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Abstract

Background: Characterizing the synchronous changes of epileptic seizures in different stages between
different regions is profound to understand the transmission pathways of epileptic brain network and
epileptogenic foci. There is currently no adequate quantitative calculation method for describing the
propagation pathways of electroencephalogram (EEG) signals in the brain network from the short and long
term. The goal of this study is to explore the innovative method to locate epileptic foci, mapping
synchronization in the brain networks based on EEG.

Methods: Mutual information was used to analyze the short-term synchronization in the full electrodes; while
nonlinear dynamics quantifies the statistical independencies in the long –term among all electrodes. Then
graph theory based on the complex network was employed to construct a dynamic brain network for
epilepsy patients when they were awake, asleep and in seizure, analyzing the changing topology indexes.

Results: Epileptic network achieved a high degree of nonlinear synchronization compared to awake time. and
the main path of epileptiform activity was revealed by searching core nodes. The core nodes of the brain
network were in connection with the onset zone. Seizures always happened with a high degree of
distribution.

Conclusions: This study indicated the path of EEG synchronous propagation in seizures, and core nodes
could locate the epileptic foci accurately in some epileptic patients.
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Background
Epilepsy is an abnormal disease of the brain network [1],
which is caused by large super-synchronous neuronal
discharge [2]. The synchronization between different
brain regions infers the dynamical interactions of segre-
gated brain regions [3]. Characterizing the synchronous
changes of epileptic seizures in different stages and in-
vestigating the propagation of electroencephalogram
(EEG) signals in the brain network will be profound to

understand the transmission pathways of epileptic brain
network and locate the seizure onset zone [4, 5].
Given the nature of epilepsy, there are undeniably the-

oretical hurdles to investigate signal synchronization
widely, including linear and nonlinear methods [6]. Mu-
tual information (MI) theory can be used to reveal the
internal hidden relationships between synchronous sig-
nals in short-term [7, 8]. Nonlinear dynamics theory
quantifies the nonlinear dependencies among the dy-
namics of simultaneously recorded signals in long-term
[9, 10]. Studies have shown that nonlinear
synchronization can be applied to evaluate the connect-
ivity of cortex functions in different brain regions and
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for epileptic foci localization in long-term [11]. However,
few studies have focused on the combination of
short-term and long-term changes to explore synchron-
ous brain networks.
Based on the synchronization, complex network tech-

nology is frequently used to investigate the integration
of functionally specialized brain regions in a network
[12, 13]. Some studies summarized analytical and meth-
odological elements of epileptic network studies and dis-
cussed findings from recent detailed electrophysiological
investigations [14]. The preliminary study suggested that
seizure foci may be the weakest connected regions in the
brain at the beginning of a seizure and the most strongly
connected regions may be connected towards the end of
a seizure [15]. Hao [16] indicated clustering coefficient
was statistically higher in the ictal period than in the
inter-ictal period, and there is no obvious difference for
their average path length. Some other complex network
indicators were also applied to brain network analysis
[17]. However, the brain network was mostly limited to
medical imaging in a static network. Scale EEG signals
have the advantages of superior time-space resolution
and real-time monitoring, which make it an excellent
tool for constructing dynamic brain networks [18, 19].
The study was aimed to construct dynamic brain net-

works by mapping the synchronization of the nonlinear
characteristics of the EEG. The characteristics of the
complex network were analyzed, the propagation of epi-
leptic discharges described in the short and long term.
This study fills a void in the field of the synchronization
relationships of the dynamic brain network, contributing
to the localization of seizures.

Materials and methods
Data resource and data preparation
Data resource
1) Data inclusion criteria.
In order to ensure the brain network construction and

avoid artifacts as much as possible, the data were se-
lected by the following criteria:
a) Patients with focal neocortical epilepsy.
b) Obvious EEG changes with inconspicuous body

movements.
c) Each patient’s long-range EEG test chart must con-

tain at least six or more seizures.
2) Data details.
Based on the above criteria, we can obtain sufficient

repetitive sample data and relatively clean sample data
for each patient. Patient1 was a 23-year-old female diag-
nosed with temporal lobe epilepsy, received treatment at
the Department of Neurology, the First Affiliated
Hospital of Xinjiang Medical University, Urumqi, China.
She had 7 seizures and left temporal postoperative
changes detected through MRI. Patient 2 was a

6-year-old boy diagnosed with frontal lobe epilepsy, re-
ceived treatment at the Department of Neurology, the
First Affiliated Hospital of Sun Yat-sen University,
Guangzhou, China, He had 15 seizures and focal cortical
dysplasia in the right front lobe detected by MRI.

Data preparation
Electrodes were placed according to the international
10–20 system. A 24-h video-EEG system was used to
collect data for a total of 48 h, with a sampling frequency
of 2000 Hz. Then the signal was filtered from 0.3-75 Hz.
Other artifacts were removed, which had no apparent
behavior during seizures. Each seizure was divided into
2–6 segments. Different size of time window was parti-
tioned into the same overlapping frames and the
synchronization was computed.

Calculation of EEG synchronization

Calculation of the MIs
Kinney JB et al. defined information from the perspec-
tive of information uncertainty [20]. The MI can reflect
the magnitude and interdependence of information
transmission between the two signals. The lower the MI
between the two signals, the less similar information
there is between them. When the two signals are inde-
pendent, the value of MI is zero. By measuring the joint
probability density distribution between two variants, MI
quantifies the mutual dependence. The algorithm for the
calculation of MI is as follows:
Define the probability of discrete random variables

X and Y locating in N ×N regions. If Pi represents
the probability that xi will occur, then the probability
of event {X = xi, Y = yi} is pij. The joint of the two var-
iables is:

Hxy ¼ −
XM

i; j
pij lgpij ð1Þ

The MI of X and Y is defined as:

Ixy ¼ Hx þHy−Hxy ð2Þ
This study employed the statistical parameters of the

total channels MIs, namely the mean value and variable
coefficient to describe information interaction and
synchronization in the brain.

Nonlinear characteristic T-index matrices
The synchronization of nonlinear characteristics be-
tween two channels can be described using the T-index
[21]. In statistics, a t-test of two independent samples
can measure whether the samples have the same distri-
bution. When the distribution of the two samples varies
greatly, there will be more correspondingly grouped
t-test statistics. In this study, T-index matrices were
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employed to measure the variation in synchronization of
the multi-nonlinear characteristics of all channels.
Algorithm for the T-index of every two channels is:
When the number of channels is N, the T-index

matrix is a N ×N matrix.

T ¼
�X1− �X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2C
1
n1

þ 1
n2

� �s ð3Þ

S2C ¼ S21 n1−1ð Þ þ S22 n2−1ð Þ
n1 þ n2−2

ð4Þ

�X1and �X2 are the mean values of the two samples, S2C is
the standard deviation of the difference of the mean
values, S21andS

2
2 are the variances of the two samples.

n1andn2 are the data lengths of the samples.

Calculation of nonlinear characteristics
By reconstructing the phase space, Correlation dimen-
sion(CD), approximate entropy(ApEn), Hurst exponent
(HE), and the principal component analysis index
(PCAI) [22, 23] were calculated to describe the chaotic
EEG signals.

Cd
CD is a fractal dimension used for the quantitative de-
scription of the self-similar structure of a chaotic at-
tractor [24]. This algorithm uses the time series to
calculate CD directly, which is by far the most common
method. Here, the embedding dimensions for the recon-
struction of phase space were calculated using improved
Cao method [25] using the nearest neighbors. The delay
time was calculated using mutual information. The CD
algorithm is as follows:
Calculate the contextual integral of the oscillators:

C rð Þ ¼ 2
Nm Nm−1ð Þ

XNm

i¼1

XNm

j ¼ 1
j≠i

H r−rij
� � ð5Þ

C(r) is the correlation integral function of the signals,
where r is the hypersphere radius in phase space andm
is the embedding dimension. rij = ‖x(i) − x(j)‖ represents
the Euclidean distance between two random points x(i)

and x(j) among the Nm sample points, among which Hð

rÞ ¼ 0; r≤0
1; r > 0

�
is the Heaviside function.

Within a certain range, C(r) ∝ rD(m)(r→ 0), when
N→ ∞ , D(m) is the correlation dimension:

d2 ¼ lim
r→0

lnC rð Þ
lnr

ð6Þ

Draw scale curve lnr − ln C(r), the straight part of
which will be the scaling region. Fit the straight line
through least squares method. The straight slope is the
CD.

ApEn
Approximate entropy is a non-dimensional parameter to
represent a signal character from the perspective of
measuring the complexity and regularity of signal se-
quences. As ApEn measures the probability of new pat-
terns, it can quantitatively describe the information
included in the specific sequence. The algorithm is de-
scribed in our previously published work [26]. Here we
set the embedding dimension of compared sequences to
m = 2, the threshold value to r=0.25, and the unit time
duration for calculation to 1 s.

He
The Hurst exponent is a statistical parameter used to as-
sess the chaotic characteristics of time sequences. Which
could accurately reveal tendencies in time sequences.
The value of HE is between 0 and 1, and quantitatively
reflects the long-range correlation between sequences.
Rescaled range (R/S) analysis [27].
The algorithm is as follows:
For a given time sequence {x(i)| i = 1, 2, ⋯N}, define

the average error of the first k points as:

Wk ¼ x1 þ x2 þ⋯þ kx nð Þ ð7Þ
In the above formula, xðnÞ is the average value

ofx1(i = 1, 2…N), 1 ≤ k ≤ n, 1 ≤ n ≤N.
Calculate the difference between the minimum and

maximum value of n’s correspondent average error:
R(n) = max(W1…Wn) −min(W1…Wn), n = 1,2....N (8)

R nð Þ
S nð Þ ¼

max W1…Wnð Þ− min W1…Wnð Þffiffiffiffiffiffiffiffiffiffiffi
S2 nð Þ

p ð9Þ

In the above formula, S(n) is the standard deviation of
xi(i= 1,2…N)..
Transform the above equation:
RðnÞ
SðnÞ ¼ a� nH; n ¼ 1; 2…N (10).

In the above formula, H represents the Hurst expo-
nent, then H is:

HðnÞ ¼
log

�
RðnÞ.

SðnÞ
	

logðnÞ ; n ¼ 1; 2…N (11).

PCAI
PCA is a statistical approach for character extraction
[28]. Principal component analysis (PCA) was used to

Mei et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 1):19 Page 53 of 71



represent integrated characteristics and represent the
center of gravity position of data points and the disper-
sion range of group points. In this study, the PCAI rep-
resents the distribution balance of nonlinear
eigenvectors extracted through PCA. The algorithm is as
follows:
Calculate the average value E(x) of each row in recon-

structed phase space matrix Y, and calculate the differ-
ence between elements in each row of the phase space
matrix and the average value of this row, namely

Y ¼ X−E xð Þ: ð12Þ

Calculate the covariance matrix:

A ¼ YTY
� �

n− m−1ð Þτ ð13Þ

Calculate the A’s eigenvalue pi and its correspondent
eigenvector Ui (i = 1, 2,…m). The eigenvalue and eigen-
vector are the principal components.
Sum all the eigenvalues:

γ ¼
Xm
i¼1

pi ð14Þ

Then range the eigenvectors according to their values
from small to large. Calculate the standard deviation of
principal components distribution:
PCAI=STD(log(pi/γ)) (15).

Construction of brain network
The rule for construction network
MI and nonlinear indexes of pairs of nodes were first
calculated. The average MI of all channels was selected
as the threshold. When two channels’ MIs was larger
than the threshold of the total channels, the functions of
these two brain regions were considered to be function-
ally related. and brain network could be constructed.
Then T-matric index of nonlinear characteristic was ap-
plied based on such a model.

Methods of localizing core nodes
Degree distribution was chosen as the index for measur-
ing network synchronization [29]. The node with the
biggest degree is defined as the central node which plays
an important role in communication within a brain. If
the number of nodes linked to node i is k(i), then its de-
gree is k(i). Nodes with the largest degrees were marked
as the key nodes and the pathways between them
marked as key pathways. The actual anatomical connect-
ivity between the two regions was not considered in the
determination of correlation.

Statistical analysis
Statistics were performed using analysis of variance
(ANOVA) models to examine the different characteristic
values of synchronization, if data had normal distribu-
tions and homogeneous variances. Otherwise, the
Kruskal-Wallis test (K-W test) for nonparametric statis-
tics was employed. The Tukey method, with its high de-
gree of stability, was used for multiple comparisons. The
covariance structure was assumed to be compound and
symmetric. Analyses were implemented in SPSS (version
18) with a significance level of 0.05. All data are given as
mean ± standard deviation (SD).

Results
EEG synchronization in different stages
EEG synchronization based on MIs
There were certain differences between the three stages
for each patient from the statistical analysis indicated in
Tables 1 and 2. For a patient with temporal lobe epi-
lepsy, EEG synchronization is at the highest level in the
ictal stage and at its lowest level in the awake stage. The
synchronization distribution difference is most unbal-
anced in the sleep stage and is relatively consistent in
the ictal and awake stages. For a patient with frontal lobe
epilepsy, EEG synchronization is at the highest level in
the ictal stage and synchronization distribution differ-
ence is most unbalanced in the ictal stage and most con-
sistent in the awake stage.

EEG synchronization based on nonlinear dynamics
Table 3 shows T-index averages in different stages under
global channels. Table 4 displays the corresponding
T-test. The EEG of Patient 1, with temporal lobe
epilepsy, revealed the prominent statistical difference
between the awake and ictal stages. Compared with
the awake stage, the ictal stage had a lower
synchronization level of ApEn and HE and a higher
degree of CD (p < 0.05). The statistical difference be-
tween the awake stage and the ictal stage only mani-
fested in the T matrix of HE (p < 0.05).
The EEG of the patient with frontal lobe epilepsy re-

vealed significant differences between PCAI and ApEn
in the three stages (p < 0.05). Compared with the awake
stage, the ictal stage had a higher synchronization level
of CD and PCAI and lower ApEn. Statistical differences

Table 1 Global mutual information in three stages

EEG Mean Coefficient of Variation

TLE FLE TLE FLE

AS 0.926 ± 0.132 1.607 ± 0.066 7.549 ± 2.619 7.960 ± 1.647

SS 1.062 ± 0.062 1.600 ± 0.143 10.201 ± 2.273 9.472 ± 2.108

IS 1.032 ± 0.119 1.771 ± 0.176 8.431 ± 2.206 10.283 ± 1.744

AS: Awake stage, SS: Sleep stage; IS: Ictal stage; TLE: temporal lobe epilepsy;
FLE: frontal lobe epilepsy
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between the awake and sleep stages were revealed by all
of the 4 eigenvalues (p < 0.05).
T-index matrix values were distributed differently in

different stages. For the patient with temporal lobe epi-
lepsy, the seizure usually happened in the sleep stage.
From the awake stage to the sleep stage and the ictal
stage, the T-index matrix for the nonlinear eigenvalue
gradually changed (see Fig. 1). As the CD revealed, the
signals in fractal appear to be progressively more con-
sistent as the color is more balanced. In the awake stage,
the right hemisphere EEG is highly consistent, while glo-
bal activity is highly consistent in the ictal stage and the
ApEn, HE, and PCAI synchronization levels declined.
The ApEn matrix outstands in T5 channel as the color
is more vivid, and the PCAI matrix also outstands in a
similar area. In the patient with frontal lobe epilepsy, sei-
zures usually occurred in the sleep stage. From the sleep
stage to the awake stage and on to the ictal stage, only
the PCAI T-index matrix showed gradual change.

Dynamic network construction results
Pathway of synchronous discharge
In this study, the maximum number of connections of
the constructed brain network was 271. 20 pairs of
channels with the largest MI were displayed in the brain
network. Each figure has 20 channels, as shown in Fig. 2
and Fig. 3. The core nodes of the MI network indicated
the location of the abnormal channel. Similar to the
brain function network construction based on MI, net-
work topology with four indexes can easily be con-
structed. The meaning of this remains unclear.

Core node of brain network
The core node in the network is the largest node of the
degree distribution. The rubricated channels shown in
Fig. 2 and Fig. 3 are brain network core nodes, the infor-
mation of which is exchanged with the most active
nodes with the strongest synchronization impact. From
the beginning of sleep stage 2, the core nodes indicate
coincide well with the location of an abnormal channel
(T3 and T5 for the patient with temporal lobe epilepsy;
F4 and Fp2 for the patient with frontal lobe epilepsy).
These core nodes near the seizure focus area or appear
as a corresponding offside locus.
Conversely, the core node of the network with four in-

dexes shows that in the ictal stage, the characteristic
values trend towards deviating to the brain hemisphere
with the seizure focus. By counting the frequency of the
core nodes simultaneously indicated by four characteris-
tic networks, the two channels with the highest node de-
grees were obtained. As shown in Fig. 4, the network
node with nonlinear characteristics in the ictal stage ac-
cords with the clinical result of the seizure focus.

Degree distribution of brain network
The degree distribution of the brain network is shown in
Fig. 5. The seizures happen in the brain network state
with relatively high degree distribution. When the stage
transitions from inter-ictal to seizure, the degree distri-
bution of the whole network shows an initial decrease.
During the seizure, the low degree distribution of brain
network shows a slight increase and then decreases
again.

Discussion
According to the synchronization, the whole brain
synchronization varies with different EEG states. The
distribution of MI in different brain regions differs sig-
nificantly in the same state. Previous studies have re-
vealed that the MI of each channel in the epileptic foci
is higher in seizures than interictal state [30]. This study
shows that MI synchronization in the epileptic seizure
stage is higher than in the awake stage, which is consist-
ent with the global synchronization analysis result ob-
tained by previous studies [31, 32]. Meanwhile, EEG
signal synchronization is at the lowest level in the awake
stage, which is believed to be a result of increased au-
tonomous brain activity in the awake stage. It is worth
noting that the rise of EEG signal synchronization in the
sleep stage is very probably due to the high level of
synchronization in partial regions.
The awake stage based on nonlinear eigenvalue shows

the highest level of ApEn and HE synchronization as
well as the lowest degree of CD, while the seizure stage
has the highest degree of CD. Both patients had indi-
vidual discrepancies in PCAI synchronization, which

Table 2 Statistical results of mutual information in three stages

EEG Mean Coefficient of Variation

TLE FLE TLE FLE

AS and SS P < 0.05* P > 0.05 P < 0.05* P < 0.05*

AS and IS P < 0.05* P < 0.05* P > 0.05 P < 0.05*

SS and IS P > 0.05 P < 0.05* P < 0.05* P < 0.05*

ANOVA – – P < 0.05* –

K-W test P < 0.05* P < 0.05* – P < 0.05*

AS: Awake stage; SS: Sleep stage; IS: Ictal stage; TLE: temporal lobe epilepsy;
FLE: frontal lobe epilepsy

Table 3 the T-index average value of nonlinear eigenvalue in
three stages

stage CD ApEn Hurst PCAI

TLE FLE TLE FLE TLE FLE TLE FLE

AS 1.452 3.902 3.220 2.070 3.099 1.262 1.816 1.075

SS 1.843 3.244 1.948 5.317 2.479 3.194 1.839 1.873

IS 2.154 3.801 1.913 4.443 1.395 2.301 1.601 3.950

AS: Awake stage; SS: Sleep stage; IS: Ictal stage; TLE: temporal lobe epilepsy;
FLE: frontal lobe epilepsy
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Table 4 Statistical results of T-index of nonlinear eigenvalues in three stages

stage CD ApEn Hurst PCAI

TLE FLE TLE FLE TLE FLE TLE FLE

AS and SS P < 0.05* P < 0.05* P < 0.05* P < 0.05* P > 0.05 P < 0.05* P > 0.05 P < 0.05*

AS and IS P < 0.05* P < 0.05* P < 0.05* P < 0.05* P < 0.05* P > 0.05 P > 0.05 P < 0.05*

SS and IS P > 0.05 P > 0.05 P > 0.05 P < 0.05* P < 0.05* P < 0.05* P > 0.05 P < 0.05*

K-W test P < 0.05* P < 0.05* P < 0.05* P < 0.05* P < 0.05* P < 0.05* P > 0.05 P < 0.05*

AS: Awake stage; SS: Sleep stage; IS: Ictal stage; TLE: temporal lobe epilepsy; FLE: frontal lobe epilepsy

Fig. 1 The T-index matrix of nonlinear eigenvalues in temporal lobe epilepsy. The coordinates are channel numbers. Numbers 1–9 correspond to
the right hemisphere and numbers 14–22 correspond to the right hemisphere. The CD T-index increases gradually. For ApEn, Hurst, and PCAI, the
T-index decreases gradually and ApEn outstands in T5 channel as the color is more vivid
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may arise from the different reference electrodes
chosen for the channel. Though HE synchronization in
both the seizure and sleep stages in the two patients
shows discrepancies, the opposite results were ob-
served. This implies that individual discrepancies must
be taken into consideration in epileptic seizure detec-
tion and the threshold value detection method is
unreliable.
The seizures were all found to occur when the brain

network has high degrees of distribution. The degrees
slightly rise and then drop in the seizure stage. From the
perspective of network information flow, epileptic sei-
zures occur more easily when the brain network is
highly active. When epileptic seizures occur, the

information flow of the brain remains inactive, and the
information interaction intensifies as the seizure
continues.
For a patient with frontal lobe epilepsy, EEG clinical

diagnosis shows that the spike-and-slow wave com-
plex activities are mostly dominated by the right an-
terior section (F4 and Fp2) and occasionally
dominated by the left anterior section (F3 and Fp1)
in the seizure stage. These involve the whole channel,
and then parts of the seizures shift to
anterior-dominated slow activities, involving the tem-
ple (F8) and occipital region (O2). Using the network
diagram, we can derive that the network in the pre-
frontal region is active in the seizure stage, with the

Fig. 2 Construction result of EEG brain network based on mutual information in temporal lobe epilepsy. A Each figure shows that the connection
of brain EEG segments lasts for 12 s. The five figures in the second line show five sequential stages of a seizure. The bold points represent the
core node channels. The main path of the network is: Pz-(F3\F4\F8) -(C3\O2)-P3-(T3\P3)-F7-T5. B. The EEG segment of IS2. The EEG waves start in
the left temporal lobe and bursting spikes can be seen in the T3 and T5 channels. The surface channels m1 and m2, which replace deep
sphenoid electrodes, are included in the 22 channels. t. AS = Awake stage; SS=Sleep stage; IS=Ictal stage
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left and right frontal regions alternately being active,
followed by the right posterior occipital region.
For a patient with temporal lobe epilepsy, EEG clinical

diagnosis shows that the seizure stage starts from the left
temple, and consecutive spike waves can be seen
through the left middle and posterior temples (T3 and
T5). Using a network diagram, during the seizure the
network is first been activated in the left posterior brain
region, then becomes symmetrically active in the whole
brain, and finally stays active in the right anterior brain
region. The brain network connection in the awake stage
is quite dispersed. In the sleep stage, temporal lobe epi-
lepsy is active in the frontal region, while in frontal lobe

epilepsy activity occurs in the posterior occipital region.
In both, activity shies away from the epileptogenic
region.
In sum, there are differences between the two patients. For

the patient with frontal lobe epilepsy, the main path of the
network is: (P4\O1\T4\T5) -(F7\T3)-F4-F7-Fz-(Fp1\Fp2\F4)
-(Fp1\F3). While the patient with temporal lobe epilepsy, the
main path of the network is: Pz-(F3\F4\F8) -(C3\O2)-P3-
(T3\P3)-F7-T5. Contrasted the process of each person’s
electroencephalogram to the corresponding clinical
diagnosis report, the brain network shifting path in
this study is highly consistent with details in the clin-
ical diagnosis report.

Fig. 3 Construction result of EEG brain network based on mutual information in frontal lobe epilepsy. Each figure shows that the connection of
brain electrical sections lasts for 6 s. The six figures in the second line show five sequential stages of a seizure. The bold points represent the core
node channels. The main path of the network is: (P4\O1\T4\T5) -(F7\T3)-F4-F7-Fz-(Fp1\Fp2\F4) -(Fp1\F3). B. The EEG segments of IS2 and IS3.
Epileptiform discharge in the prefrontal area is observed. The results show spike and wave complexes and poly-spike wave complexes and these
mainly occurred in F4 and Fp2
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In the earlier stage of a seizure, activities of neurons at
the seizure focus separate, leading the seizure focus
nerves to dissociate from the inhibition of peripheral
neurons and discharge with intensity [33]. Previous stud-
ies found a difference between the brain graphs of af-
fected and unaffected hemispheres [34, 35] and
compared to EEG signals from epileptic brain areas, sig-
nals recorded from epileptogenic brain areas are more

uniform and nonlinear-dependent [36]. In this study, the
epileptic foci are quiet in the interictal periods. However,
the epileptogenic region activates in the seizure stage
and simultaneously becomes the key node of a brain net-
work. During an epileptic seizure, the brain network
core nodes, which are the most active nodes with the
strongest synchronization impacts, shift along with the
transfer of synchronous discharge [37]. Our results also

Fig. 4 The key channel positions of a brain network constructed based on nonlinear characteristics. Round areas with color are location key
channels and elliptic areas with color are seizure foci. The location of the deep sphenoid electrode is represented by the M1 channel

Fig. 5 The degree distribution of the brain network in different states. A The degree distribution of the brain network in different states in the
patient with temporal lobe epilepsy. B. The degree distribution of the brain network in different states in the patient with frontal lobe epilepsy
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show that the nonlinear characteristic network nodes are
consistent with the localization of epileptic foci during
clinical diagnosis. Since this article focus on mapping of
the map of the EEG network. The construction method
of this paper can also be applied to more samples to ex-
plore brain synchronization in different conditions.

Conclusions
The accurate foci location will revolutionize the internal
and surgical treatment of epilepsy. In this study, we have
demonstrated that the way synchronization-based brain
networks change along with space-time. The path of
EEG synchronous propagation in seizures, and core
nodes could locate the epileptic foci accurately in some
epileptic patients. Especially MI, gives a quantitative in-
formation on the degree of information interaction in
detail, which can be consistent with the clinical mani-
festation. Considering that EEG signals reflect the dis-
charges of neurons in the brain, the level of EEG
synchronization between channels represents the inten-
sity of information exchange. Therefore, this study may
be served as a benchmark for exploring the dynamic
brain network. We hope that study will motivate and
guide further development of the epileptic network.
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