Paper:

Characterization of Deformable Objects by Using Dynamic Nonprehensile Manipulation

Ixchel G. Ramirez-Alpizar, Mitsuru Higashimori, and Makoto Kaneko
Graduate School of Engineering, Osaka University
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
E-mail: \{ixchel@hh., higashi@, mk@ \}mech.eng.osaka-u.ac.jp
[Received October 23, 2012; accepted November 30, 2012]

Abstract

This paper presents a method for evaluating a physical parameter of unknown deformable objects, by using nonprehensile manipulation. By means of simulation analysis, we show that the curve representing the relationship between the object's angular velocity and the plate's frequency has a resonance-like response. Based on the above phenomenon, we utilize a Lorentz curve fitting to represent the object's angular velocity as a function of the plate's frequency with a simple mathematical expression, instead of deriving the equation of motion of the system that is rather complex due to the intricate dynamics of the system. Then, we show that the first order natural angular frequency in bending determines the frequency at which the object's has its maximal angular velocity. Using this information, we present a method of how to estimate the object's first order natural frequency in bending. We show the simulation and experimental results to verify the validity of the method presented.

Keywords: deformable object, dynamic skill, nonprehensile manipulation, resonant behavior

1. Introduction

In general, robotic manipulation can be classified into two main branches: grasping manipulation and nonprehensile manipulation. The former makes use of fingers to grasp or pick the object with dexterity and precision; while the latter uses a plate or a probe and manipulates the object without grasping it, compensating the dexterity and precision of the former with high speed and simple movements [1-10]. We have already developed a dynamic nonprehensile manipulation scheme inspired by the handling of the pizza peel and made clear how to control the position and orientation of a rigid object on a plate [11]. This manipulation scheme has the advantage that it can remotely manipulate objects by using a simple flat plate with the assistance of vision, therefore allowing the robot to operate the object in areas with high temperatures, high humidity, electromagnetic fields, etc, where electrical hardware is unavailable or where humans can be in danger. Applying this manipulation scheme to handle a deformable object, it also has the advantage of reduc-

Fig. 1. The low angular velocity of the object ω_{B} in (a) and the object's high natural angular frequency in bending ω_{n} (b).
ing the concentration of stress on the object, thus avoiding the object's destruction. Based on this consideration, we have tried to control the posture of a deformable object on a plate [12], as shown in Fig. 1(a). Through a basic experiment and simulation analysis, we have found that a deformable object changes its angular velocity with an analogy to bipedal gaits [13]. We also found that the object's angular velocity can be represented with a simple mathematical expression [14]. Here, we would like to point out an interesting observation. In this manipulation scheme, the object's high frequency in bending vibration of 10 Hz order shown in Fig. 1(b) is converted to a low frequency rotating motion of $f_{B} \approx 1 \mathrm{~Hz}$ order, as illustrated in Fig. 1(a), due to the object's bipedal gait-like behavior. ${ }^{1}$ This suggests that the information of the natural bending frequency of $f_{n} \approx 10 \mathrm{~Hz}$ order when using comestible products such as cheese or ham, is included in the frequency of rotation of the object, that is, the object's angular velocity. Therefore, we may be able to estimate f_{n} by only observing the object's low rotation frequency, as an inverse problem. An important advantage is that as we only have to deal with the object's low rotation frequency, a normal camera with 30 fps can be utilized. Otherwise, to directly observe the object's high bending vibration frequency, a high-speed camera with hundreds or thousands fps order is required to guarantee a high accuracy in the measurements. This kind of nonprehensile

[^0]© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of
approach for sensing the parameters of an object may be applicable to the evaluation of freshness and texture of food, which alters the bending frequency of food. Additionally, as this manipulation scheme can prevent a large concentration of stress, it is also expected to significantly contribute to the cell/tissue processing technology in the bioscience research. A change in tissue stiffness could be an indicator of some diseases such as cancer. In our approach the bending frequency may be used as a stiffness evaluation index.

Extending our previous work [14], this paper discusses how to identify the natural bending frequency of deformable objects and shows the simulation and experimental results validating the proposed method. We first show that a thin deformable object can rotate on a vibrating plate with two degrees of freedom, as shown in Fig. 1(a). Next, we show that a deformable object achieves its maximal angular velocity by an appropriate combination of the plate's angular amplitude and frequency, with respect to its physical parameters. Then, we show that the curve describing the relationship between the plate's angular frequency and the object's angular velocity has a resonance-like curve. Taking advantage of this similarity, we employ a Lorentzian curve fitting to represent the dynamic characteristics of the object with a simple mathematical expression, instead of the equation of motion that is rather complex and difficult to obtain because of the intricate dynamics of the system. Through simulation analysis, we reveal that the first order natural angular frequency in bending of the object ω_{n} as shown in Fig. 1(b), strongly dominate one of the Lorentzian curve characteristics. Based on such nature, we propose an identification method to estimate the natural frequency in bending of unknown objects. Finally, we show the simulation and experimental results of estimating the object's frequency for confirming the validity of the proposed method.

This paper is organized as follows: in Section 2, we briefly review related works. In Section 3, we explain the manipulation scheme and the simulation model. In Section 4 , we show the curve fitting employed to characterize the transition of the object's angular velocity. In Section 5, we propose an identification method to estimate the natural bending frequency of an object. In Section 6, we show the simulation and experimental results. In Section 7, we give the conclusion of this work.

2. Related Works

There have been various works discussing nonprehensile manipulation. Lynch and Mason have discussed controllability, motion planning, and implementation of planar dynamic nonprehensile manipulation [1]. Amagai and Takase have shown the experiments where an object is manipulated on a plate attached at the tip of a six DOFs manipulator based on visual information [2]. Reznik et al. have developed the Universal Planar Manipulator (UPM) based on a single horizontally-vibrating plate with three

Fig. 2. Dynamic nonprehensile manipulation for rotating a deformable object using a plate with two degrees of freedom. Simulation model in (a) and the contact model in (b).

DOFs [3], and Reznik and Canny have demonstrated that multiple objects were simultaneously moved toward target directions [4]. Böhringer et al. have developed a model for the mechanics of microactuators together with a sensorless parallel manipulation theory [5] and have discussed algorithms for sensorless positioning and orienting of planar parts using different vibration patterns [6]. They also proposed microassembly of parts using ultrasonic vibration and electrostatic forces to position and align parts in parallel on a vibratory table [7]. Vose et al. have discussed sensorless control methods for point parts sliding on a rigid plate [8]. They have shown that translation and rotation of a rigid plate induces parts on the plate to move toward or away from a nodal line aligned with the rotation axis [9], and how to find frictional velocity fields generated by plate motions [10]. These works done on manipulation utilizing a plate have supposed that the object is a particle(s) or a rigid body(ies). In contrast, prevalent works treating deformable objects generally make use of grasp manipulation [15-18]. The authors have already discussed how to manipulate a deformable object [12, 13].

3. Manipulation Outline

In this section we give a brief explanation of the manipulation scheme and the simulation model used in this work, and then we show simulation and experimental results to validate the simulation model.

3.1. Manipulation Scheme

Figure 2 shows the manipulation of a deformable object on a plate in simulation. The plate has two degrees of freedom (DOF): the translational motion (DOF: X) and the rotational motion (DOF: Θ), along and around the horizontal axis, respectively. We give to the plate's two DOFs of motion sinusoidal trajectories:

$$
\begin{align*}
& \Theta(t)=-A_{p} \sin \left(2 \pi f_{p} t\right) \tag{1}\\
& X(t)=B_{p} \sin \left(2 \pi f_{p} t\right) \tag{2}
\end{align*}
$$

where A_{p}, B_{p}, and f_{p} denote the angular amplitude, the linear amplitude, and the frequency of the plate motion, respectively. Under this plate motion, the object rotates with an angular velocity ω_{B} to the counter-clockwise direction when $A_{p} B_{p}<0$, and to the clockwise direction when $A_{p} B_{p}>0$ [11].

3.2. Simulation Model

For simulation analysis, we utilize the model, as shown in Fig. 2(a), introduced in [13] to represent the dynamic behavior of a deformable object. This model is composed of virtual tile links, where each virtual tile has a node with mass m located at its center. Adjacent nodes are connected to each other by what we call a viscoelastic joint unit, which is composed by three DOFs: bending, compression/tension, and torsion. The bending and the compression joints have viscoelastic elements and the torsion joint is free. The simulation model in Fig. 2(a) is based on a circular slice of cheese with a diameter of 80 mm , with a mass of 13.6 g and negligible thickness, as shown in Fig. 1(a). The object's model is composed of 52 virtual tile links of length 10 mm and 88 viscoelastic joint units, to approximate the real object. In this model, the friction coefficient between the plate and the object is assumed to be uniform and follow Coulomb's law, given by μ_{s} and μ_{k} for static and dynamic coefficients, respectively. The contact model between the plate and the i-th virtual link is shown in Fig. 2(b), where the contact force is computed with the penalty method [19]. The contact force $f_{i}^{\text {contact }}$ applied to each node is given by

$$
\begin{equation*}
f_{i}^{\text {contact }}=k_{\text {contact }} a_{i}^{2.2}+c_{\text {contact }} \dot{a}_{i} \quad\left(a_{i} \geq 0\right) \tag{3}
\end{equation*}
$$

where a_{i} is the distance between the surface of the plate and that of the virtual link, $k_{\text {contact }}$ and $c_{\text {contact }}$ are the elasticity and viscosity, respectively. Based on [19], the nonlinearity of the elasticity in contact is considered. The frictional force $f_{i}^{\text {friction }}$ applied to the node is given by,

$$
\begin{equation*}
f_{i}^{\text {friction }}=\mu_{*} f_{i}^{\text {contact }} \tag{4}
\end{equation*}
$$

where the coefficient of friction μ_{*} is defined by

$$
\mu_{*}=\left\{\begin{array}{rll}
0 & \text { for } & v_{i}^{\text {slip }}=0 \\
\mu_{s} & \text { for } & 0<\left|v_{i}^{\text {slip }}\right|<V \\
\mu_{k} & \text { for } & V \leq\left|v_{i}^{\text {slip }}\right|
\end{array}\right.
$$

where $v_{i}^{\text {slip }}$ is the slip velocity of the i-th node with respect to the plate and V is the friction transition velocity, that determines the threshold between static and dynamic frictions. The frictional force $f_{i}^{\text {friction }}$ is in the opposite direction to the slip velocity of the node with respect to the plate's surface. For all the simulations $V=100 \mathrm{~mm} / \mathrm{s}$, $k_{\text {contact }}=11.86 \mathrm{~N} / \mathrm{mm}$ and $c_{\text {contact }}=7.65 \times 10^{-3}$ are given empirically.

Figure 3 shows the behavior of a deformable object of $\omega_{n}=10 \pi \mathrm{rad} / \mathrm{s}$ for $A_{p}=12 \mathrm{deg}, B_{p}=3 \mathrm{~mm}, f_{p}=12 \mathrm{~Hz}$ and a friction angle $\alpha=36.9 \mathrm{deg}$, this deformable object's bending parameters and friction angle were obtained from a slice of cheese, as reported in [13]. Here ω_{n} represents the first order natural angular frequency in bending, as shown in Fig. 1(b), that is the frequency with which the object bends up and down freely, without any external forces nor restraints. This parameter depends on the mass of the nodes and the elasticity of the joint units of the model used for simulation. The friction angle between the plate and the object is defined as $\alpha=\tan ^{-1}\left(\mu_{s}\right)$. Also,

Fig. 3. Snapshots of the simulation for $f_{p}=12 \mathrm{~Hz}, A_{p}=$ $12^{\circ}, \omega_{n}=10 \pi \mathrm{rad} / \mathrm{s}$ and $\alpha=36.9^{\circ}$. The object is rotating on the plate with an angular velocity of $\omega_{B}=344^{\circ} / \mathrm{s}$, by using a bipedal-gaited motion.

Fig. 4. Simulation and experimental results. The object's behavior changes similar to sliding, walking and running gaits [17].
we define $\mu_{k}=\beta \mu_{s}$, where $\beta=0.53$ is empirically given. Therefore, when α changes it means that μ_{s} and μ_{k} also change. In Fig. 3, the object is rotating with an angular velocity of $\omega_{B}=344^{\circ} / \mathrm{s}$.

Figure 4 shows the simulation and experimental results of a slice of cheese for $A_{p}=12 \mathrm{deg}$ and $B_{p}=3 \mathrm{~mm}$. It can be seen that in both experiment and simulation the maximal angular velocity of the object is achieved around the same angular frequency of the plate motion. If the object is divided into two parts by the line that passes through its center, and each half is regarded as left leg and right leg, the rotational motion of the object suggests a bipedal gait-like behavior on the floor [13], as illustrated in Fig. 4.

4. Object's Angular Velocity Characterization

In this section, based on simulation analysis we show how the curve representing the relationship between the object's angular velocity ω_{B} and the plate's frequency f_{p} can be described by a peak function such as the Lorentz one, and its similarity with the resonance phenomenon.

4.1. Object's Angular Velocity Transition

Let us now focus on the transition of the object's angular velocity ω_{B}, through simulation analysis. Fig. 5(a) shows examples of the relationship among the object's angular velocity ω_{B}, the plate's motion frequency f_{p}, and the plate's angular amplitude A_{p} for a deformable object of circular shape, with $\omega_{n}=10 \pi \mathrm{rad} / \mathrm{s}$, a friction angle between the plate and the object of $\alpha=36.9^{\circ}$, and a trans-

Fig. 5. Relationship between the object's angular velocity ω_{B} and the plate's motion frequency f_{p} with respect to (a) the plate's angular amplitude A_{p} for $\omega_{n}=10 \pi \mathrm{rad} / \mathrm{s}$, and (b) the object's first order natural frequency in bending ω_{n} for $A_{p}=3^{\circ}$. Both (a) and (b) with $B_{p}=3 \mathrm{~mm}$ and $\alpha=36.9^{\circ}$.
lational amplitude $B_{p}=3 \mathrm{~mm}$. From Fig. 5(a) we can obtain the optimum combination of f_{p} and A_{p} that generates the maximal angular velocity of the object. In this case, it can be seen that for $A_{p}=3^{\circ}$ the object has its maximal angular velocity $\omega_{B \max }$ around $f_{p}=24 \mathrm{~Hz}$, and that for frequencies larger than this the object's angular velocity decreases as the object becomes unstable. We consider the object's behavior as unstable when the object is overturned or its center slips more than 10 mm from the center. The combination of f_{p} and A_{p} will determined when the object becomes unstable and these cases are not plot on Fig. 5. For this reason, in the extreme case of A_{p} being too large $\left(24^{\circ}\right)$ the plotted lines do not have a peak as in the other cases $\left(A_{p}=3^{\circ}, 6^{\circ}\right.$, and $\left.12^{\circ}\right)$. On the other hand, a plate amplitude of $A_{p}=1^{\circ}$ needs much larger frequencies of f_{p} for a peak to appear. Fig. 5(b) shows the relationship between f_{p} and ω_{B} for various deformable objects with different ω_{n}. From this figure, it can be seen that the frequency at which $\omega_{B \max }$ occurs, is uniquely determined for each of these deformable objects. Based on this observation, we can expect that the object's angular velocity transition mainly depends on ω_{n}.

In order to simplify the simulation analysis, in the following sections we suppose that all the deformable ob-

Fig. 6. Lorentz distribution for three different values of λ and $x_{0}=0$.
jects have the same negligible thickness, the same circular shape, and the same diameter of 80 mm . Also we only use $A_{p}=3^{\circ}, 12^{\circ}$, and $B_{p}=3 \mathrm{~mm}$ for the plate's motion amplitudes.

4.2. Resonance-Like Curve Fitting

The object's behavior suggests a peak line shape which is characteristic of a resonant behavior, i.e., the object's ω_{B} reaches its maximal amplitude $\omega_{B \max }$ only at the frequency of resonance. Taking advantage of this similarity, we employ a nonlinear regression analysis to represent the transition of the angular velocity of the object by a simple mathematical expression.

One of the most common functions describing a resonant behavior in curve fitting is the Lorentz distribution (also known as Cauchy distribution [20]) function:

$$
\begin{equation*}
g(x)=\frac{1}{\pi \lambda\left(1+\left(\frac{x-x_{0}}{\lambda}\right)^{2}\right)} \tag{5}
\end{equation*}
$$

where x_{0} is the median of the distribution, λ is the half width at half maximal (HWHM) of the probability density function $g(x)$. These two parameters determine the shape of $g(x)$, and its maximal amplitude at $x=x_{0}$ is given by

$$
\begin{equation*}
a=\frac{1}{\pi \lambda} \tag{6}
\end{equation*}
$$

which depends on the value of λ. Fig. 6 shows the plot of Eq. (5) for three different values of λ and $x_{0}=0$. In this figure it can be seen that as the value of λ increases the value of the maximal amplitude of $g(x)$ decreases, as stated in Eq. (6). In order to have the maximal amplitude independent of the width of the curve, we now introduce a third parameter γ so that the maximal amplitude is given by

$$
\begin{equation*}
\tilde{a}=\frac{\gamma}{\pi \lambda} . \tag{7}
\end{equation*}
$$

Consequently, Eq. (5) is replaced by

$$
\begin{equation*}
\tilde{g}(x)=\frac{\tilde{a}}{1+\left(\frac{x-x_{0}}{\lambda}\right)^{2}} \tag{8}
\end{equation*}
$$

In Eq. (7), the parameter γ can change the maximal amplitude, therefore we can have curves with the same maximal amplitude but different widths, that cannot be obtained by using Eq. (6). This third parameter γ allows the nonlinear regression to get a better approximation of the data to be fitted. Using Eq. (8) to express the transition of the object's angular velocity ω_{B} as a function of the plate's frequency f_{p}, we have

$$
\begin{equation*}
\omega_{B}\left(f_{p}\right)=\frac{\omega_{B r \max }}{1+\left(\frac{f_{p}-f_{0}}{b}\right)^{2}} \tag{9}
\end{equation*}
$$

where $\omega_{B r \text { max }}$ is the maximal amplitude of ω_{B} at $f_{p}=$ f_{0}, b is the HWHM and f_{0} is the frequency at which $\omega_{B r}=\omega_{B r \text { max }}$. The data analysis software Sigmaplot (Systat Software, Inc.) is utilized for the nonlinear regression analysis. This software uses the Marquardt-Levenberg algorithm to find the parameters $\omega_{B r \max }, f_{0}$, and b, that together with Eq. (9), yields the best approximation to the given data.

We carry out the nonlinear regression analysis of Fig. 5(b) for $\omega_{n}=10 \pi \mathrm{rad} / \mathrm{s}$ and $\omega_{n}=33 \pi \mathrm{rad} / \mathrm{s}$ with $\alpha=36.9^{\circ}$ by using Eq. (9), the resulting line shape is shown in Figs. 7(a) and (b), respectively, where the dot line represents the simulation data and the solid line represents the regression line. The parameters obtained from this regression are $\omega_{B r \text { max }}=598.7^{\circ} / \mathrm{s}, b=5.1 \mathrm{~Hz}$, and $f_{0}=25.1 \mathrm{~Hz}$, for $\omega_{n}=10 \pi \mathrm{rad} / \mathrm{s}$ and $\omega_{B r \max }=746.9^{\circ} / \mathrm{s}$, $b=5.8 \mathrm{~Hz}$, and $f_{0}=28.2 \mathrm{~Hz}$, for $\omega_{n}=33 \pi \mathrm{rad} / \mathrm{s}$. Here the parameter f_{0} can be regarded as a kind of frequency of resonance at which $\omega_{B r \text { max }}$ occurs, and it can be seen that it is different for each object, as ω_{n} is different. The coefficient of determination is $R^{2}=0.99$ for $\omega_{n}=10 \pi \mathrm{rad} / \mathrm{s}$ and $R^{2}=0.99$ for $\omega_{n}=33 \pi \mathrm{rad} / \mathrm{s}$ are obtained. Additionally, the nonlinear regression analysis for $\omega_{n}=10 \pi \mathrm{rad} / \mathrm{s}$ and $\alpha=56.3 \mathrm{deg}$, is shown in Fig. 7(c). The parameters obtained from this regression are $\omega_{B r \text { max }}=520.9^{\circ} / \mathrm{s}$, $b=5.8 \mathrm{~Hz}, f_{0}=24.6 \mathrm{~Hz}$, and $R^{2}=0.98$. If we compare the result in Fig. 7(c) with the one from Fig. 7(a), it can be observed that their f_{0} are almost the same, while the values of $\omega_{B r \text { max }}$ and b are different. The results in Fig. 7 imply that two physical parameters ω_{n} and α determine the combinations of the regression parameters $\omega_{B r \text { max }}, f_{0}$, and b.

5. Inverse Problem: Object's Physical Parameter Identification

In this section, based on the curve fitting of the object's angular velocity ω_{B} line shape, we propose an identification method of the object's natural bending frequency ω_{n} that is supposed to mainly dominate the object's angular velocity line shape as mentioned in Section 4.

Figure 8 shows the relationship between the object's angular velocity ω_{B} and the plate's motion frequency f_{p}, for different friction angles α and different deformable objects, that is ω_{n} is different, for plate amplitudes of

Fig. 7. Relationship between the object's angular velocity ω_{B} and the plate's frequency f_{p}, for (a) $\omega_{n}=10 \pi \mathrm{rad} / \mathrm{s}$, $\alpha=36.9^{\circ}$, (b) $\omega_{n}=33 \pi \mathrm{rad} / \mathrm{s}, \alpha=36.9^{\circ}$, and (c) $\omega_{n}=$ $10 \pi \mathrm{rad} / \mathrm{s}, \alpha=56.3^{\circ}$.
$A_{p}=3^{\circ}$ in (a) and $A_{p}=12^{\circ}$ in (b). Fig. 9 shows the values of $\omega_{B r \text { max }}$ resulting from the nonlinear regression analysis of the simulation data of Fig. 8, where $A_{p}=3^{\circ}$ and $A_{p}=12^{\circ}$ are used in Figs. 9(a) and (b), respectively. From this figure it can be seen that the value of $\omega_{B r \text { max }}$ increases as ω_{n} increases. The thick straight line represents the regression line between $\omega_{B r \text { max }}$ and ω_{n} that has a coefficient of determination of $R^{2}=0.93$ and 0.83 , for $A_{p}=3^{\circ}$ and 12°, respectively. However, it can be observed that for each ω_{n} the value of $\omega_{B r \text { max }}$ also changes depending on the friction angle α, particularly for the biggest two α in Fig. 9(a). And, it can be observed that for each ω_{n} the value of $\omega_{B r \text { max }}$ changes significantly depending on the friction angle α in particular for the two deformable objects with higher ω_{n} in Fig. 9(b). From this relationship it is difficult to decompose the effects of ω_{n} and α on

Fig. 8. Relationship between the object's angular velocity ω_{B} and the plate's motion frequency f_{p}, for different friction angles α and different deformable objects for (a) $A_{p}=3^{\circ}$ and (b) $A_{p}=12^{\circ}$, with $B_{p}=3 \mathrm{~mm}$.

Fig. 9. Relationship between the object's first order natural angular frequency in bending ω_{n} and the parameter $\omega_{B r \text { max }}$ obtained from the nonlinear regression of f_{p} vs. ω_{B}, for (a) $A_{p}=3^{\circ}$ and (b) $A_{p}=12^{\circ}$, with $B_{p}=3 \mathrm{~mm}$.

Fig. 10. Relationship between the object's first order natural angular frequency in bending ω_{n} and the parameter f_{0} obtained from the nonlinear regression of f_{p} vs. ω_{B}, for (a) $A_{p}=3^{\circ}$ and (b) $A_{p}=12^{\circ}$, with $B_{p}=3 \mathrm{~mm}$.
$\omega_{B r \text { max }}$. This means that ω_{n} cannot be estimated simply by observing $\omega_{B r \text { max }}$.

We next focus on the parameter f_{0}. Fig. 10(a) shows the results of the parameter f_{0} with respect to ω_{n} for $A_{p}=3^{\circ}$ and the same friction angles in Fig. 8(a). In the same way, Fig. 10(b) shows the results of f_{0} with respect to ω_{n} for $A_{p}=12^{\circ}$. In Fig. 10, it can be seen that the value of f_{0} increases as ω_{n} increases for each α, and that the value of f_{0} does not change significantly for the same ω_{n} and different α. Here, the thick straight line represents the regression line between f_{0} and ω_{n} that has a coefficient of determination of $R^{2}=0.99$ for $A_{p}=3^{\circ}$ in Fig. 10(a) and $R^{2}=0.96$ for $A_{p}=12^{\circ}$ in Fig. 10(b), which are better than those obtained in Figs. 9(a) and (b), respectively. The lines for almost all the different α have a similar slope with the regression line. This result suggests that the object's ω_{n} can be estimated by a linear equation as a function of f_{0}, regardless of the friction angle α, as follows,

$$
\begin{equation*}
\hat{\omega}_{n}=p_{1} f_{0}+q_{1} \tag{10}
\end{equation*}
$$

for each of the plate amplitudes A_{p}. Therefore, if we obtain f_{0} from the curve fitting of the relationship between the object's angular velocity ω_{B} and the plate's frequency f_{p}, then we can estimate the value of the object's natural angular frequency in bending ω_{n}.

The frequency f_{0} when $A_{p}=3^{\circ}$ is in the range of $23<$
$f_{0}<30 \mathrm{~Hz}$, as shown in Fig. 10(a), while the frequency f_{0} when $A_{p}=12^{\circ}$ is in the range of $11<f_{0}<14 \mathrm{~Hz}$, as shown in Fig. 10(b). Therefore, $A_{p}=12^{\circ}$ is convenient from the experimental point of view of the actuators. However, for a plate amplitude of $A_{p}=12^{\circ}$ the object easily becomes unstable or folded in half. As a result, it can only deal with objects whose ω_{n} are less than $12 \pi \mathrm{rad} / \mathrm{s}$.

6. Validation of the Proposed Method

In this section we show the simulation and experimental results and the regression analysis of the real parameters against the estimated ones to confirm the validity of the proposed method.

6.1. Simulation Results

Using the data of Fig. 10, the parameters obtained from the linear regression are $p_{1}=5.30, q_{1}=-121.62$ for $A_{p}=3^{\circ}$, and $p_{1}=5.65, q_{1}=-64.51$ for $A_{p}=12^{\circ}$ in Eq. (10). Using these parameters in Eq. (10), we estimate the object's natural bending frequency.
The results are shown in Fig. 11 for $A_{p}=3^{\circ}$ in (a) and $A_{p}=12^{\circ}$ in (b). In this figure, ω_{n} denotes the object's natural bending frequency given to the simulation model and $\hat{\omega}_{n}$ denotes the estimated one using Eq. (10). The solid line is the result of the linear regression of the real data and the estimated one. In Fig. 11(a), it can be seen, the estimated values are close to the real ones, the coefficient of determination is $R^{2}=0.99$. The regression line should ideally have a unit slope and an intercept of zero, that is, the estimated value is identical to the real one. In this case, it has a slope of 0.99 and an intercept of 0.25 , which are close enough to their ideal values. Similarly, in Fig. 11(b) the coefficient of determination is $R^{2}=0.96$ for $A_{p}=12^{\circ}$. In this case, the regression line has a slope of 0.96 and an intercept of 0.24 , which are also close enough to their ideal values.

6.2. Experimental Results

For validating the proposed method we carried out experiments with a real slice of cheese, the skin of a Chinese dumpling and a real slice of cheese with lead balls used in order to increase its weight. The three objects have the same circular shape with a radius of 40 mm , and the masses of the cheese, skin of Chinese dumpling and cheese with lead balls are $13.6 \mathrm{~g}, 6.9 \mathrm{~g}$, and 39.5 g , respectively. Fig. 12 shows the experimental results of the relationship between the object's angular velocity ω_{B} and the plate's frequency f_{p}, for the three deformable objects described above, when the plate motion is given by $A_{p}=12^{\circ}$ and $B_{p}=3 \mathrm{~mm}$. The solid line represents the regression line for Eq. (9). From Fig. 12 it can be seen that the experimental values can be described by its corresponding regression line, since $R^{2}=0.98$ for the slice of cheese, $R^{2}=0.98$ for the skin of a Chinese dumpling and $R^{2}=0.99$ for the slice of cheese with lead balls, were obtained.

Fig. 11. Linear regression between the object's real ω_{n} (first natural angular frequency in bending) and the estimated $\hat{\omega}_{n}$ obtained by using Eq. (10). Simulation results for $A_{p}=3^{\circ}$ in (a) and simulation and experimental results for $A_{p}=12^{\circ}$ in (b).

The real ω_{n} and the estimated $\hat{\omega}_{n}$ values of the experimental data are overlapped on the simulation data, as shown in Fig. 11(b). In the experimental results, as a real value of ω_{n}, we employ the cantilever based method used in [13] utilizing a piece of cut food and a high speed vision system of 400 fps to measure this parameter. The estimated parameter $\hat{\omega}_{n}$ is the one obtained from using Eq. (10) in the same way as with the simulation data.

In this case, the slice of cheese and the skin of the Chinese dumpling have similar natural bending frequencies. However, the skin of the Chinese dumpling is lighter than the slice of cheese, which suggests that the skin of the Chinese dumpling has a bending stiffness smaller than the one of the cheese. In contrast, the slice of cheese with lead balls, has a smaller bending frequency than the one for the slice of cheese only. This was expected as the lead balls increased the weight of the cheese, thus altering its mass-elasticity ratio.

Fig. 12. Relationship between the object's angular velocity ω_{B} and the plate's frequency f_{p}, for (a) a slice of cheese, (b) the skin of a Chinese dumpling and (c) a slice of cheese with lead balls, with $A_{p}=12^{\circ}$ and $B_{p}=3 \mathrm{~mm}$.

6.3. Discussion

As mentioned earlier in Section 1, a high frequency of the object's bending vibration is converted to a rotating motion of low frequency. The object's frequency of rotation f_{B} on the plate can be obtained from the object's maximal angular velocity $\omega_{B r \text { max }}$ in Fig. 9, for each of the four deformable objects and each of the two plate amplitudes A_{p} used in this paper. The results of f_{B} are shown in Table 1, where the object's bending vibration frequency f_{n} is

Table 1. Object's first order natural frequency in bending and its frequency of rotation.

A_{p} $[\mathrm{deg}]$	ω_{n} $[\pi \mathrm{rad} / \mathrm{s}]$	f_{n} $[\mathrm{~Hz}]$	$\omega_{B r \max }$ $[\mathrm{deg} / \mathrm{s}]$	f_{B} $[\mathrm{~Hz}]$
	3.50	1.75	491.5	1.36
3	10.0	5.00	614.9	1.71
	23.0	11.5	722.8	2.01
	33.0	16.5	796.1	2.21
	1.40	0.70	278.1	0.77
12	3.50	1.75	275.8	0.77
	6.50	3.25	334.2	0.93
	10.0	5.00	382.4	1.06

also shown. It should be noted that especially for the deformable object of $\omega_{n}=33 \pi \mathrm{rad} / \mathrm{s}$, its bending vibration frequency of $f_{n}=16.5 \mathrm{~Hz}$ is converted into a rotational motion with a frequency of $f_{B}=2.21 \mathrm{~Hz}$, for $A_{p}=3^{\circ}$. This represents only the 13.4% of the object's bending frequency f_{n}. Thus, the object's first order natural angular frequency in bending ω_{n} can be measured through the object's dynamic behavior, observing its low frequency rotation motion f_{B} and Eq. (10), by using the manipulation scheme presented in this work.

7. Conclusion

This paper discussed the characterization of a thin deformable object by using dynamic nonprehensile manipulation. We showed that the line shape of the angular velocity of the object with respect to the plate's frequency has a resonance-like behavior. Based on this nature, we showed that the object's angular velocity transition can be represented with a simple mathematical expression like the Lorentz distribution one, instead of a complex expression derived from the dynamics of the system. We found out that the frequency of resonance at which the object's maximal angular velocity occurs, depends on the first order natural angular frequency in bending of the object. As an inverse problem, we proposed how to identify the above physical parameter of the object from the regression parameters in the Lorentzian curve fitting. We verified the proposed method by using simulation data and experimental data.

In the future, we would like to investigate the influence of the object's shape, thickness, and the friction between the object and the plate, and analyze the role of the viscosity and water components in the object's resonancelike behavior. Then, it may be possible to evaluate the mass, elasticity, viscosity and friction of the deformable object by characterizing its rotational behavior on a simple flat plate considering not only the object's first order frequency of vibration but also higher orders.

References:

[1] K. M. Lynch and M. T. Mason, "Dynamic nonprehensile manipulation: controllability, planning, and experiments," Int. J. Robot. Res., Vol.18, No.8, pp. 64-92, 1999.
[2] A. Amagai and K. Takase, "Implementation of dynamic manipulation with visual feedback and its application to pick and place task," in Proc. IEEE Int. Symp. Assem. Task Planning, pp. 344-350, 2001.
[3] D. Reznik, E. Moshkovich, and J. Canny, "Building a universal planar manipulator," in Proc. Workshop Dist. Manip. at Int. Conf. Robot. Autom., 1999.
[4] D. Reznik and J. Canny, "C'mon part, do the local motion!," in Proc. IEEE Int. Conf. Robot. Autom., pp. 2235-2242, 2001.
[5] K. F. Böhringer, B. Donald, and N. MacDonald, "Sensorless manipulation using massively parallel microfabricated actuator arrays," in Proc. IEEE Int. Conf. Robot. Autom., Vol.1, pp. 826-833, 1994.
[6] K. F. Böhringer, V. Bhatt, and K. Goldberg, "Sensorless manipulation using transverse vibrations of a plate," in Proc. IEEE Int. Conf. Robot. Autom., pp. 1989-1986, 1995.
[7] K. F. Böhringer, K. Goldberg, M. Cohn, R. Howe, and A. Pisano, "Parallel microassembly with electrostatic force fields," in Proc. IEEE Int. Conf. Robot. Autom., Vol.2, pp. 1204-1211, 1998.
[8] T. Vose, P. Umbanhowar, and K. M. Lynch, "Friction-induced velocity fields for point parts sliding on a rigid oscillated plate," Int. J. Robot. Res., Vol.28, No.8, pp. 1020-1039, Aug. 2009.
[9] T. Vose, P. Umbanhowar, and K. M. Lynch, "Friction-induced lines of attraction and repulsion for parts sliding on a oscillated plate," IEEE Trans. Autom. Sci. Eng., Vol.6, pp. 685-699, Oct. 2009.
[10] T. Vose, P. Umbanhowar, and K. M. Lynch, "Toward the set of frictional velocity fields generable by 6-degree-of-freedom oscillatory motion of a rigid plate," in Proc. IEEE Int. Conf. Robot. Autom., pp. 540-547, 2010.
[11] M. Higashimori, K. Utsumi, Y. Omoto, and M. Kaneko, "Dynamic manipulation inspired by the handling of a pizza peel," IEEE Trans. Robot., Vol.25, pp. 829-838, Aug. 2009.
[12] M. Higashimori, Y. Omoto, and M. Kaneko, "Non-grasp manipulation of deformable object by using pizza handling mechanism," in Proc. IEEE Int. Conf. Robot. Autom., Kobe, Japan, pp. 120-125, 2009.
[13] I. G. Ramirez-Alpizar, M. Higashimori, M. Kaneko, C.-H. D. Tsai, and I. Kao, "Dynamic nonprehensile manipulation for rotating a thin deformable object: an analogy to bipedal gaits," IEEE Trans. Robot., Vol.28, pp. 607-618, June 2012.
[14] I. G. Ramirez-Alpizar, M. Higashimori, and M. Kaneko, "Estimation of a thin flexible object with bipedal gaits," in Proc. IEEE Int. Conf. on Autom. Sci. and Eng., Seoul, Korea, pp. 952-957, 2012.
[15] S. Hirai, "Transferring human motion to mechanical manipulator in insertion of deformable tubes," J. of Robotics and Mechatronics, Vol.10, No.3, pp. 209-213, 1998.
[16] K. Salleh, H. Seki, Y. Kamiya, and M. Hikizu, "Tracing manipulation in clothes spreading by robot arms," J. of Robotics and Mechatronics, Vol.18, No.5, pp. 564-571, 2006.
[17] K. S. M. Sahari, H. Seki, Y. Kamiya, and M. Hikizu, "Passive edge tracing of deformable object by robot," J. of Robotics and Mechatronics, Vol.23, No.3, pp. 458-461, 2011.
[18] K. Koo, X. Jiang, A. Konno, and M. Uchiyama, "Development of a wire harness assembly motion planner for redundant multiple manipulators," J. of Robotics and Mechatronics, Vol.23, No.6, pp. 907918, 2011.
[19] M. Moore and J. Wihelms, "Collision detection and response for computer animation," Comput. Graphics, Vol.22, No.4, pp. 289298, 1988.
[20] J. K. Patel, C. H. Kapadia, and D. B. Owen, "Handbook of statistical distributions," Marcel Dekker, Inc., p. 212, 1976.

Name:
Ixchel G. Ramirez-Alpizar

Affiliation:

Ph.D. Student, Department of Mechanical Engineering, Graduate School of Engineering, Osaka University

Address:

2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Brief Biographical History:

2005- B.S. degree in Electronic Engineering from Universidad Autonoma Metropolitana
2010 M.E. degree in Electronic and Control Systems Engineering from Shimane University
2010- Ph.D. Student, Graduate School of Engineering, Osaka University

Main Works:

- I. G. Ramirez-Alpizar, M. Higashimori, M. Kaneko, C-H. D. Tsai, and I. Kao, "Dynamic Nonprehensile Manipulation for Rotating a Thin Deformable Object: an Analogy to Bipedal Gaits," IEEE Trans. on Robotics, Vol.28, No.3, pp. 607-618, Jun. 2012.

Membership in Academic Societies:

- The Institute of Electrical and Electronic Engineers (IEEE)
- The Japan Society of Mechanical Engineers (JSME)
- The Robotics Society of Japan (RSJ)

Name:

Mitsuru Higashimori

Affiliation:

Associate Professor, Department of Mechanical Engineering, Graduate School of Engineering, Osaka University

Address:

2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Brief Biographical History:

1998 M.E. degree in Information Engineering from Hiroshima University 1998- Toshiba Corporation
2002- Research Associate, Department of Artificial Complex Systems Engineering, Hiroshima University
2006 Ph.D. degree in Artificial Complex Systems Engineering from Hiroshima University
2006- Research Associate, Department of Mechanical Engineering, Osaka University
2008- Associate Professor, Department of Mechanical Engineering, Osaka University

Main Works:

- M. Higashimori, K. Utsumi, Y. Omoto, and M. Kaneko, "Dynamic

Manipulation Inspired by the Handling of a Pizza Peel," IEEE Trans. on Robotics, Vol.25, No.4, pp. 829-838, 2009.

- M. Higashimori, M. Kimura, I. Ishii, and M. Kaneko, "Dynamic Capturing Strategy for a 2-D Stick-Shaped Object Based on Friction Independent Collision," IEEE Trans. on Robotics, Vol.23, No.3, pp. 541-552, 2007.

Membership in Academic Societies:

- The Society of Instrument and Control Engineers (SICE)
- The Robotics Society of Japan (RSJ)
- The Japan Society of Mechanical Engineers (JSME)
- The Institute of Electrical and Electronics Engineers (IEEE)

Name:

Makoto Kaneko

Affiliation:

Professor, Department of Mechanical Engineering, Graduate School of Engineering, Osaka University

Address:
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Brief Biographical History:

1981 Ph.D. degree in Mechanical Engineering from The University of Tokyo
1981-1990 Researcher, Mechanical Engineering Laboratory (MEL), Ministry of International Trade and Industry (MITI)
1988-1989 Post-Doctoral Fellow, Technical University Darmstadt, Germany
1990-1993 Associate Professor, Computer Science and System
Engineering, Kyushu Institute of Technology
1991-1992 Invited Professor, Technical University of Darmstadt, Germany 1993-2006 Professor, Industrial Engineering Department, Hiroshima University
2006- Professor, Department of Mechanical Engineering, Osaka University
Main Works:

- N. Tanaka, M. Higashimori, M. Kaneko, and I. Kao, "Noncontact Active Sensing for Viscoelastic Parameters of Tissue with Coupling Effect," IEEE Trans. on Biomedical Engineering, Vol.58, No.4, pp. 509-520, 2011.
- T. Kawahara, Y. Miyata, K. Akayama, M. Okajima, and M. Kaneko,
"Design of Noncontact Tumor Imager for Video-Assisted Thoracic
Surgery," IEEE Trans. on Mechatronics, Vol.15, No.6, pp. 838-846, 2010
Membership in Academic Societies:
- The Institute of Electrical and Electronics Engineers (IEEE) Robotics
and Automation Society
- The Institute of Electrical and Electronics Engineers (IEEE) Systems,

Man, and Cybernetics Society

- The Institute of Electrical and Electronics Engineers (IEEE) Industrial

Electronics Society

- The Japan Society of Mechanical Engineers (JSME)
- The Society of Instrument and Control Engineers (SICE)
- The Robotics Society of Japan (RSJ)

[^0]: 1. If the object is divided into two equal parts and each of them is regarded as left leg and right leg, the rotational motion of the object is similar to a biped gait on the floor. See details in [13].
