Skip to main content
Log in

Glucocorticoids in Alzheimer’s Disease

The Story So Far

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

The inflammatory hypothesis of Alzheimer’s disease states that specific inflammatory mechanisms, including the cytokine-driven acute-phase response, complement activation and microglial activation, contribute to neurodegeneration. If the hypothesis is correct, anti-inflammatory treatment aimed at suppression of these mechanisms could slow the rate of disease progression. Towards this goal, a multicentre trial of prednisone in Alzheimer’s disease is under way and pilot studies of other anti-inflammatory regimens are being conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers J, Civin WH, Styren SD, et al. Immune-related mechanisms of Alzheimer’s disease pathogenesis. In: Khachaturian ZS, Blass JB, editors. Alzheimer’s disease: new treatment strategies. New York: Marcel Dekker, 1992: 147–63

    Google Scholar 

  2. Aisen PS, Davis KL. Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 1994; 151: 1105–13

    PubMed  CAS  Google Scholar 

  3. Bauer J, Strauss S, Schreiter-Gasser U, et al. Interleukin-6 and alpha-2-macroglobulin indicate an acute phase response in Alzheimer’s disease cortices. FEBS Lett 1991; 285: 111–4

    Article  PubMed  CAS  Google Scholar 

  4. Vandenabeele P, Fiers W. Is amyloidogenesis during Alzheimer’s disease due to an IL-1/IL-6-mediated ‘acute phase response’ in the brain? Immunol Today 1991; 12: 217–9

    Article  PubMed  CAS  Google Scholar 

  5. Potter H, Nelson RB, Das S, et al. The involvement of proteases, protease inhibitors, and an acute phase response in Alzheimer’s disease. Ann N Y Acad Sci 1992; 674: 161–73

    Article  PubMed  CAS  Google Scholar 

  6. Pasinetti GM. Inflammatory mechanisms in neurodegeneration and Alzheimer’s disease: the role of the complement system. Neurobiol Aging 1996; 17: 707–16

    Article  PubMed  CAS  Google Scholar 

  7. Rogers J, Webster S, Lue LF, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 1996; 17: 681–6

    Article  PubMed  CAS  Google Scholar 

  8. McGeer PL, Itagaki S, Tago H, et al. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987; 79: 195–200

    Article  PubMed  CAS  Google Scholar 

  9. Fagarasan MO, Aisen PS. IL-1 and anti-inflammatory drugs modulate Aβ cytotoxicity in PC12 cells. Brain Res 1996; 723: 231–4

    Article  PubMed  CAS  Google Scholar 

  10. Schultz J, Schaller J, McKinley M, et al. Enhanced cytotoxicity of amyloid β-peptide by a complement dependent mechanism. Neurosci Lett 1994; 175: 99–102

    Article  PubMed  CAS  Google Scholar 

  11. Oda T, Lehrer-Graiwer J, Finch CE, et al. Complement and β-amyloid (aβ) neurotoxicity in vitro: a model for Alzheimer disease. Alzheim Res 1995; 1: 29–34

    Google Scholar 

  12. Giulian D, Li J, Leara B, et al. Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem Int 1994; 25: 227–33

    Article  PubMed  CAS  Google Scholar 

  13. London JA, Biegel D, Pachter JS. Neurocytopathic effects of beta-amyloid-stimulated monocytes: a potential mechanism for central nervous system damage in Alzheimer disease. Proc Natl Acad Sci U S A 1996; 93: 4147–52

    Article  PubMed  CAS  Google Scholar 

  14. Griffin WS, Sheng JG, Roberts GW, et al. Interleukin-1 expression in different plaque types in Alzheimer’s diseases: significance in plaque evolution. J Neuropathol Exp Neurol 1995; 54: 276–81

    Article  PubMed  CAS  Google Scholar 

  15. Campbell IL, Abraham CR, Masliah E, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A 1993; 90: 10061–5

    Article  PubMed  CAS  Google Scholar 

  16. Aisen PS, Marin D, Altstiel L, et al. Apilot study of prednisone in Alzheimer’s disease. Dementia 1996; 7: 201–6

    PubMed  CAS  Google Scholar 

  17. Sapolsky RM, McEwen BS. Stress, glucocorticoids and their role in degenerative changes in the aging hippocampus. In: Crook T, Bartus R, Ferris S, et al., editors. Treatment development strategies for Alzheimer’s disease. New Canaan (CT): Mark Powley Associates, 1986: 151–72

    Google Scholar 

  18. Sapolsky RM. Why stress is bad for your brain. Science 1997; 273: 749–50

    Article  Google Scholar 

  19. Landfield PW, Eldridge JC. Evolving aspects of the glucocorticoid hypothesis of brain aging: hormonal modulation of neuronal calcium homeostasis. Neurobiol Aging 1994; 15: 579–88

    Article  PubMed  CAS  Google Scholar 

  20. McEwen BS, Angulo J, Cameron H, et al. Paradoxical effects of adrenal steroids on the brain: protection versus degeneration. Biol Psychiatry 1992; 31: 177–99

    Article  PubMed  CAS  Google Scholar 

  21. Magarinos AM, Orchinik M, McEwen BS. Oral administration of corticosterone mimics effects of stress on hippocampal CA3c dendritic structure [abstract]. 25th Annual Meeting of the Society for Neuroscience: 1995 Nov 11–16: San Diego. Washington, DC: Society for Neuroscience, 1995: 1948

    Google Scholar 

  22. Starkman MN, Gebarski SS, Berent S, et al. Hippocampal formation volume, memory dysfunction, and Cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 1992; 32: 756–65

    Article  PubMed  CAS  Google Scholar 

  23. Davis KL, Davis BM, Greenwald BS, et al. Cortisol and Alzheimer’s disease: I. Basal studies. Am JPsychiatry 1986; 143: 300–5

    CAS  Google Scholar 

  24. Hollander E, Mohs RC, Davis KL. Cholinergic approaches to the treatment of Alzheimer’s disease. Br Med Bull 1986; 42: 97–100

    PubMed  CAS  Google Scholar 

  25. Newcomer JW, Craft S, Hershey T, et al. Glucocorticoid-induced impairment in declarative memory performance in adult humans. J Neurosci 1994; 14: 2047–53

    PubMed  CAS  Google Scholar 

  26. Denburg SD, Carbotte RM, Denburg JD. Corticosteroids and neuropsychological functioning in patients with systemic lupus erythematosus. Arthritis Rheum 1994; 37: 1311–20

    Article  PubMed  CAS  Google Scholar 

  27. Matsubara E, Hirai S, Amari M, et al. Alpha-1-antichymotrypsin as a possible biochemical marker for Alzheimer-type dementia. Ann Neurol 1990; 28: 561–7

    Article  PubMed  CAS  Google Scholar 

  28. Brugge K, Katzman R, Hill LR, et al. Serological α1-antichymotrypsin in Down’s syndrome and Alzheimer’s disease. Ann Neurol 1992; 32: 193–7

    Article  PubMed  CAS  Google Scholar 

  29. Hinds TR, Kukull WA, Van Belle G, et al. Relationship between serum α1-antichymotrypsin and Alzheimer’s disease. Neurobiol Aging 1994; 15: 21–7

    Article  PubMed  CAS  Google Scholar 

  30. Altstiel LD, Lawlor B, Mohs R, et al. Elevated alpha1-antichymotrypsin serum levels in a subset of nondemented first-degree relatives of Alzheimer’s disease patients. Dementia 1995; 6: 17–20

    PubMed  CAS  Google Scholar 

  31. Lieberman J, Schleissner L, Tachiki KH, et al. Serum α1-antichymotrypsin level as a marker for Alzheimer-type dementia. Neurobiol Aging 1995; 16: 747–53

    Article  PubMed  CAS  Google Scholar 

  32. Pirttila T, Mehta PD, Frey H, et al. Alpha 1-antichymotrypsin and IL-1 beta are not increased in CSF or serum in Alzheimer’s disease. Neurobiol Aging 1994; 15: 313–7

    Article  PubMed  CAS  Google Scholar 

  33. Kuiper MA, Van Kamp GJ, Bergmans PLM, et al. Serum α1-antichymotrypsin is not a useful marker for Alzheimer’s disease or dementia in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1993; 6: 145–9

    Article  PubMed  CAS  Google Scholar 

  34. Lawlor BA, Swanwick GRJ, Feighery C, et al. Acute phase reactants in Alzheimer’s disease. Biol Psychiatry 1996; 39: 1051–2

    Article  PubMed  CAS  Google Scholar 

  35. Fagarasan MO, Sevilla D, Baruch B, et al. Plasma C3a levels in Alzheimer’s disease. Alzheim Res 1997; 3: 137–40

    CAS  Google Scholar 

  36. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984; 141: 1356–64

    PubMed  CAS  Google Scholar 

  37. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993; 43: 2412–4

    Article  PubMed  CAS  Google Scholar 

  38. Van Muiswinkel FL, Eikelenboom P. Do nonsteroidal anti-inflammatory drugs have a protective effect against dementia? Drugs Aging 1996; 9: 1–7

    Article  PubMed  Google Scholar 

  39. McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 1996; 47: 425–32

    Article  PubMed  CAS  Google Scholar 

  40. Stewart WF, Kawas C, Corrada M, et al. Risk of Alzheimer’s disease and duration of NSAIDs use. Neurology 1997; 48: 626–32

    Article  PubMed  CAS  Google Scholar 

  41. Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology 1993; 43: 1609–11

    Article  PubMed  CAS  Google Scholar 

  42. Tocco G, Freire O, Schreiber SS, et al. Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer’s disease. Exp Neurol 1997; 144: 339–49

    Article  PubMed  CAS  Google Scholar 

  43. Yamagata K, Andreasson KI, Kaufmann WE, et al. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 1993; 11:371–86

    Article  PubMed  CAS  Google Scholar 

  44. Abramson SB, Weissmann G. The mechanism of action of nonsteroidal anti-inflammatory drugs. Arthritis Rheum 1989; 32: 1–9

    Article  PubMed  CAS  Google Scholar 

  45. Wong PT-H, McGeer PL, McGeer EG. Decreased prostaglandin synthesis in postmortem cerebral cortex from patients with Alzheimer’s disease. Neurochem Int 1992; 21: 197–202

    Article  PubMed  CAS  Google Scholar 

  46. Chang JW, Coleman PD, O’Banion MK. Prostaglandin G/H synthase-2 (cyclooxygenase-2) mRNA expression is decreased in Alzheimer’s disease. Neurobiol Aging 1996; 17: 801–8

    Article  PubMed  CAS  Google Scholar 

  47. O’Banion MK, Winn VD, Young DA. cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc Natl Acad Sci U S A 1992; 89: 4888–92

    Article  PubMed  Google Scholar 

  48. Cao C, Matsumura K, Yamagata K, et al. Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain: its possible role in the febrile response. Brain Res 1995; 697: 187–96

    Article  PubMed  CAS  Google Scholar 

  49. Nakayama M, Uchimura K, Zhu L, et al. Cyclooxygenase 2 promotes neuronal cell death after global ischemia in rat CA1 hippocampus [abstract]. 26th Annual Meeting of the Society for Neuroscience: 1996 Nov 16–21: Washington, DC. Washington, DC: Society for Neuroscience, 1996: 1670

    Google Scholar 

  50. Graham SH, Kawaguchi K, Zhu L, et al. Cyclooxygenase 2 is induced in rat brain after kainate induced seizures and promotes death in CA3 hippocampus [abstract]. 26th Annual Meeting of the Society for Neuroscience: 1996 Nov 16–21: Washington, DC. Washington, DC: Society for Neuroscience, 1996: 2088

    Google Scholar 

  51. Oka A, Takashima S. Induction of cyclo-oxygenase 2 in brains of patients with Down’s syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons. Neuroreport 1997; 8: 1161–4

    Article  PubMed  CAS  Google Scholar 

  52. Vane JR, Botting RM. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res 1995; 44: 1–10

    Article  PubMed  CAS  Google Scholar 

  53. Giulian D, Robertson C. Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol 1990; 27: 33–42

    Article  PubMed  CAS  Google Scholar 

  54. Zemer D, Pras M, Sohar E, et al. Colchicine in the prevention and treatment of amyloidosis of familial Mediterranean fever. N Engl J Med 1986; 314: 1001–5

    Article  PubMed  CAS  Google Scholar 

  55. Escalante A, Ehresmann GR, Quismorio FP. Regression of reactive systemic amyloidosis due to ankylosing spondylitis following the administration of colchicine. Arthritis Rheum 1991; 34: 920–2

    Article  PubMed  CAS  Google Scholar 

  56. Paydas S, Gonlusen G. Regression of nephrotic syndrome with colchicine therapy secondary to amyloidosis with associated Castleman’s disease. Nephron 1995; 71: 463–4

    Article  PubMed  CAS  Google Scholar 

  57. Aisen PS, Marin D, Fusco M, et al. A pilot study of colchicine in Alzheimer’s disease. Alzheim Res 1996; 2: 153–6

    Google Scholar 

  58. Games D, Adams D, Alessandrini R, et al. Development of neuropathology similar to Alzheimer’s disease in transgenic mice overexpressing the 717V-F α-amyloid precursor protein. Nature 1995; 373: 523–7

    Article  PubMed  CAS  Google Scholar 

  59. Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 1996 Oct 4; 274: 99–102

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Aisen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aisen, P.S., Pasinetti, G.M. Glucocorticoids in Alzheimer’s Disease. Drugs Aging 12, 1–6 (1998). https://doi.org/10.2165/00002512-199812010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199812010-00001

Navigation