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Abstract: In recent years, increased attention has been shown to the supply 
chain risk management due to the occurrences of several high profile 
disruptions which resulted in significant social, economic and political impact 
globally. However, there are not direct and easy ways of understanding the risk 
of an entire supply chain. In this paper, a network connectivity embedded  
k-means clustering approach has been proposed to determine at-risk clusters of 
nodes that share similar risk profiles and linkages with the focal company. It 
uses a multiple dimensional feature vector to represent the risks that nodes are 
facing, their geographical locations, supply chain attributes and network 
connectivity attributes. The clustering approach is able to reduce the 
complexity of a large supply chain network to facilitate in-depth targeted 
analysis and simulations. The effectiveness of the proposed approach has been 
illustrated by experiments that successfully identify the risk clusters and critical 
risk zones. 

Keywords: supply chain risk management; supply chain risk clustering;  
k-means clustering. 
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1 Introduction 

The supply chain risk management has received an increasing global attention in recent 
years owning to huge impacts from occurrences of some high profile disruptions across 
the world. Risks and disruptions including earthquakes, economic crises, strikes and 
terrorist attacks have repeatedly hit the supply chain and its operations. In addition, due to 
the globalisation and constant adoption of practices such as outsourcing, drop shipment 
and vendor management inventory, it is important for a company to keep track of 
happenings of potential risks in its entire supply chain network including disasters and 
social unrest around the regions of its key suppliers as they may have eventually an 
impact on the focal company itself. The appropriate management of constraints of the 
supply, manufacturing, and demand and relevant risks is essential for the sustainable 
development and business success of a company (Tang, 2006; Tang and Musa, 2011; 
Bearzotti et al., 2012). 

The recent catastrophic events like flood in Thailand, earthquake in Japan 
demonstrated that the effects of the natural disruption not only had its impact at the place 
of its origination, but also propagated to the other entities of the supply chain. Therefore, 
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the risk management and mitigation process should consider the whole supply chain 
network while more attentions shall be paid to the risk zones. Disaster-related risks and 
disruptions normally are with low probability but low predictability. This leaves 
company’s insufficient time to react that may cause widespread business disruptions 
(CFO Research Services, 2013) like: 

1 damaging facilities 

2 upending shipping schedules 

3 interfering with production 

4 impairing the ability to meet customers’ expectations for high quality and timely 
services. 

Taking the 2010 volcanic eruption of Eyjafjallajökull in Iceland as an example, it caused 
enormous disruption to air travel across western and northern Europe over an initial 
period of six days in April 2010. Big global company such as Infineon’s DC in Europe 
(DCE) was badly affected as delivery of products to customers is usually through air. 
DCE had to resort to land transportation by trucks to clear the backlogs while the 
customer service had to be compromised due to longer delivery time. 

The empirical analysis in automotive industry conducted by Thun and Hoenig (2011) 
revealed that the rising complexity and increasing uncertainties and dependencies among 
companies fostered supply chain risk and resulted in increased supply chain vulnerability 
and poorer visibility. Tang (2006) had reviewed various quantitative models for 
managing supply chain risks. He concluded that those quantitative models were designed 
for managing operational risks primarily, not disruption risks, due to inaccurate measures 
of the probability of an occurrence of a major disruption and the potential impact of a 
disruption in a large supply chain network. There are not direct and easy ways of 
understanding the risk of an entire supply chain. 

The Thailand flood during 2011 resulted in a global shortage of hard disk supply due 
to the overly centralised hard disk manufacturers over the area that was badly affected. If 
such a risk cluster of the supply chain network can be identified earlier, mitigated 
precautions can be taken to source more suppliers from other regions or mitigation plans 
can be studied and prepared. 

2 Supply chain risk clustering 

Today’s supply chains are presented more as complex networks in the globalised 
environment, which are highly interlinked leading to highly sophisticated structures and 
also increased vulnerability to many supply chain risks. Analysis of such networks such 
as its dynamics, structure and semantics is usually challenging for detecting patterns and 
trends in supply chain networks, for making wise business decisions under the stress 
posed by supply chain risks. 

Thus in this paper, a supply chain risk clustering approach is proposed to handle 
supply chain risk management. It starts from a real-time event tracking and risk 
monitoring. Equipped with the necessary risk information, the essence of the clustering 
problem is to develop a methodology for determining groups of ‘similar’ nodes that can 
be treated as a basic unit for tactic and strategic analysis of supply chain network. The 
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risk clustering is capable of reducing the complexity of a large supply chain network and 
identifying topological risks in supply chain networks. It is to facilitate the evaluations of 
potential at-risk facilities and clusters hidden in supply chain networks that cannot be 
easily detected. Besides, targeted measurements, analysis and simulations can be 
designed and employed to a specific cluster of supply chain after the clusters have been 
determined. By doing so, better results and performances can be expected. 

Clustering technology had been utilised in many researches to simplify the supply 
chain network and assist the decision-making. Irfan et al. (2007) proposed a k-means 
algorithm to find the cluster centres of different supply chain tiers, such as customers, 
retailers, distribution centres and manufacturers, to assist the business decisions. In order 
to simplify the supply chain and production network, Doring et al. (2007) worked on a  
k-means clustering approach for grouping of state spaces of production network. Hu et al. 
(2009) applied neural network-based fuzzy clustering to study the supply chain quality 
management while considering macro variables such as: 

1 political influence and law and regulation 

2 micro variables such as price and quantity. 

In order to reduce the complexity of an extended supply chain network for planning and 
scheduling, Yin et al. (2013) proposed a hybrid evolutionary approach to the clustering of 
supply chain by considering material flow and the total cost. Tabrizi and Razmi (2013) 
applied fuzzy set theory to understand the extant uncertainties and risks during the phase 
of supply chain network design. 

There were few studies addressing the supply chain risk clustering. Hallikas et al. 
(2005) explored the network risks, risk-management measures and supplier classification 
to achieve collaborative risk management and learning. A work had also been carried out 
by Reniers et al. (2012) to understand the systemic risk that took into consideration the 
safety and security index and the supply chain index of a typical supply chain cluster in 
chemical industry. It built upon an established cluster network. The holistic analysis that 
takes into consideration connectivity, geographical lactation and supply chain risk in 
supply chain risk management context to facilitate the evaluations of potential at-risk 
facilities and clusters and assess the overall risk that a company faces is lacking. 

This paper is an extended version from Yin et al (2015) at IES 2015 for the special 
issue of the conference with additional work on event tracking and monitoring and case 
study. In the rest of the paper, Section 3 discusses the event tracking and risk monitoring. 
A network connectivity embedded k-means clustering algorithm is depicted in Section 4, 
followed by the experiments and discussions in Section 5. The main conclusions reached 
in this work and future work is then summarised in the last section, Section 6. 

3 Event tracking and risk monitoring 

When a severe disaster takes place, such as storm, earthquake and flooding, it disrupts 
infrastructure, logistics, and manufacturing and communication systems. It may 
immediately cause the loss of business revenues and opportunities due to the disruption 
on company supply chain operations. The event tracking and risk monitoring consists of: 
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1 an online heat map searching engine, which provides the information of historical 
risk scores and events of different locations to assist companies to assess robustness 
of their supply chain networks 

2 event monitoring engine, which monitors real-time incidents for assisting prompt 
responses to disruptions and monitoring recovery processes, etc. 

Natural or man-made disaster events can be collected through open source intelligence 
applications and monitored constantly. Real-time alerts can then be raised for evaluating 
critical risks that a focal company is facing. The captured knowledge can be applied to 
perform functions of proactive monitoring and reactive investigation, in conjunction with 
the supply chain data repository and web-bots for real-time data sharing. 

1 Proactive monitoring: the event tracking and risk monitoring module actively 
monitors the internet and the focal company’s supply chain for anomalous 
information contents related to the disruptions and potential supply chain risks 
including natural disaster, market fluctuation risk and others. Upon instruction, the 
intelligent system will constantly patrol the internet to dig information related to 
specific subjects, deliver regular summary reports, and raise alerts where necessary. 

2 Reactive investigation: after potential disruptions and risks to the supply chain are 
raised, it can be highlighted for the supply chain with key nodes or sub-network in 
the affected regions and locations. More relevant information regarding the 
disruption and the particular region will be captured for investigation. 

Figure 1 Natural disaster tracking and monitoring (see online version for colours) 
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Figure 2 Natural disaster tracking and monitoring (see online version for colours) 

 

Figure 3 Risk scores of country (see online version for colours) 
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Figure 1 shows the natural disasters and geographical location data captured in real-time 
basis while the severity of impact is represented by the size of the circle. Furthermore, a 
study on the impact to the infrastructure has been carried out in respect to the natural 
disaster. Figure 2 illustrates the potential impact to the airports all over the world due to 
the natural disasters captured. As the key chain for logistics, a badly affected airport may 
incur severe delays on the delivery of cargos of the region. Coupled with the risk scores 
of country (Figure 3) and city and the physical supply chain network topology, it gives 
researches a great potential to investigate the risk levels and risk clusters of a supply 
chain network. As such, it is able to better support the decision-making or action taken to 
mitigate the disruption that could enable the smooth and effective handling of disruption. 

A system named ‘MapYourRisk’ has been developed to actively collect data from 
different sources. It includes the following data. 

• natural disaster, e.g., earthquake 

• company locations and financial records 

• country and city risk scores 

• supply chain network. 

The data collection is extending to other non-structured data sources, such as news 
reports, company annual reports, etc. The information is then normalised and risk scores 
are calculated for the supply chain facilities along a supply chain network. 

4 A network connectivity embedded k-means clustering 

4.1 Problem description 

Given a supply chain network and a set of nodes of the network X = {X1, X2,…,Xn} where 
each node Xi is a multiple dimensional feature vector representing the supply chain and 
related attributes to be considered, the clustering algorithm needs to partition the n nodes 
into k clusters with centroids of clusters C ={C1, C2,…,Ck} so as to minimise the squared 
error as expressed in equation (1). 

2

1 1,
arg min

i

k n
i jj i y j

X C
= = =

−∑ ∑  (1) 

where 

yi cluster assignment of node Xi, i = 1,2,…,n 

Cj centroid of cluster j, j = 1,2,…,k. 

Cluster assignment yi can be established given the centroids of the clusters using  
equation (2) as follows. 

2arg mini i jy X C= −  (2) 
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4.2 Mathematical model – a generic model for supply chain risk clustering 

As mentioned in Section 4.1, node Xi is a multiple dimensional feature vector. It 
represents the risks of a node facing, the geographical location, supply chain attributes 
and network connectivity attributes. By considering the above supply chain and risk 
specific features, equations (3) and (4) can be derived to represent Xi and Cj respectively. 

{ }, , ,G R T C
i i i i iX X X X X=  (3) 

{ }, , ,G R T C
j j j j jC C C C C=  (4) 

where 

, , ,G R T C
i i i iX X X X  feature vectors of node i representing geographical location, risks 

facing, supply chain attributes and network connectivity attributes, 
respectively 

, , ,G R T C
j j j jC C C C  centroids of cluster j representing geographical location, risks 

facing, supply chain attributes and network connectivity attributes, 
respectively. 

Equations (1) and (2) are extended to incorporate different ways of evaluating centroids 
and squared errors for geographical location, risks facing, supply chain attributes and 
network connectivity attributes. 

2 2

2 2

arg min G G G R R R
i i j i j

T T T C C C
i j i j

y w X C w X C

W X C w X C

⎡= − + −⎣
⎤+ − + − ⎦

 (5) 

where 

wG, wR, wT, wC weightages for geographical location, risks facing, supply chain 
attributes and network connectivity attributes, respectively. 0 ≤ wG, wR, 
wT, wC ≤ 1 and wG + wR + wT + wC = 1. 

Clustering results that draw special attention to some factors can be achieved through 
adjusting the weightages of the four factors. For example, by giving higher weightages to 
wG and wR, such as0.3 to 0.5 in our experiments, the supply chain nodes of the similar 
geographical location with higher risk scores can be identified. In this case, the nodes of a 
cluster may come from different supply chain tiers. However, by further emphasising the 
supply chain tier information and network connectivity, a group of nodes in 
geographically adjacent area with higher risk scores as well as providing similar 
components to the focal company can be recognised. Extra precaution could be arranged 
against such a cluster of nodes. By doing this, the disruptions such as Thailand flood 
during 2011 that resulted in a global shortage of hard disk supply due to the overly 
centralised hard disk manufacturers over the area could be better prepared and managed. 

The optimisation criteria and updating of centroids are given by equations (6) to (10) 
respectively. 
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2 2

1 1,

2 2

arg min

                                  

i

k n G G G R R R
i j i jj i y j

T T T C C C
i j i j

w X C w X C

w X C w X C

= = =
⎡ − + −⎣

⎤+ − + − ⎦

∑ ∑
 (6) 

1, i

n G
ii y jG

j
j

X
C n

= ==
∑  (7) 

1, i

n R
ii y jR

j
j

X
C n

= ==
∑  (8) 

1, i

n T
ii y jT

j
j

X
C n

= ==
∑  (9) 

1, i

n C
ii y jC

j
j

X
C n

= ==
∑  (10) 

where 

nj number of nodes in cluster j. 

By using an iterative refinement technique that mainly consists of two steps, assignment 
step [equation (5)] to determine the clusters and updating step [equations (7)–(10)] to 
determine the new centroids for the next iteration. The objective is to minimise the 
squared error represented by equation (6). It terminates when a fixed number of iterations 
defined by the user is reached or there is not change in cluster assignment between 
iterations. 

5 Experiments and discussions 

Three experiments have been used to illustrate the effectiveness of the proposed 
algorithm. As shown in Table 1, risks of a node facing consist of city risk and country 
risk; geographical location is represented by latitude and longitude; supply chain 
attributes include tier information. Transactional information and relative importance 
level between nodes can also be included as part of the supply chain attributes. As for 
risk scores of a city and its country, they have been normalised and the range is between 
1 to 10. Figure 4 illustrates how the connectivity of a network can be translated into 
multiple two dimensional matrix to be considered by k-means. By incorporating a 
scenario simulator that is able to define different sets of parameters, various supply chain 
clusters can be generated that emphases different concerned factors. It is able to form risk 
clusters of an entire supply chain that summarise the risks the supply chain of a company 
is exposing. It can also analyse the risk zones in respect to the geographical locations and 
raise alerts if critical facilities are all located in similar high risk zone. 
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Table 1 Illustration of risks of a node, the geographical location, and supply chain attributes 

Geographical Risk score Tier 

Node name Latitude Longitude Country 
name City risk Country 

risk Type 

Ho Chi 
Minh 

10.660608 106.61132 Vietnam 7 8 Vendor tier 2 

Chiang 
Mai 

18.7964642 98.6600586 Thailand 6 8 Vendor tier 1 

Hong 
Kong 

21.75 115 China 2 2 Vendor tier 1 

Qingdao 36.066862 120.388184 China 6 6 Vendor tier 1 
Nanjing 32.063956 118.78418 China 5 6 Vendor tier 1 
Bangkok 13.752725 100.50293 Thailand 8 8 Vendor tier 1 
Chaling 26.78129959 113.5406036 China 5.5 6 Manufacturing 

plant 
Taizhou 28.57500076 104.9091034 China 6.5 6 Manufacturing 

plant 
Bangkok 13.752725 100.50293 Thailand 8 8 Manufacturing 

plant 
Singapore 1.3581355 103.8191415 Singapore 3 3 Manufacturing 

plant 
Singapore 1.3581355 103.8191415 Singapore 3 3 Distribution 

centre 
Brussels 50.83710098 4.367599964 Belgium 5 5 Distribution 

centre 
Lyon 45.74710083 4.855400085 France 5 5 Customer 
Marseille 43.2845993 5.385099888 France 5 5 Customer 
Paris 48.88150024 2.432800055 France 5 5 Customer 
Toulouse 42.4530164 –0.3275515 France 5 5 Customer 
Ipoh 4.609278 101.112671 Malaysia 5 6 Customer 

Figure 4 Illustration of network connectivity attributes (see online version for colours) 
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5.1 Study1: risk cluster identification 

One of the purposes of the study is to find the high risk zone in respect to the risks nodes 
are exposing and the network connectivity. In the experiment, Thailand and its cities such 
as Bangkok and Chiang Mai are given high risk scores due to the past flooding issue and 
political unrest. Relatively high risk scores are configured for China and Vietnam owning 
to recent diplomatic and territorial disputes. As shown in Figure 5, the clustering 
algorithm partitioned the supply chain nodes into five categories that are identified in 
advance based on the predefined threshold. The threshold consists of both risk level the 
node is facing and the network connectivity representing the importance level of a node 
to other linked nodes. The details in clusters of very high risk and high risk (Figure 6) 
show the interconnected nodes located in Thailand, Vietnam and China. This illustrates 
that the clustering algorithm can work on not only the risk scores but also network 
connectivity that is critical in the context of supply chain management. 

Figure 5 Supply chain risk clustering (see online version for colours) 

 

Figure 6 High risk nodes (see online version for colours) 
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5.2 Study 2: critical zoneclusteridentification 

In this experiment, parameters are tuned to emphasis more on the geographical locations 
besides the risk factors and the connectivity. The result is very similar as that from  
Study 1 except that the manufacturing plant in Bangkok has now been shifted into the 
very high risk cluster (Figure 7). It is due to the reason that Bangkok geographically is 
very close to other nodes in the very high risk cluster such as Ho Chi Minh and Chiang 
Mai. The change demonstrates that the geographical location plays a bigger role in this 
experiment. It is important to understand the risks a company is facing due to centralised 
suppliers and manufacturing facilities in different industrial sectors. 

Figure 7 Critical nodes cluster (see online version for colours) 

 

5.3 Study 3: a larger scale supply chain network 

A more complete supply chain network with 180 nodes including 60 tier two vendors,  
30 tier one vendors, ten manufacturing plants, four distribution centres and 50 customers 
is constructed to further illustrate the performance of the proposed approach. It is adapted 
from the supply chain structure (Willems, 2008) that represents ‘game, toys, and 
children’s vehicle’. With equal emphasis on the network connectivity, geographic 
location and supply chain attributes, a highest risk cluster with 32 nodes is formed. 
However there are eight nodes (four tier two vendors, two tier one vendors and two 
customers) that are isolated from others while the rest of the supply chain nodes in the 
cluster are well connected. The reason of existence of those isolated nodes in the cluster 
is mainly due to that they are located in the highest risk zones. As the network 
connectivity and geographical location is not playing a significant role in the 
configuration, geographically non-adjacent or disconnected nodes might be grouped 
together. While with more emphasis on the network connectivity, the formation of the 
highest risk cluster is changed. The eight isolated nodes are removed and a fully 
connected sub-network is formed within the cluster. Instead of individual node 
assessment, the supply chain risk clustering provides a more holistic view on the 
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configuration of the high risk sub-network. The production and products that potentially 
could be affected by the risky sub-network can then be identified. Targeted 
measurements, analysis and simulations can be designed and employed to the specific 
cluster of the supply chain and efforts for preparation of potential disruptions can be 
better managed and distributed. 

6 Conclusions and future work 

The main purpose of this work is to illustrate the value of supply chain risk clustering and 
how the connectivity of network could be embedded that can further enhance the 
clustering. In this study, a network connectivity embedded k-means clustering approach 
has been proposed. The proposed approach is able to determine groups of ‘similar’ nodes 
that can be used as a basis for tactic and strategic risk management of the entire supply 
chain. The following two scenarios have been demonstrated in the experiments: 

1 risk cluster identification that is able to identify nodes with high dependencies and 
high risk scores 

2 critical nodes located in similar geographic location that is prone to certain risk or 
disruption. 

The use of squared errors in the objective function has its own limitations in 
incorporating network/graph features such as network flows into k-means. Further 
research needs to be carried out to extend the model to a complete set of network 
features. In addition, different clustering and classification algorithms such as fuzzy  
c-means and neural network will have to be examined. Through these further researches, 
we can enhance the performance of clustering as well as to reduce the number of 
predefined parameters such as weightages of different factors and number of clusters. A 
more complex supply chain network will then be used to carry out the study for further 
enhancements of the proposed algorithm. 
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