302 歩行時におけるモバイルベアリング式インサートの動態解析									
		Kinematics of the Mobile Bearing TKA during Walking							
·····································	須崎 安武	映太(九産大) 誠治(九産大) 見見(カ産士)	Æ	日垣 松森	秀彦(九産大) 健司(九産大) 松工(ホホ)	Ē	下戸 緒方	健(九産大) 毅(九産大)	· · ·
totuteus ne o traveus stola.	吉住	昌晃(九産大)		三浦	裕正(九大)		岩本	幸英(九大)	. 1

Terutaka SUZAKI, Hidehiko HIGAKI and Takeshi SHIMOTO, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka Seiji YASUTAKE; Kenji MATUMORI, Takeshi OGATA and Masaaki YOSHIZUMI, Kyushu Sangyo University Hiromasa MIURA and Yukihide IWAMOTO, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka

Key words : Mobile bearing total knee, Artificial Knee Joint Simulator, Motion analysis

1. 緒言

高齢社会の進展に伴い,生体の退行性変化に起因する疾患 (変形性膝関節症や慢性関節リウマチ等)が増加の一途を 辿っている.変形性膝関節症をはじめとした高度に破壊され た膝関節に対し,除痛可動性,支持性を同時に得られる手術 法として全人工膝関節置換術 (Total Knee Arthroplasty, TKA) が広く普及している.現在,広い屈曲可動域の確保と 長期耐用性についての設計開発が取り組まれている. 近年の デザインや材料等の向上により耐用年限は徐々に長期化され てきているが,再置換の原因となる摺動面の摩耗のメカニズ ムに関しては未だ解決されていない.この要因として,膝関 節における複雑な6自由度運動などが挙げられる. これらの 問題を解決するため、二つの摺動面を有し、屈曲伸展運動と 内外旋・前後方・内外側を機能分担させたモバイルベアリン グ式人工膝関節が臨床応用されている. そこで本研究では, 生体における6自由度運動を完全に再現するため、パラレル リンク6自由度アクチュエータを応用した人工膝関節シミュ レータを開発し、モバイルベアリング式人工膝関節摺動面の 相対運動を実験的に解析することにより,デザインと運動機 能の関係を検討した.

2. 対象および方法

対象には現在臨床で応用されているモバイルベアリング式 人工膝関節の左足用2機種を用い,それぞれをType A, Type Bとした. 通常の人工膝関節は脛骨コンポーネント上にポリ エチレンインサートが固定されているが、今回用いたモバイ ルベアリング式人工膝関節はインサートが脛骨コンポーネン ト上で回転と並進運動を許容するデザインとなっている. Type A と Type B が許容する自由度と変位量を Table 1 に 示した,人工膝関節用6自由度トライボシミュレータ装置は 油圧式パラレルリンクアクチュエータ,空圧シリンダ,6軸 力覚センサで構成され、パーソナルコンピュータによって制 御を行った. 脛骨コンポーネントをパラレルリンクアクチュ エータのモーションベースに固定された6軸力覚センサに取 り付け、大腿骨コンポーネントを空圧シリンダに連結された 屈曲伸展軸に取り付けた. 脛骨側に内旋 / 外旋, 内転 / 外転 の回転運動と内側 / 外側, 前方 / 後方の平行移動を制御し, 大腿骨側で自由度の大きい軸荷重および屈曲/伸展運動を制 御した(Fig.1). モバイルベアリング式人工膝関節を6自由 度トライボシミュレータに取り付け, Andriacchi¹⁾ および Table 1 Convention of mobile bearing total knee prosthesis.

(a) Ty	/pe A	(b) Type B			
Trans	lation	Translation			
Anterior / Posterior	About ±2.0mm	Anterior / Posterior	_		
Medial / Lateral	About ±1.0mm	Medial / Lateral	-		
Rota	tion	Rotation			
Internal / Exetrnal	About ± 20.0deg	Internal / Exetrnal	Free		

Fig.1 Schema of the artificial knee joint simulator

Morrison²⁾らの歩行データを参考に作成した5自由度と軸荷 重 (Fig.2)を用いて膝の6自由度運動を再現した.インサー トとモーションベースに取り付けられた指標を,異なる角度 から2台のビデオカメラで撮影することによって,歩行にお けるインサートの動態解析を行った.本実験では,大腿骨コ ンポーネントとインサート,および脛骨コンポーネントの接 触に関し,静的条件と動的条件(1.0Hz,0.5Hz)において解 析を行った.静的条件では,1歩行周期を50ステップに分割 し,各位相における荷重と変位をアクチュエータにより静的 に与え,インサートの位置と姿勢を解析した.一方,動的条 件では,1歩行の運動条件を1.0Hzおよび0.5Hzで30サイ クルの間,シミュレータを制御し,ビデオカメラによって連 続的に撮影して解析を行った.Type A において動的運動に おける着脱突起の接触による荷重とそのベクトルを測定する ため着脱突起の前後および内外側面に歪ゲージを取り付け

Fig.2 Load and 5-DOF motion during walking cycle.

た. なお, 生体内の環境を模擬するため, 37℃に保温した疑 似関節液による潤滑条件下で実験を行った. 潤滑液には人血 清由来の分画蛋白(アルブミン2.0wt%, γ グロブリン 1.0wt%)とリン脂質(ホスファチジルコリン0.2wt%)お よびコレステロール(0.1wt%), アジ化ナトリウム(0.3wt%) , ヒアルロン酸ナトリウム(Mw=2.0 × 10⁶,0.5wt%)を溶 解した生理食塩溶液を用いた.

3. 結果および考察

Type A について静的条件と動的条件(1.0Hz, 0.5Hz)にお ける脛骨コンポーネントに対するポリエチレンインサート相 対運動の変化をFig.3 に示す.動的条件では,20周期以降イ ンサートの運動の変位が1.0mm以内に収束する傾向が認め られたので,26周期目から30周期目の平均値を示した.

Type Aについて,前後方向の変位において静的,0.5Hz では、20%付近で脛骨コンポーネントの着脱突起の前方部分 に、70~80%付近で前方の突起部に衝突していたが、1.0Hz では、60%付近で着脱突起の前方部分に、90%付近で前方の 突起部に衝突していた.内外側の変位ついて,静的、1.0Hz では、全体の約50%にわたって着脱突起および前方の突起部 に衝突していたのに対し、0.5Hzでは、全体の80%が衝突し ていた.内外旋の変位おいては、約±3度以内の小さな回転 運動が確認された.静的、0.5Hz、1.0Hzになるにつれて、回 転運動の変位が小さくなっていく傾向が見られた.脛骨コン ポーネントの着脱突起にかかる荷重の合力をFig.4に示す. 0.5Hzの方が、1.0Hzの倍近く着脱突起に接触していた.さ らに、着脱突起にかかっている荷重の合力は約100Nになる ことが確認された.

Type Bについて静的条件と動的条件(1.0Hz, 0.5Hz)におけ る脛骨コンポーネントに対するポリエチレンインサート相対 運動の変化を Fig.5 に示す.動的条件では, Type A と同様

Fig.5 Displacement of polyethylene insert in a walking motion in Type B.

に 20周期以降インサートの運動の変位が1.0mm以内に収束 する傾向が認められたので,26周期目から30周期目の平均 値を示した.0.5Hz,1.0Hzについては常に内旋する傾向が 見られ,内旋約5度,外旋約1度以内の小さな回転運動を 行っていた.静的,0.5Hz,1.0Hzになるにつれて,回転の 変位が小さくなっていく傾向が確認された.

4. 結言

完全6自由度膝関節シミュレータを用いたモバイルベアリ ング式人工膝関節のインサートの動態評価により,以下のこ とが明らかとなった.

・Type A, Type B において,静的, 0.5Hz, 1.0Hz と歩行 周期が高くなるにつれて内外旋等の動きが複雑になり,イン サートが運動に追従できないことが確認された.

・Type A において,前後方および内外側の並進運動による ポリエチレンインサートの着脱突起等の衝突荷重を測定でき ることが確認された.

以上のことから、モバイルベアリング式人工膝関節を設計 する際、本研究の様な6自由度トライボシミュレータ試験に よる評価を組み込む事が有用であると考えられる.

文献

1) T.P.Andriacchi, J Biomech, Vol.120 (1998) 743-749

2) J.B.Morrison, Bio-Med., (3): 164-170, 1968