Skip to main content
Log in

Short-term retention of kleptoplasty from a green alga (Bryopsis) in the sea slug Placida sp. YS001

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The capacity of sea slugs (sacoglossans) for retaining chloroplasts from food algae provides important insights into endosymbiotic relationships and kleptoplasty. A sea slug species was captured accidentally in the Yellow Sea and identified as Placida sp. YS001 based on phylogenetic analyses of the COX1 and 16S gene sequence. Its life cycle was recorded using microscope. Photosynthetic analysis by pulse amplitude modulated fluorometry during starvation revealed shortterm functional kleptoplasty. An ultrastructural comparison of the slug and alga showed that a change in the chloroplast structure and the phagosome might correspond to short-term endosymbiosis. The horizontally transferred genes, psbO and lectin, were not cloned in the adults or eggs. This study demonstrates the morphological adaptation that occurs during short-term endosymbiotic relationships and provides fresh insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carzoli F.G., Michelotti V., Fambrini M., Salvini M. & Pugliesi C. 2009. Molecular cloning and organ-specific expression of two gibberellin 20-oxidase genes of Helianthus annuus. Plant. Mol. Biol. Rep. 27: 144–152. DOI: 10.1007/s11105-008-0066-z

    Article  CAS  Google Scholar 

  • Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540–552.

    Article  PubMed  CAS  Google Scholar 

  • Clark K.B. & Busacca M. 1978. Feeding specificity and chloroplast retention in four tropical Ascoglossa, with a discussion of the extent of chloroplast symbiosis and the evolution of the order. J. Moll. Stud. 44: 272–282.

    Google Scholar 

  • Clark K.B., Jensen K.R. & Stirts H.M. 1990. Survey for functional kleptoplasty among West Atlantic Ascoglossa (=Sacoglossa) (Mollusca, Opisthobranchia). Veliger 33: 339–345.

    Google Scholar 

  • Clark K.B., Jensen K.R., Stirts H.M. & Fermin C. 1981. Chloroplast symbiosis in a non-elysiid mollusk, Costasiella-lilianae Marcus (Hermaeidae: Ascoglossa (=Sacoglossa): effects of temperature, light intensity, and starvation on carbon fixation rate. Biol. Bull. 160: 43–54.

    Article  Google Scholar 

  • Curtis N.E., Massey S.E. & Pierce S.K. 2006 The symbiotic chloroplasts in the sacoglossan Elysia clarki are from several algal species. Invertebr. Biol. 125:336–345. DOI:10.1111/j.1744-7410.2006.00065.x

    Article  Google Scholar 

  • Curtis N.E., Massey S.E., Schwartz J.A., Maugel T.K. & Pierce S.K. 2005. The intracellular, functional chloroplasts in adult sea slugs (Elysia crispate) come from several algal species, and are also different from those in juvenile slugs. Microsc. Microanal. 11(Suppl. 2): 1194. DOI: 10.1017/S1431927605505774

    Google Scholar 

  • Curtis N.E., Schwartz J.A. & Pierce S.K. 2010. Ultrastructure of sequestered chloroplasts in sacoglossan gastropods with differing abilities for plastid uptake and maintenance. Invertebr. Biol. 129: 297–308. DOI: 10.1111/j.1744-7410.2010.00206.x

    Article  Google Scholar 

  • Nowack E.C.M. & Melkonian M. 2010. Endosymbiotic associations within protists. Phil. Trans. R. Soc. B. 365: 699–712. DOI: 10.1098/rstb.2009.0188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Evertsen J. 2008. Solar powered phycozoans: herbivore sacoglossans with photosynthetic chloroplasts. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim.

    Google Scholar 

  • Evertsen J., Burghardt I., Johnsen G. & Wägele H. 2007. Retention of functional chloroplasts in some sacoglossans from the Indo-Pacific and Mediterranean. Mar. Biol. 151: 2159–2166. DOI: 10.1007/s00227-007-0648-6

    Article  Google Scholar 

  • Evertsen J. & Johnsen G. 2009. In vivo and in vitro differences in chloroplast functionality in the two north Atlantic sacoglossans (Gastropoda, Opisthobranchia) Placida dendritica and Elysia viridis. Mar. Biol. 156: 847–859. DOI: 10.1007/s00227-009-1128-y

    Article  CAS  Google Scholar 

  • Graves D.A., Gibson M.A. & Bleakney J.S. 1979. The digestive diverticula of Alderia modesta and Elysia chlorotica. Veliger 21: 415–422.

    Google Scholar 

  • Green B.J., Fox T.C. & Rumpho M.E. 2005. Stability of isolated chromophytic algal chloroplasts that participate in a unique mollusc/kleptoplast association. Symbiosis 40: 31–40.

    Google Scholar 

  • Guindon S. & Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696–704. DOI: 10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41: 95–98.

    CAS  Google Scholar 

  • Händeler K., Grzymbowski Y.P., Krug P.J. & Wägele H. 2009. Functional chloroplasts in metazoan cells — a unique evolutionary strategy in animal life. Front. Zool. 6: 1–18. DOI: 10.1186/1742-9994-6-28.

    Article  CAS  Google Scholar 

  • Huelsenbeck J.P. & Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. DOI: 10.1093/bioinformatics/17.8.754

    Article  PubMed  CAS  Google Scholar 

  • Jensen K.R. 1982. Chemoreception as a factor in food location of Elysia cauze Marcus (Opisthobranchia, Ascoglossa). Mar. Behav. Physiol. 8: 205–218. DOI: 10.1080/10236248209387018

    Article  CAS  Google Scholar 

  • Jensen K.R. 1993. Morphological adaptations and plasticity of radular teeth of the Sacoglossa (5 Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants. Biol. J. Linn. Soc. 48: 135–155.

    Article  Google Scholar 

  • Kaiser W.M., Stepper W. & Urbach W. 1981. Photosynthesis of isolated chloroplasts and protoplasts under osmotic stress. Planta 151: 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Klochkova T.A., Han J.W., Kim J.H., Kim K.Y. & Kim G.H. 2012. Feeding specificity and photosynthetic activity of Korean sacoglossan mollusks. Algae 25: 217–227. DOI: 10.4490/algae.2010.25.4.217

    Article  Google Scholar 

  • Kong F.N., Jiang S.M., Meng X.B., Song C.L., Shi J.F., Jin D.M., Jiang S.L. & Wang B. 2009. Cloning and characterization of the DHDPS gene encoding the lysine biosynthetic enzyme dihydrodipoc olinate synthase from Zizania latifolia (Griiseb). Plant. Mol. Biol. Rep. 27: 199–208.

    Article  CAS  Google Scholar 

  • Lilley R.M.C., Fitzgerald M.P., Rienits K.G. & Walker D.A. 1975. Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. New Phytol. 75: 1–10.

    Article  CAS  Google Scholar 

  • Liu C.P. & Lin L.P. 2001. Ultrastructural study and lipid formation of Isochrysis sp. CCMP1324. Bot. Bull. Acad. Sin. 42: 207–214.

    CAS  Google Scholar 

  • Luo T., Deng W.Y., Zeng J. & Zhang F.L. 2009. Cloning and characterization of a stearoy-lacyl carrier protein desaturase gene from Cinnamomum longepaniculatum. Plant. Mol. Biol. Rep. 27: 13–19.

    Article  CAS  Google Scholar 

  • Maeda T., Kajita T., Maruyama T. & Hirano Y. 2010. Molecular phylogeny of the sacoglossa, with a discussion of gain and loss of kleptoplasty in the evolution of the group. Biol. Bull. 219: 17–26. PMID: 20813986

    PubMed  CAS  Google Scholar 

  • McLean N. 1976 Phagocytosis of chloroplasts in Placida dendritica (Gastropoda: Sacoglossa). J. Exp. Zool. 197: 321–329.

    Article  Google Scholar 

  • Mondy W.L. & Pierce S.K. 2003. Apoptotic-like morphology is associated with annual synchronized death in kleptoplastic sea slugs (Elysia chlorotica). J. Invertebr. Biol. 122: 126–137.

    Article  Google Scholar 

  • Mujer C.V., Andrews D.L., Manhart J.R., Pierce S.K. & Rumpho M.E. 1996. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. Proc. Natl. Acad. Sci. USA 93: 12333–12338.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pierce S.K., Curtis N.E., Hanten J.J., Boerner S.L. & Schwartz J.A. 2007. Transfer, integration and expression of functional nuclear genes between multicellular species. Symbiosis 43: 57–64.

    CAS  Google Scholar 

  • Pierce S.K., Fang X.D., Schwartz J.A., Jiang X. & Zhao W. 2012. Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica. Mol. Biol. Evol. 29: 1545–1556. DOI: 10.1093/molbev/msr316

    Article  PubMed  CAS  Google Scholar 

  • Posada D. & Crandall K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. DOI: 10.1093/bioinformatics/btg180

    Article  PubMed  CAS  Google Scholar 

  • Rumpho M.E., Pelletreau K.N., Moustafa A. & Bhattacharya D. 2011. The making of a photosynthetic animal. J. Exp. Biol. 214: 303–311. DOI: 10.1242/jeb.046540

    Article  PubMed Central  PubMed  Google Scholar 

  • Rumpho M.E., Pochareddy S., Worful J.M., Summer E.J., Bhattacharya D., Pelletreau K.N., Tyler M.S., Lee J., Manhart J.R. & Soule K.M. 2009. Molecular characterization of the Calvin cycle enzyme phosphoribulokinase in the stramenopile alga Vaucheria litorea and the plastid hosting mollusc Elysia chlorotica. Mol. Plant. 2: 1384–1396. DOI: 10.1093/mp/ssp085

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rumpho M.E., Summer E.J., Green B.J., Fox T.C. & Manhart J.R. 2001. Mollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus? Zoology 104: 303–312. PMID: 16351845

    Article  PubMed  CAS  Google Scholar 

  • Rumpho M.E., Summer E.J. & Manhart J.R. 2000. Solarpowered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 123: 29–38.

    CAS  Google Scholar 

  • Rumpho M.E., Worful J.M., Lee J., Kannan K., Tyler M.S., Bhattacharya D., Moustafa A. & Manhart J.R. 2008. Horizontal gene transfer of the algae nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc. Natl. Acad. Sci. USA 105: 17867–17871. DOI: 10.1073/pnas.0804968105

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartz J.A., Curtis N.E. & Pierce S.K. 2010. Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evol. Biol. 37: 29–37. DOI: 10.1007/s11692-010-9079-2

    Article  Google Scholar 

  • Seftor R.E. & Jensen R.G. 1986. Causes for the disappearance of photosynthetic CO2 fixation with isolated spinach chloroplasts. Plant. Physiol. 81: 81–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thompson J.D., Higgins D.G. & Gibson T.J. 1994. Clustal-Wimproving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tian C., Wang G., YE N.H. & Zhang B.Y. 2005. Cloning and sequence analysis of the partial sequence of the rbcL from Bryopsis hypnoides. Acta Oceanol. Sin. 5: 150–161.

    Google Scholar 

  • Trench R.K., Boyle E.J. & Smith D.C. 1973. Association between chloroplasts of Codium fragile and the mollusc Elysia viridis. II. Chloroplast ultrastructure and photosynthetic carbon fixation in Elysia viridis. Proc. Roy. Soc. Lon. B. Biol. 184: 63–81.

    Article  CAS  Google Scholar 

  • Wägele H., Deusch O., Händeler K., Martin R., Schmitt V., Christa G., Pinzger B., Gould S.B., Dagan T., Klussmann-Kolb A. & Martin W. 2011. Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobrachus ocellatusdoes not entail lateral transfer of algal nuclear genes. Mol. Biol. Evol. 28: 699–706. DOI: 10.1093/molbev/msq239

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naihao Ye.

Additional information

The authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Qiao, H., Xu, D. et al. Short-term retention of kleptoplasty from a green alga (Bryopsis) in the sea slug Placida sp. YS001. Biologia 69, 635–643 (2014). https://doi.org/10.2478/s11756-014-0355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0355-y

Key words

Navigation