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Abstract: Evacuation planning is an important activity in disaster management to reduce the effects
of disasters on urban communities. It is regarded as a multi-objective optimization problem that
involves conflicting spatial objectives and constraints in a decision-making process. Such problems
are difficult to solve by traditional methods. However, metaheuristics methods have been shown to
be proper solutions. Well-known classical metaheuristic algorithms—such as simulated annealing
(SA), artificial bee colony (ABC), standard particle swarm optimization (SPSO), genetic algorithm
(GA), and multi-objective versions of them—have been used in the spatial optimization domain.
However, few types of research have applied these classical methods, and their performance has not
always been well evaluated, specifically not on evacuation planning problems. This research applies
the multi-objective versions of four classical metaheuristic algorithms (AMOSA, MOABC, NSGA-II,
and MSPSO) on an urban evacuation problem in Rwanda in order to compare the performances of the
four algorithms. The performances of the algorithms have been evaluated based on the effectiveness,
efficiency, repeatability, and computational time of each algorithm. The results showed that in
terms of effectiveness, AMOSA and MOABC achieve good quality solutions that satisfy the objective
functions. NSGA-II and MSPSO showed third and fourth-best effectiveness. For efficiency, NSGA-II
is the fastest algorithm in terms of execution time and convergence speed followed by AMOSA,
MOABC, and MSPSO. AMOSA, MOABC, and MSPSO showed a high level of repeatability compared
to NSGA-II. It seems that by modifying MOABC and increasing its effectiveness, it could be a proper
algorithm for evacuation planning.

Keywords: evacuation planning; multi-objective optimization; meta-heuristic algorithms; AMOSA;
MOABC; MSPSO; NSGA-II

1. Introduction

Natural disasters are threats to human life and the ecosystem in general. Climate changes as
well as environmental changes—e.g., deforestation—increase the frequency and intensity of natural
disasters such as hurricanes, floods, and landslides [1]. Such extreme catastrophes cause many losses
in lives, affect the economy, and leave many damages to the affected area. However, disaster effects
can be reduced if the society is prepared and plans—e.g., for evacuation—are in place.
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Evacuation is a means to save lives and is incorporated in both preparedness and response phases
of disaster operations management [2]. However, evacuation planning is a complex process and more
crucial in urban areas due to the high population density and complex urban settlement. A critical
challenge in evacuation planning is to find optimum evacuation time and a proper shelter allocation
such that they have enough space for evacuees and other basic living requirements. This means
that evacuation planning is considered as a complex multi-criteria decision problem with conflicting
objectives, constraints, and spatial aspects. Usually, such problems are modeled by multi-objective
optimization techniques, which often provide decision-makers with quick responses and reliable
solutions to the problem.

Various studies reported the complexity of evacuation planning in disaster operations management
(DOM) and proposed techniques to solve them [3,4]. Thus, depending on the type of disaster and
according to the aim of emergency planners, evacuation problems have been modeled as network/

routing problems [5,6], transportation problems [7,8], or location-allocation problems [9–11]. This study
considers evacuation planning as a location-allocation problem.

There are two approaches for solving multi-objective optimization evacuation problems: exact
methods and metaheuristic methods. The exact methods—such as linear programming, goal programming,
mixed-integer programming, and weighted summation—have been widely used for many decades
in disaster operations [12,13]. These methods combine the criteria/objectives of a multi-objective
optimization problem with a set of weights provided by decision-makers. Doing so, a single-objective
optimization model is created and then a conventional mathematical programming algorithm can be
used to solve the problem. Cova and Johnson [14] presented a network flow model for lane-based
evacuation routing. Mixed-Integer programming was used as a solution method to identify an optimal
lane-based evacuation routing plan in a complex road network.

Although these old and traditional methods have been widely used to solve multi-objective
optimization problems, they have limitations when applied to real-world problems. For example,
these techniques are often extremely time-consuming to solve real-world problems with large
dimensions, hardly constrained problems, and multimodal problems. In addition, the final solution is
highly influenced by, and biased towards, the initial weights provided by experts at the early stage of the
algorithm. To overcome these limitations, researchers have used multi-objective optimization instead
of single-objective optimization in order to design and solve evacuation problems. Metaheuristic
algorithms have the ability to produce good quality solutions in reasonable computation time, good
enough for a practical purpose [15,16]. They are also not biased with the preferences of experts since
no initial weighting of criteria is needed. However, not all of these algorithms are efficient, a few
algorithms have proved their capacities for solving real-world problems [17,18]. Moreover, each
algorithm has its own limitations. Therefore, it is very important to conduct a comparative study of
metaheuristic algorithms on a specific real-world problem.

Saeidian et al. [19] compared two metaheuristic algorithms for location-allocation of earthquake
relief centers—genetic algorithm (GA) and bees algorithm (BA). Their results show that BA converges
faster than GA, while GA is more favorable in terms of repeatability of the algorithm. Also,
Saeidian et al. [20] compared particle swarm optimization (PSO) and ant colony optimization (ACO)
using different criteria. The study found that PSO outperformed ACO in terms of quality of solutions,
better convergence, and consistency. Xu et al. [21] applied a modified particle swarm optimization
(PSO) algorithm combined with a simulated annealing (SA) algorithm to derive solutions using the
hybrid bi-level model and conventional multi-objective model for shelters location-allocation problems.
The hybrid bi-level model was proven to be useful for optimal shelter allocation. As mentioned in
the study by Caunhye et al. [22], the multi-objective approaches are less used and more advanced
algorithms are needed to solve many problems in DOM including evacuation.
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This paper aims to compare the performance of four metaheuristic algorithms extended from the
standard algorithms of simulated annealing (archive multi-objective simulated annealing—AMOSA),
artificial bee colony (multi-objective artificial bee colony—MOABC), genetic algorithm (non-dominated
sorted genetic algorithm-II—NSGA-II), and particle swarm optimization (multi-objective version of
standard particle swarm optimization—MSPSO) for evacuation planning. The four algorithms along
with geographic information systems (GIS) are used to solve an urban evacuation problem on a study
area in the city of Kigali, Rwanda. Their performance is evaluated based on effectiveness, efficiency,
consistency, and computational time for each algorithm.

The remainder of this paper is organized as follows: In Section 2 we review the metaheuristic
algorithms and give an overview of the tested four algorithms; Section 3 describes the study area and
data preparation; Section 4 explains the methodology used in this study; Section 5 presents the results
and analysis, and Section 6 concludes the paper and provides future research directions.

2. An Overview of Metaheuristic Algorithms

Multi-objective optimization problems (MOOP) involve more than one objective function that
is to be minimized or maximized. An answer to these types of problems is to find a set of solutions
that define the best tradeoff between conflicting objectives. In recent decades, there has been a trend
in the scientific community to solve MOOPs by using metaheuristic methods over exact methods.
A metaheuristic is defined as a procedure or technique designed for finding the approximate solution
in a short time (low computation time) [23]. Metaheuristic approaches categorized as population-based
metaheuristics are emerged to find optimal solutions through the iterative process of generating a new
population through natural selection. According to Fister Jr. et al. [24], evolutionary algorithms or
bio-inspired-based and swarm-intelligence-based algorithms are the most interesting and widely used
approaches in population-based metaheuristics. GA and its variants represent a group of evolutionary
algorithms, while ABC, ACO, and PSO are three approaches grouped in swarm-intelligence-based
algorithms. Those four algorithms are commonly used to solve real-world problems [15]. Another
category of metaheuristics is physics/chemistry-based algorithms, which mimic certain physical and or
chemical phenomena, including for instance electrical charges, temperature changes, and gravity or
river systems. Such algorithms solve a problem based on the process of improving a single solution.
SA is the commonly used algorithm in this category [25,26]. These five metaheuristic algorithms are
all global optimization methods and can solve higher-dimensional problems; they are robust with
respect to the complexity of the evaluation of functions. They can easily be adjusted to the problem at
hand. On the other hand, although a lot of research has used these algorithms, the question of finding
which one is the best suited for a specific problem has not been answered satisfactorily. Furthermore,
maintaining the diversity of optimal solutions and premature convergence of solutions to local optima
are still crucial to population-based algorithms.

In order to evaluate all categories, this study used the multi-objective version of four
approaches, that is NSGA-II to represent evolutionary algorithms, MOABC and MSPSO to represent
swarm-intelligence-based, and AMOSA to represent physics/chemistry-based algorithms. A brief
review of each approach is discussed in the following.

2.1. Archive Multi-Objective Simulated Annealing Algorithm

Archive multi-objective simulated annealing (AMOSA) is a global optimization algorithm adapted
from the process of annealing in metallurgy. Bandyopadhyay et al. [27] proposed the AMOSA algorithm
based on the principle of the original Simulated Annealing (SA) algorithm [28]. In AMOSA, the Pareto
dominance approach is adopted and uses the concept of an archive to store all non-dominated solutions.
The archive size is limited with two parameters known as hard limit (HL) and soft limit (SL). The HL
is the maximum size of the archive on termination, and it is equal to the number of non-dominated
solutions required by the user; while SL is the maximum size to which the archive may be filled before
clustering is used. The algorithm starts with the set of solutions randomly initialized and refined in
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the archive by using a hill-climbing technique. A solution is added in the archive if it dominates the
previous one and exceeds the HL. If the archive reaches the SL size, then the well-known single-linkage
clustering is used to reduce the size of the archive to HL in order to keep a diversity of non-dominated
solutions [29]. In the main loop of AMOSA, three cases can occur in dominance:

1. The current solution dominates the new solution and k points from the archive dominate the
new solution. In this situation, a new solution can be accepted as the current solution with a
given probability.

2. The current solution and the new solution are non-dominating with respect to each other. Here,
the domination status of a new solution and members of the archive are checked through three
situations: when a new solution is dominated by k points in the archive, the new solution is
non-dominating with respect to the points in the archive, and when new solution dominates k
points of the archive.

3. The new solution dominates k points of the archive. Here the new solution is selected as the
current solution and also added to the archive, while all the k dominated points in the archive are
removed. The process in the main loop is repeated through the number of iterations for each
temperature, which is reduced to at each iteration using the cooling rate alpha until the minimum
temperature is reached. Thereafter, the process stops and the resulting archive contains the final
non-dominated solutions.

AMOSA algorithm is capable of solving problems with many objective functions. It has been
used to solve medical and engineering-related problems [30,31], but so far there is no literature on
AMOSA applied to solve evacuation problems.

2.2. Multi-Objective Artificial Bee Colony Algorithm

Akbari et al. [32] proposed a multi-objective artificial bee colony algorithm (MOABC) based on
the standard ABC algorithm developed by Karaboga [33]. Recently, a variant version of MOABC
developed based on ABC has been used to solve evacuation problems [34,35]. In this study, the MOABC
colony consists of three groups of artificial bees: employed, onlookers, and scout bees. This algorithm
generates a number of solutions and works through optimizing them. First, a number of scout bees
explore the search space of the problem randomly and generate solutions as the initial population.
The quality of the solutions is evaluated (fitness value) and the best solutions are stored in the external
memory (archive). The scout bees that have high fitness are selected to act as employed bees. Each
employed bee explores the neighborhood to update its position. Onlooker bees select a solution with
a high amount of fitness from the neighborhood of employed bees. A new scout bee makes a new
generation of the solution if the onlooker failed to update the quality of the solution. Then, the fitness
values of all bees are compared to select the best solution and store it to the archive. The Pareto-based
approach proposed by Deb et al. [36] has been used to rank the non-dominated solutions into Pareto
fronts. The archive is updated by non-dominated solutions, at each iteration. The MOABC algorithm
terminates when the termination conditions are met, and the archive returns the final best solutions
as output.

2.3. Multi-Objective Standard Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) is a population-based metaheuristic algorithm introduced by
Kennedy and Eberhart [37]. PSO is a swarm intelligence algorithm inspired by the social behavior
of bird flocks, fish school. The algorithm has many variants due to its flexibility and robustness in
terms of updating the way the velocity of the particle is updated [38,39]. This velocity is the speed
of a particle which is used to find its next position in search space. A particle updates its position
through topological relationships in the neighborhood. The links between particles facilitate to share
information about the previous best position of particles from one to another. PSO has been adapted in
many studies related to evacuation planning [40–43].
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In this study, we used the recent standard PSO (SPSO) that was proposed to provide common
procedures and guidance to improve the original PSO [44]. However, the proposed SPSO is not for
solving complex problems with many objectives. Therefore, we applied a Pareto-based method to
evaluate the two objectives simultaneously, and the algorithm is named multi-objective SPSO (MSPSO).
MSPSO starts by initializing a random swarm of particles. Each particle is stored in memory with
its position, its fitness, and its initial velocity. Then, at each iteration, the velocity of each particle is
re-calculated using an equation that contains: (i) the current position of the particle (pbest); (ii) the
current velocity; and (iii) the previous best position in the neighborhood (gbest). The fitness is
calculated based on new positions of particles found at each iteration. The algorithm can be stopped if
a given maximum number of iterations is met.

2.4. Non-Dominated Sorting Genetic Algorithm-II

The NSGA-II algorithm proposed by Deb et al. [36] is the best known multi-objective optimization
genetic algorithm and widely used to solve evacuation planning [11,45–47]. This algorithm belongs
to the class of evolutionary algorithms (EA), in the subclass of genetic algorithms (GA), solving the
optimization problem through an evolutional process of the population of individuals.

Initially, a random population Pt of size N is initialized, evaluated, and sorted on the basis of
non-domination. The fitness of each solution is set to a level number; where level 1 is the best, level 2
is the second-best, and so on. The binary tournament selection, crossover, and mutation operators
are applied over Pt to generate an offspring population of P′t with size N. A solution xi of Pt wins
a tournament with another solution xj if solution xi has a better rank or if it has the same rank but
solution xi has better crowding distance than the solution x j. After generating offspring P′t, the main
loop of NSGA-II starts by combining the two populations Rt = Pt + P′t and sort Rt with the size of 2
N on the basis of non-domination. Then, the elitist selection is applied to select the new population
with size N from the highest fronts of Rt. This main loop is repeated as many times as needed until
the satisfaction of an end criterion (i.e., the number of iterations) is reached. NSGA-II has advantages
including its low overall complexity of O

(
MN2

)
.

3. Study Area and Data Description

3.1. Study Area

Kigali is the capital and the most populated city of Rwanda; it accommodates more than
1.135 million inhabitants on an area of 730 km2 [48]. Due to its geographical location and characteristics,
many areas of the city are prone to natural disasters such as floods and landslides. In a study by
MIDIMAR [49], the hazard-prone areas in Kigali were highlighted based on the frequency of natural
hazards, the topography of the area, and the total damages from the experience of disasters. We selected
our case study area from one of the hazardous areas (Figure 1).

3.2. Data Description

To start the research process, the first and most important stage is data collection and compilation.
At this stage, all required secondary data including spatial and non-spatial were provided by the city of
Kigali. Those data are shapefiles of routes, slope, land use, urban villages, and a boundary map along
with the needed attribute data such as population. The National Institute Statistics of Rwanda (NISR)
provided documents and the population data from the fourth Population and Housing Census of 2012.
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of the study area in Kigali city.

Currently, the existing evacuation planning in the city of Kigali does not show a specific place of
evacuation. The local authorities are in charge of providing the facilities and locations of safe areas
for evacuation and sheltering when a disaster occurs. Thus, the safe areas were selected based on the
international standards of evacuation planning for flood and landslide hazards [50]. This includes open
spaces, schools, and churches that meet the suitability criteria of being located out of the disaster-prone
zones, on gentle slopes and having access to resources, including water sanitation, food, electricity,
and toilets.

GIS was used for the preparation and analysis of spatial data. A densely populated region
covering an area of 6.9 km2, with a population of 176,741, was selected as a study area (Figure 1b).
The population data from NISR was aggregated to the level of small blocks. So, there were 1525
small blocks considered as residential/commercial communities and only one population value was
considered for each block. A table was created to store each block, its coordinates, the number of
evacuees (population size), and the distance to each shelter following the shortest path. Ten shelters
were selected and their capacities were calculated based on the crowd density standard considering
3.5 m2 per person [51]. The table was created to store each candidate shelter, its coordinates, and its
capacity to host evacuees. In total, the selected ten shelters have the capacity to host 134,462 evacuated
persons. Each shelter might be overloaded due to a large number of evacuees.

A matrix of the shortest distance from each block to each shelter was generated using network
analysis in ArcGIS. The origin–destination cost matrix tool was used to compute the minimum distance.

4. Methodology

4.1. Objective Functions for Evacuation Model

As highlighted earlier evacuation planning, in this study, is a location-allocation problem.
We adopted two objective functions proposed by Saadatseresht et al. [11]:
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1. Function to minimize accumulated distance: This objective function aims at allocating each
building block to the nearest shelter.

f distance =
n∑

j=1

m∑
i=1

di jpi j (1)

2. Function to minimize capacity overload: This objective function aims at distributing the overload
of the evacuee population among all shelters.

f capacity =
n∑

j=1

∣∣∣∣∣∣
∑m

i=1 pi j

c j
− 1

∣∣∣∣∣∣ (2)

where m represents the number of building blocks; n is the number of safe areas, di j is the distance
between the ith building block and the jth safe area; pi j is the population in the ith building block
being evacuated to the jth safe area; and c j is the capacity of the jth safe area for receiving people.

4.2. Modeling Metaheuristic Algorithms for Evacuation Planning

This section explains the way the allocation of people from the building blocks (residence,
commercial, offices) to the safe areas (shelters) is modeled for each of the four algorithms.

The evacuation problem is solved as an unconstrained problem. The discrete method is used to
represent the solution for all four algorithms. Figure 2 shows an example of a discrete encoding of the
shelter allocation for a study area consisting of 10 building blocks. In Figure 2, a solution is presented
as a list; the size of the list corresponds to the number of building blocks. This list contains elements
that correspond to the shelters. Since one shelter can accommodate many people from different places,
the elements in the list are repeated (many-to-one assignment).
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randomly generated.

4.2.1. Modeling AMOSA

As mentioned above, the AMOSA algorithm was extended from the principal of simulated
annealing to handle multiple objectives problems. This extension lies in determining how to calculate the
probability of accepting an individual x′ where f (x′) is dominated with respect to f (x). The acceptance
of new solutions is based on the probability determined by computing the amount of dominance
between two solutions a and b as

∆doma,b =
M∏

i = 1, f i(a) , f i(b)

(∣∣∣ fi(a) − fi(b)
∣∣∣/Ri

)
, (3)

where M = number of objectives and Ri is the range of the ith objective. A new solution is selected
based on the probability computed with the following equation

pqs =
1

1 + e
−(E(q,T)−E(s,T))

T

, (4)
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where q is the current state and E(s, T) and E(q, T) are the corresponding energy values of s and q,
respectively [27].

The solutions were generated as demonstrated in Figure 2. Equations (3) and (4) were used to
select and sort the non-dominated solutions in the archive. The algorithm stops when the cooling
process reaches the predefined low temperature and the maximum number of iterations.

4.2.2. Modeling MOABC

In MOABC, the coding of the population of the bees is equivalent to the coding of the population
in Figure 2. At the starting stage of the algorithm, a population of scout bees is initialized and each bee
represents a food source as an array with the size corresponding to the number of building blocks
and composed of 10 repeated indices of the 10 shelters. Modeling the fitness function in the MOABC
algorithm is similar to those in AMOSA, using Equations (1) and (2). After the initialization and
evaluation of fitness, the best solutions are stored in an external archive (new list). Since the archive
contains the best solutions found so far, then each employed bee xid would select a solution from the
archive randomly to update it and become vid. The solution is updated through the equations

vid = xid + w·rand[0, 1](xid − xkd), (5)

pi =
f (Xi)∑n

i=0 f (Xi)
(6)

where i represents the food source which is going to be updated, k ∈ {1, 2, . . . , bee}, and d ∈ {1, 2, . . . , D}
are randomly chosen indexes. The coefficient w is used to control the influence of the food source k in
the production of the new food source.

After evaluating the fitness of employee bees and updating the archive with the best solutions,
a roulette wheel selection method is performed to select the onlooker bees for the next generation.
The roulette wheel method selects an individual based on the probability pi, found by calculating
the proportion of individual fitness f (xi) in relation to the total fitness of the n population, as shown
in Equation (6). Both employed bees and onlooker bees perform the neighborhood search using
the expression in Equation (5) [32]. However, this neighborhood search approach is suitable for
the continuous problem, and not for the discrete problem. Thus, in this study, we applied a swap
method that randomly selects two elements of a solution and interchanges their indexes. Furthermore,
a greedy selection method was applied to evaluate the solution with the best value, comparing an
existing solution and a new one. By applying this for all employed bees and onlooker bees, a new bee
with the best fitness is selected for the next generation. The best solution is stored in the archive at
every iteration of the algorithm. Further exploration is carried out by one scout bee that generates a
new random solution. The algorithm is terminated when the given termination criterion (maximum
iterations) is attained.

4.2.3. Modeling MSPSO

In the MSPSO algorithm used in this research, every possible arrangement of all building blocks
to any candidate shelter can be considered as a potential particle in the search space. The MSPSO
algorithm looks for a particle location that satisfies the two defined objective functions of evacuation
planning. A particle is defined as a solution and initialized randomly (see Figure 2).

However, the SPSO algorithm was designed for continuous spaces and with real numbers, while in
our case the space of the problem is discrete. To solve this, a rounded value method was used for
mapping a discrete problem space to the continuous space and vice versa. The 10 shelters are randomly
attributed to the integer values of 1 to 10. The real values generated from updating the position of
particles (movements of particles) are rounded in order to obtain integer values between 1 and 10.
Figure 3 shows an example of an initial particle in continuous space transformed into discrete space
after updating of a particle position. The fitness function is calculated using Equations (1) and (2)
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and assigned to each particle. A neighborhood topology (ring topology) is used to determine the
global best (gbest) for each particle among its neighbors. The algorithm is terminated by attaining the
maximum number of iterations.
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4.2.4. Modeling NSGA-II

Solving evacuation problem using NSGA-II begins with initializing a population P0 of
chromosomes and then initiate the solutions randomly. The coding of a solution in the form of
a chromosome is similar to a solution presented in Figure 2. In this study, the number of genes in each
chromosome corresponds to the number of building blocks and each gene contains the index of one
shelter with repetition. After initialization, the fitness function is evaluated using Equations (1) and (2).
The selection of parent chromosomes of the next generation is done using a tournament selection
method based on dominance between two individuals. If the two individuals do not inter-dominate,
the selection is made based on crowding distance [52]. This selection technique has also been used by
Datta et al. [53] in designing optimal census areas. To generate a new population (offspring), crossover,
and mutation operators were applied. The aim of a crossover operator is to exploit the existing best
solutions. There are a variety of crossover operators applied in GIS-based genetic procedures [54],
and the most used methods include one-point, two-points, and uniform crossover random operators.
Here we used the two-point method. This method randomly selects two crossover points and then
swaps the vectors of both parents between the two positions as shown in Figure 4a. The two-point
crossover has been applied in [55] for optimizing land use planning.

A mutation operator is used to maintain the diversity from one generation to the next and to
prevent the issue of local optimum. Two elements of a chromosome are randomly selected and
swapped as showed in Figure 4b. After crossover and mutation operations, the elitism strategy is
applied to sort the combined population of parents and offspring using the non-dominated sorting
method [36].
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4.3. Comparing and Evaluating the Performances of Algorithms

In this research, the goal of optimization is to find the best combination of building blocks assigned
to shelters, with minimum accumulated distance from building blocks to shelters and minimum
overload capacity of all shelters. It is assumed that all building blocks will be assigned a safe area.

To evaluate and compare the four algorithms for the given evacuation problem, the different
criteria effectiveness, efficiency (convergence trend, execution time), and repeatability were used.
The statistical analysis of variance method (Kruskal–Wallis test) [56] was used to allow us to test how
each algorithm achieves the best results and to evaluate if there are statistically significant differences
between the tested algorithms. The results from the Kruskal–Wallis (KW) test return the Chi-square
value and p-value. A high Chi-square indicates the statistical significance of differences, while the
p-value determines if the tested hypothesis should be retained or rejected. If the corresponding KW
null hypothesis is rejected, the pairwise comparison is done using the Conover-Iman test [57,58].

The effectiveness of the optimization consists of how good the results of each algorithm is.
This study compares the effectiveness of four algorithms for evacuation planning to see how each
algorithm minimized the two objective functions: the smaller fitness function value, the better
performance in terms of effectiveness criteria.

The convergence trend criteria allowed us to evaluate the fitness variation of the algorithm and
get information about the speed of the algorithm needed to reach the optimum solution. Execution
time helps to evaluate the computational complexity of the algorithm. Since metaheuristic algorithms
use randomness to generate initial solutions and to explore search space of feasible solutions, their
results are always different from multiple runs. Considering this, to test the repeatability, we run each
algorithm thirty times with the same parameters in order to assess their repeatability.

5. Results of Comparing Algorithms

To compare the performances of the algorithms, we measured and compared four criteria:
effectiveness (solution quality), efficiency (convergence speed and execution time), and repeatability.

5.1. Parameter Configuration

Initially, each algorithm has a set of parameters that defines the way they perform the optimization.
However, to test these parameters is out of the scope of this research and therefore their values were
based on the literature. Nonetheless, since each algorithm works in a different way, several pre-runs
were executed in order to look for comparable conditions for them. From this exercise, it was noticed
that the parameters population size and maximum number of iterations have significant impact on the
results and computation time. Therefore, in order to compare the criteria of effectiveness and efficiency,
all algorithms were run on an equal number of the population size of 100 and iterated 500. Other
parameters were selected based on the original literature of the algorithms [27,32,36,44]. The tested
parameters and their initial values are shown in Table 1.

As highlighted in the study by [59], we recommend future studies to further investigate the
parameter tuning of the tested algorithms in this study. Parameter tuning analysis aims to obtain the
best parameter setting for each algorithm. Also, note that trial and errors along with the experience
of the researchers in understanding how these parameter values correlate to the real-world problem
being solved are crucial to achieving satisfactory results.



Algorithms 2020, 13, 16 11 of 21

Table 1. The parameter values of the four algorithms.

Parameters Value

AMOSA
Number of population 100
Number of iterations 500

Tmax 100
Tmin 10 × 10−3

Alpha (α) 0.9
MOABC

Colony size 100
Number of iterations 500
Inertia Weight (w1) 0.7
Inertia Weight (w2) 0.8

MSPSO
Number of particles 100
Number of iterations 500

Acceleration constant (c1 = c2) 1.49
Inertia Weight (w) 0.72

NSGA-II
Number of chromosomes 100

Number of iterations 500
cross-mutate rate 0.9

mutation rate 0.01

5.2. Effectiveness Comparison

This study compares the effectiveness of the four algorithms to see how effective each algorithm
optimizes the two defined objective functions. Table A1 shows the average and worst fitness values for
both capacity and distance functions (fcapacity, fdistance), as well as the execution times obtained
for 30 runs of each algorithm. In all 30 cases, AMOSA was the best one optimizing both objective
functions, while MSPSO derived extreme values compare to MOABC and NSGA-II. As shown in
Table 2, the Kruskal–Wallis test provided very strong evidence of a difference between the mean ranks
of the four methods, optimizing the fcapacity and fdistance. The p-values of both functions are smaller
than alpha = 0.05. This means that all algorithms perform differently in terms of optimizing the two
objective functions.

Table 2. p-values of the Kruskal–Wallis test for evaluating the effectiveness and efficiency of four
algorithms in both optimizing capacity and distance function.

KW Test
Effectiveness Efficiency (Fitness Variation)

Efficiency
(Execution Time)Cost of

Fcapacity
Cost of

Fdistance
Cost of

Fcapacity
Cost of

Fdistance

Chi-Square 88.809 98.016 674.13 162.42 105.028
p-value 0.000 0.000 0.000 0.000 0.000

For effectiveness evaluation in Table 2, the results from the Kruskal-Wallis test shows very strong
evidence of a difference (p = 0.000 and p = 0.000) between the mean ranks of the four algorithms in
both optimizing fcapacity and fdistance. As shown in Table 3, the pairwise comparison using the
Conover-Iman test was carried out to compare the four algorithms and we notice strong evidence
of the difference between MSPSO and the other three algorithms, regarding the minimum fitness of
capacity as well as distance functions. The asterisk symbol in Table 3 shows where the p-value is less
than alpha (α = 0.05), indicating a significant difference between a pair of algorithms in terms of the
quality of solutions obtained (see Table A1).
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The box plot presents the average cost of two objectives for the four algorithms (Figure 5).
Figure 5a,b show that AMOSA and MOABC are the algorithms with the minimum average cost for
both objectives. NSGA-II is the third in optimizing both objective functions, while MSPSO has a
significantly higher average cost.

Table 3. p-value of pairwise comparison of algorithms vs. t-statistic value of capacity and
distance function.

Index
Fcapacity Fdistance

t-Statistic p-Value t-Statistic p-Value

AMOSA-MOABC −3.223 0.001 * −0.393 0.852
AMOSA-MSPSO −17.183 0.000 * −19.693 0.000 *
MOABC-MSPSO −13.960 0.000 * −19.300 0.000 *

AMOSA-NSGA-II −9.043 0.000 * −11.549 0.000 *
MOABC-NSGA-II −5.820 0.000 * −11.156 0.000 *
MSPSO-NSGA-II 8.141 0.000 * 8.144 0.000 *

* p ≤ α.
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Figure 6 shows that AMOSA returns the high number of solutions while MOABC returns the
small number of solutions in the final Pareto front. AMOSA and NSGA-II effectively converge faster to
the minimum fitness compare to MOABC and MSPSO. The large size of AMOSA’s solutions is due to
its capacity for archiving and clustering solutions that control diversity among the non-dominated
solutions. As can be seen in Figure 6, the AMOSA, MSPSO, and NSGA-II show more evenly and
smoothly distributed solutions along the Pareto front compared to MOABC.
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5.3. Efficiency Comparison

To evaluate the efficiency of the four algorithms in terms of convergence speed and execution
time the Kruskal–Wallis test was used. The convergence speed of an algorithm is evaluated based on
the fitness variation. This criterion shows how the algorithm converges toward the optimum solution
through a number of iterations, while the execution time reveals how fast the algorithm is in terms of
running time. The results of the efficiency criteria are presented in Table 2. The p-values in Table 2
show that there is a very significant difference in convergence speed (fitness variation rate) between the
algorithms for both objective functions. This is identified by p-value = 0.000, which is less than alpha =

0.05. The post hoc tests using the Conover test were carried out for pairwise convergence comparison,
and the results are presented in Table 4. From Table 4, we found that there are statistically significant
differences between all algorithms when optimizing the capacity function (p < 0.05). Regarding fitness
variation of distance function, only two paired comparisons of MOABC-MSPSO and AMOSA-NSGA-II
did not show significant differences (p > 0.05) among six paired comparisons.

Table 4. Comparison of fitness values of capacity and distance function (fcapacity & fdistance) for
convergence speed.

Index
Fcapacity Fdistance

t-Statistic p-Value t-Statistic p-Value

AMOSA-MOABC −11.272 0.000 * −7.710 0.000 *
AMOSA-MSPSO −23.040 0.000 * −8.554 0.000 *
MOABC-MSPSO −18.221 0.000 * −1.309 0.467

AMOSA-NSGA-II −3.055 0.006 * −1.575 0.340
MOABC-NSGA-II 12.716 0.000 * 9.495 0.000 *
MSPSO-NSGA-II 30.921 0.000 * 10.799 0.000 *

* p ≤ α.

Figure 7 shows a boxplot of fitness variation of both objectives and average execution time for
the four algorithms. By assessing box plot a and b in Figure 7, we notice that AMOSA outperforms
the other three algorithms, with a minimum average cost for both capacity and distance functions.
However, Figure 7c demonstrates that NSGA-II is the fastest algorithm compared to the three others.
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This shows that the algorithm with high convergence speed is not always the one with the shortest
execution time. The execution time is mostly influenced by the size of the population and the number
of iterations. For AMOSA, 500 iterations have increased the computation time compared with when
the algorithm runs of 100 iterations.Algorithms 2019, 12, x FOR PEER REVIEW 14 of 22 
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Figure 8 presents the convergence trends of the four algorithms, for both capacity and distance
objective functions. The best fitness values of the two functions were normalized in order to facilitate
their comparisons. With the progress of the algorithms, the convergence speed is reduced until the
optimal solutions are attained. The mean fitness variation of MSPSO is higher compared to that of
AMOSA, NSGA-II, and MOABC as shown in Figure 7a,b. Note that for AMOSA, the number of
iterations displayed in Figure 8a did not attain 500 as for other algorithms. This is due to its nested
loops that also iterate the cooling rate (from high temperature to lower temperature). To avoid the
repetitions of solutions, we only retrieved the minimum fitness value obtained after 500 iterations of
every degree of the cooling temperature (set to 100 ◦C).

In general, the convergence speed of AMOSA and NSGA-II are higher (better) followed by
MOABC and MSPSO. The reason for smoother convergence of NSGA-II is the crossover and mutation
operators that influence to obtain the best survivors (offspring) for the next generation. In contrast
with that, the neighborhood search strategy in MSPSO does not guarantee a better improvement
of the solutions through iterations. The common challenge of this strategy is to deal with local
optimums problem.
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5.4. Repeatability Test and Evaluation

A good optimization algorithm is supposed to generate similar results for different runs with the
same input parameters. In this section, the repeatability and stability of each algorithm are investigated
using the variance of average-normalized fitness values and the average execution time. Each algorithm
was implemented five times with the same input data and their results are presented in Table 5.

Table 5. The variance of the best-normalized fitness values and average execution time of four
algorithms. The minimum values are indicated in bold.

Algorithm
Average

Execution Time
in Seconds

The Variance of the
Average-Normalized Fitness
Values of Capacity Function

The Variance of the
Average-Normalized Fitness

Values of the Distance Function

AMOSA 736.67 0.045 0.040
MOABC 922.07 0.050 0.052
MSPSO 1786.90 0.049 0.053

NSGA-II 363.03 0.056 0.081

The four algorithms are different regarding repeatability. As shown in Table 5, NSGA-II has
the lowest average execution time of 30 runs, followed by AMOSA and MOABC, and then MSPSO.
AMOSA, MOABC, and MSPSO have the lowest average-normalized fitness values for both capacity
and distance functions. This indicates that in terms of quality of solutions and repeatability, MOABC
and AMOSA are to prefer solving evacuation problems.

The box plot in Figure 7c shows that the average execution time of NSGA-II is 363.03, which is
less than half the value of MOABC, and less than a third of MSPSO. Although MOABC and MSPSO
are both swarm intelligence algorithms, MOABC outperforms MSPSO. The reason for this difference
can be related to the time-consuming neighborhood search process by the particles. The main part of
the computation is spent on the calculation of neighborhood topology and comparison of local best
and global best fitness values of particles. MOABC, on the other hand, performs a quick exploration of
scouts and the share of information between employee and onlooker bees.

5.5. Allocation Maps

Figure 9 presents the maps of the distribution of the population to shelters as outputs of each
algorithm after optimizing the two defined functions. Three solutions are selected from the Pareto front



Algorithms 2020, 13, 16 16 of 21

of each algorithm (see Figure 7) by giving higher weight to either minimum objective 1 (Equation (1)) or
minimum objective 2 (Equation (2)), or considering the same weight for both objectives. All solutions
are optimum and there is a trade-off between them. Meanwhile, decision-makers can select an optimum
solution, based on his/her preferences (Figure 9a–c). The lines with different colors represent the
allocation of the population from each building block to shelters. The illustrated maps cannot be
regarded as an optimal solution for evacuation planning in the city of Kigali. However, decision-makers
and planners can use them as input to facilitate the procedure of planning a better distribution of
population among the shelters/safe areas. This can be observed in Figure 9 on graphs 1 and 2, where the
lines connecting shelters and building blocks look less crowded than graphs 3 and 4.
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Figure 9. Allocation maps of the shelters to building blocks from the case study area, when both
capacity and distance objective functions are equally prioritized. (1) population allocation of AMOSA,
(2) population allocation of MOABC, (3) population allocation of MSPSO, and (4) population allocation
of NSGA-II.

6. Conclusions

The objective of this study was to compare the performance of four multi-objective optimization
algorithms (AMOSA, MOABC, MSPSO, NSGA-II respectively) for a given spatial problem, namely
evacuation planning. In our study, the evacuation problem was aiming to minimize the accumulated
distance from high-risk zones to shelters and to minimize the total capacity overload cost of shelters.
The higher the minimum fitness values of both capacity and distance are, the better are the obtained
alternatives for assigning people to appropriate shelters.

In terms of algorithm performance, all algorithms generated the optimization in a consistent
way, and no results were obtained that could suggest that some of them were trapped in a local
minimum. By evaluating the convergence speed of the fitness variation of the four algorithms (see
Figure 8), we found that AMOSA and NSGA-II followed by MOABC converge faster and smoother
towards the final optimal solutions. This justifies not only the competence of NSGA-II, which has been
used in the literature to a larger extent than the other algorithms [60]. However, the competence of
AMOSA and MOABC shows the capacity of solving multi-objective optimization problems including
evacuation problems.
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The presented metaheuristic methods and others of its type are not meant to find a ‘single perfect
solution’ but a set of ‘good enough’ solutions in an efficient way, and therefore, it is possible that a
more optimal solution can be achieved by using alternative methods. Decision-makers must be aware
of this aspect, in order to properly assess the benefits and limitations of these techniques.

A suggestion for future work, as an alternative approach dealing with this type of spatial
multi-objective optimization problems, is to modify the classical algorithms to better fit the problem
in hand. For example, based on the results obtained by MOABC and the comparison made to other
algorithms, MOABC could be an interesting algorithm to modify in order to solve complex problems
such as evacuation planning. It is also important to consider the use of other methods, such as
recoverable robustness, to solve evacuation planning. Iris and Lam [61] proposed a recoverable robust
optimization approach for the weekly berth and quay crane planning problem. The results proved the
strength of the proposed model for solving a spatial problem.
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Appendix A

In the results section of this article, only a summarized set of graphs was presented for specific
analysis. This appendix contains a table showing the full output of the optimization of each algorithm.
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Table A1. The average and worst fitness values of capacity and distance functions, and the execution time of 30 runs for each algorithm.

Runs
Average

Minimum
Fcapacity

Average
Minimum
Fdistance

AMOSA
Algorithm

Worst
Fcapacity

Worst
Fdistance Time(s)

Average
Minimum
Fcapacity

Average
Minimum
Fdistance

MOABC
Algorithm

Worst
Fcapacity

Worst
Fdistance Time(s)

Average
Minimum
Fcapacity

Average
Minimum
Fdistance

MSPSO
Algorithm

Worst
Fcapacity

Worst
Fdistance Time(s)

Average
Minimum
Fcapacity

Average
Minimum
Fdistance

NSGA-II
Algorithm

Worst
Fcapacity

Worst
Fdistance Time(s)

1 16.13 9.19 × 108 27.00 9.39 × 108 564 17.97 9.28 × 108 20.65 9.85 × 108 1248 58.43 1.20 × 109 70.66 1.27 × 109 2097 16.49 9.52 × 108 26.53 1.02 × 109 468
2 17.39 9.29 × 108 23.07 9.71 × 108 677 19.76 9.22 × 108 22.91 9.56 × 108 1255 58.56 1.21 × 109 69.06 1.27 × 109 2076 14.06 9.35 × 108 18.91 9.99 × 108 462
3 18.42 9.14 × 108 25.38 9.66 × 108 680 19.32 9.35 × 108 22.56 9.79 × 108 1402 58.88 1.20 × 109 68.60 1.26 × 109 2077 21.66 9.44 × 108 34.24 1.03 × 109 465
4 16.47 9.24 × 108 24.60 9.77 × 108 580 17.22 9.27 × 108 18.16 9.74 × 108 1241 58.90 1.21 × 109 70.56 1.26 × 109 2069 16.26 9.27 × 108 21.96 1.04 × 109 332
5 16.51 8.95 × 108 21.82 9.36 × 108 604 16.97 9.14 × 108 18.10 9.34 × 108 1228 58.69 1.21 × 109 70.58 1.25 × 109 2070 13.15 9.18 × 108 21.68 9.71 × 108 329
6 23.40 9.89 × 108 25.94 1.00 × 109 630 20.06 9.16 × 108 23.23 9.60 × 108 886 58.72 1.20 × 109 73.44 1.25 × 109 1620 26.87 1.02 × 109 42.01 1.12 × 109 367
7 15.56 8.91 × 108 19.77 9.33 × 108 1167 19.51 9.10 × 108 22.59 9.77 × 108 797 58.42 1.20 × 109 71.45 1.25 × 109 1629 26.61 1.02 × 109 51.04 1.12 × 109 363
8 18.38 8.88 × 108 27.85 9.32 × 108 615 19.98 9.02 × 108 21.87 9.31 × 108 835 59.49 1.21 × 109 68.94 1.26 × 109 1296 26.37 1.01 × 109 40.29 1.15 × 109 353
9 18.70 8.99 × 108 29.47 9.39 × 108 682 16.49 9.11 × 108 17.67 9.22 × 108 841 58.35 1.21 × 109 71.81 1.27 × 109 1278 24.46 1.02 × 109 34.93 1.13 × 109 346

10 15.07 9.30 × 108 24.34 9.85 × 108 689 19.20 9.10 × 108 20.79 9.39 × 108 823 58.40 1.20 × 109 66.92 1.26 × 109 1698 27.00 1.01 × 109 38.93 1.08 × 109 359
11 19.95 8.88 × 108 32.15 9.19 × 108 610 20.85 9.06 × 108 24.34 9.39 × 108 784 59.15 1.21 × 109 70.25 1.29 × 109 1554 25.20 1.01 × 109 39.10 1.08 × 109 364
12 21.05 9.28 × 108 36.64 9.93 × 108 718 18.27 9.06 × 108 20.69 9.28 × 108 783 59.00 1.21 × 109 69.64 1.27 × 109 1781 26.70 1.03 × 109 43.89 1.11 × 109 314
13 15.30 9.22 × 108 25.25 9.69 × 108 743 17.46 9.03 × 108 19.43 9.18 × 108 812 58.96 1.21 × 109 70.71 1.25 × 109 1762 31.24 1.00 × 109 56.20 1.09 × 109 351
14 16.87 9.25 × 108 30.32 9.84 × 108 705 18.57 9.10 × 108 21.88 9.33 × 108 782 59.76 1.20 × 109 71.31 1.27 × 109 1721 24.31 1.01 × 109 34.61 1.13 × 109 330
15 16.78 9.17 × 108 26.60 9.70 × 108 819 17.06 9.14 × 108 20.01 9.53 × 108 806 58.79 1.20 × 109 71.52 1.29 × 109 1703 23.38 1.00 × 109 47.36 1.06 × 109 356
16 18.56 8.87 × 108 28.10 9.37 × 108 683 17.66 9.24 × 108 21.01 9.72 × 108 958 58.78 1.21 × 109 70.76 1.25 × 109 1767 23.45 1.03 × 109 40.94 1.11 × 109 346
17 18.25 9.09 × 108 26.59 9.86 × 108 963 17.16 9.37 × 108 19.12 9.70 × 108 790 58.26 1.20 × 109 71.09 1.26 × 109 1588 25.75 1.03 × 109 46.97 1.14 × 109 322
18 15.76 9.12 × 108 24.80 9.84 × 108 697 19.50 9.23 × 108 24.16 9.68 × 108 870 58.07 1.20 × 109 68.30 1.24 × 109 1680 24.52 1.03 × 109 33.03 1.12 × 109 348
19 16.79 9.18 × 108 25.02 9.71 × 108 956 19.91 9.12 × 108 22.62 9.32 × 108 915 58.13 1.21 × 109 69.77 1.28 × 109 1769 29.32 1.00 × 109 46.32 1.08 × 109 341
20 13.77 8.94 × 108 18.25 9.31 × 108 689 15.58 8.88 × 108 16.48 8.94 × 108 880 58.27 1.21 × 109 69.30 1.26 × 109 1700 22.86 1.01 × 109 42.98 1.09 × 109 361
21 14.72 9.11 × 108 21.05 9.42 × 108 693 18.18 9.14 × 108 21.00 9.68 × 108 860 58.26 1.20 × 109 68.44 1.26 × 109 1846 29.70 9.97 × 108 54.15 1.07 × 109 341
22 15.79 8.85 × 108 23.41 9.40 × 108 948 18.64 9.24 × 108 21.49 9.56 × 108 861 58.05 1.21 × 109 67.60 1.25 × 109 1738 26.20 1.02 × 109 40.99 1.13 × 109 328
23 17.46 9.26 × 108 26.86 9.78 × 108 679 18.77 9.07 × 108 23.48 9.37 × 108 868 58.61 1.21 × 109 74.47 1.28 × 109 1722 23.21 1.02 × 109 32.06 1.11 × 109 352
24 18.17 9.09 × 108 27.70 9.65 × 108 611 17.44 9.04 × 108 19.57 9.41 × 108 890 59.00 1.20 × 109 68.60 1.25 × 109 2222 21.94 1.03 × 109 36.48 1.13 × 109 360
25 13.67 9.16 × 108 19.35 9.51 × 108 972 20.21 9.17 × 108 23.92 9.48 × 108 893 58.58 1.21 × 109 68.09 1.26 × 109 1744 24.17 1.02 × 109 32.15 1.19 × 109 379
26 15.64 8.90 × 108 22.68 9.19 × 108 733 19.54 8.91 × 108 21.53 8.96 × 108 863 59.01 1.20 × 109 73.62 1.26 × 109 2240 29.23 1.02 × 109 53.30 1.12 × 109 401
27 18.58 9.28 × 108 27.06 9.95 × 108 788 18.75 9.16 × 108 22.95 9.33 × 108 856 58.40 1.21 × 109 68.96 1.26 × 109 1753 24.29 1.00 × 109 49.58 1.08 × 109 357
28 18.74 8.92 × 108 25.21 9.35 × 108 685 17.00 9.17 × 108 17.77 9.47 × 108 895 57.83 1.20 × 109 67.63 1.26 × 109 2062 27.50 1.01 × 109 40.21 1.09 × 109 335
29 15.76 8.94 × 108 22.53 9.28 × 108 957 18.40 9.09 × 108 20.54 9.35 × 108 907 59.01 1.20 × 109 73.87 1.28 × 109 1675 27.34 1.01 × 109 41.97 1.09 × 109 385
30 18.42 9.28 × 108 33.86 9.70 × 108 563 21.83 9.01 × 108 25.67 9.31 × 108 833 58.33 1.20 × 109 68.49 1.24 × 109 1670 24.75 1.01 × 109 37.93 1.08 × 109 376
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