand, when the three-month demand is less
than 2500, is 73.4%. However, when demand is higher than 2500, this percentage is reduced
to be 68.1%. That means higher demand cannot be satisfied with the same level of lower
demand. This fact can be useful to predict this percentage. Since there is no trend in the
data, the seasonal effect can be found by finding the demand with the same week number
from the previous year. The results were obtained from February until May, and the MAPE
was about 9%. However, the peak at the beginning of 2015 was flatter than that for 2016.
Therefore, another way for better forecasting accuracy is the moving average (with n = 3).
In this case, MAPE is about 4%, which is more accurate. This is because the rate of changes
in demand from one week to another is relatively slow. The average percent of satisfied
demand in the year 2016 was about 68%. To forecast it, a moving average was used with
n = 3. In this case, the average mean absolute deviation (MAD) value was about 0.02 for
the months from February to May. If we take all the data for the last three months, then
about 70% of the orders are usually satisfied. The older orders are usually satisfied. The
average number of orders, which are not satisfied, is 759. For those, which are not satisfied
until today, about 30% will be satisfied in the next week.
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For SDNW, the weekly size of arriving orders is rapidly changing, and it can be from
50 to 400. However, it can be predicted with some reasonable accuracy with two methods,
namely, the moving average and simple regression, where the independent variable is
DNW. Figure 4 shows the results of the two methods. The MAD for both of them is almost
the same for the supply chain under consideration.
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In Figure 5, the numbers inside the circles are the number of orders, which are in that
date and with that specified lead time. Lead time follows a line with a slope that decreases
with time. This is because customer orders are every day, but the delivery is usually every
week. There are some parallel hypothetical lines these points follow, where each line
represents a new week delivery. For example, on 12 February, 32 orders were triggered.
Only 22 orders from them were satisfied with a lead time of 20 days. After one week, three
of these orders were satisfied. The rest of the orders have to wait two more weeks. It is very
clear that the exact time of the order is not possible to be predicted. However, if dynamic
forecasting is to be used, the probability that a certain order will come in the next week can
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be obtained with reasonable accuracy. Most of the orders are satisfied within three or four
successive weeks. Four of the orders coming on 15 February arrived earlier than usual.
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Table 1 shows the main results of the study. It shows 10 weeks’ data and also the
grand average. Usually, the time between different deliveries is seven days, and sometimes
one or two days earlier or later. The assumption here is that such a difference will not affect
the data significantly. DNW’s and FA’s grand average values are significantly greater than
the average values for the 10 weeks data. Therefore, the consideration will be for the grand
averages. The general accuracy of forecasting is somewhat not very high, which is 72.41%.
However, what really matters in this study is the type I error value, which is 0.07. This
means that the accuracy in this regard is 93%. In other words, when it is expected that a
certain order will come the next week, there is a chance that it comes 93% of the time. If
better forecasting accuracy is needed, then a higher threshold value, such as 0.55 can be
used instead of 0.5 for logistic regression. Type II error is indeed larger, with an average of
0.2, but this kind of error is not the critical one in this paper.

Table 1. The main results for 10 weeks plus the grand average results.

Delivery Date P * DNW TSD SDNW ADNW FA Type II
Error

Type I
Error

%
FCFS PSD LRED Average

OPSF

03/04/2015 7 993 276 273 98.7 79.2 0.2 0.0 76.4 27.8 12.8 17.6
11/03/2015 7 993 171 265 58.4 81.7 0.1 0.1 80.3 17.2 11.8 14.9
18/03/2015 7 1016 333 243 60.2 73.3 0.3 0.0 82.7 32.8 8.5 16.7
25/03/2015 7 906 150 231 64.2 77.9 0.1 0.1 73.5 16.6 9.7 14.6
01/04/2015 7 929 257 209 78.8 74.6 0.2 0.0 81.5 27.7 11.1 17.5
09/04/2015 8 825 119 201 63.7 82.8 0.1 0.1 80.1 14.4 11.8 18.4
15/04/2015 6 893 305 194 50.9 72.2 0.3 0.0 84.1 34.2 11.8 19.0
22/04/2015 7 994 208 250 81.4 78.4 0.2 0.1 77.9 20.9 12.2 12.8
01/05/2015 9 1071 154 244 60.2 85.1 0.1 0.1 83.9 14.4 12.1 15.2
06/05/2015 5 1013 293 226 70.4 76.9 0.2 0.0 78.7 28.9 12.7 16.6
13/05/2015 7 875 165 197 85.8 83.0 0.1 0.0 83.5 18.9 10.7 17.4

Average 7 955.27 221.00 230.27 70.23 78.64 0.17 0.05 80.24 23.06 11.38 16.41
Grand Average 7.8 770.69 218.80 224.21 70.27 72.41 0.20 0.07 74.56 29.72 16.81 15.72

* Period from the previous delivery (P).
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TSD is the real demand, but SDNW is the expected one. The average difference
between them is small. A metric to measure the accuracy of using SDNW to predict TSD is
ADNW. The “% FCFS” term represents the effect of the FCFS rule. If the rule is completely
followed by suppliers, then it should be 100%. However, it is only followed 74.56% of the
time. This is why FA is not so high. The average value of PSD is 29.72%, which means that
most of the current demand will not be satisfied in the next week because the lead time is
long. However, logistic regression gives a percentage of 16.81 for LRED, which is almost
half of PSD. This is to reduce the type I error. The average order-processing period so far
(OPSF) is 15.72. This waiting, so far, is for the not satisfied demand in the current week.
That means that all these orders must wait at least until the next week.

The general results show a reasonable accuracy, especially when it comes to the critical
error, which is the type I error. This paper provides the decision maker with a way to know
if the current order by a customer should wait for the next week for possible consolidation
or not. This is, of course, if that order belongs to a customer having other orders. In case
that a certain customer has only one order that comes in the current delivery, then there
is no need for that order to wait. The forecasting process should be performed for all
strategic suppliers and all orders in process. Since many customers are asking for orders
from different suppliers, even with a lower level of accuracy, the model can provide an
advantage. This is because if there are, for example, seven orders of one customer needed
by supplies suppliers with an average accuracy of only 70%, then the accuracy for the
probability that at least one of the seven orders will be satisfied in the next week will
be much larger than 70%. Actually, it will be almost 100%. However, decision-makers
should be aware of the impact of that on the service level. For example, if the due date is
exceeded if consolidation is performed, then it should not be performed. Therefore, in the
following cases, consolidation should not be performed, and therefore, there is no need for
forecasting (for consolidation purposes) for that particular order:

1. If the due date is exceeded;
2. If there is only one order in process by the customer;
3. If inventory holding cost for one more week will cost more than the savings of

reducing the number of shipments;
4. If the size of the current shipment is large enough to transship it without aggregating

it with any further shipments.

5. Conclusions

This paper investigates the forecasting problem for a make-to-order supply chain
based on real data, where the purpose is to predict if a certain order will be delivered
to the consolidation center in the next delivery week or not. The lead time is usually
long, and therefore, accurate forecasting based on little information is very challenging.
Forecasting was performed in several steps. A reasonable accuracy level was obtained
after applying weighted average, linear regression, and logistic regression (93% for logistic
regression). Factors such as the size of demand for the last several weeks, the number of
unsatisfied orders before the forecasted order, and the period so far in which the order
is opened, are the independent variables. Freight consolidation is valuable to reduce the
number of shipments and, therefore, the CO2 emissions. Decision makers should weigh
the advantages versus the disadvantages of temporal consolidation, and use it only after
careful consideration about the other types of costs and the effect of increasing the lead
time. Combining the forecasting process with temporal consolidation is performed in this
paper for the first time. Future research can focus on comparing the forecasting done by
supplier companies and 3PLs. There are some limitations in this study. For example, the
lead time is assumed to be long and it takes usually some weeks, as in the case study.
Moreover, if accurate data about the delivery times are provided by suppliers, then there
is no need for forecasting by the 3PL. Suppliers usually have more information on the
ground, and therefore can provide better forecasting. If inventory holding costs are high
and transportation costs are low, then temporal consolidation might not be attractive.
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