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Activation of the nuclear factor E2-related
factor 2/anitioxidant response element
alleviates the nitroglycerin-induced
hyperalgesia in rats
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Abstract

Background: Antioxidants have been proven to weaken hyperalgesia in neuropathic pain. Endogenous antioxidant
defense system may have a role in the prevention of hyperalgesia in migraine. In this study, we aimed to evaluate
the role of nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) pathway in regulating the
activation of the trigeminovascular system (TGVS) and hypersensitivity in nitroglycerin (NTG)-induced hyperalgesia
rats.

Methods: The expression levels of Nrf2, HO, HO1, and NQO1 in the trigeminal nucleus caudalis (TNC) were
detected by western blot. Immunofluorescence was used to demonstrate the cell-specific localization of Nrf2
in TNC. Sulforaphane, a Nrf2 activator, was administered to NTG-induced rats. Then, the number of c-Fos- and
nNOS-immunoreactive neurons in TNC was evaluated using immunofluorescence, and c-Fos and nNOS protein
levels were quantified using western blot. Von Frey hair testing was used to evaluate the tactile thresholds of rats
at different time points in different groups.

Results: Total cellular and nuclear levels of the proteins Nrf2, HO1, and NQO1 were elevated in TNC after
NTG injection, and Nrf2 was found to be located in the nucleus and cytoplasm of the neurons. Sulforaphane
pretreatment significantly increased the nuclear Nrf2, HO1, and NQO1 levels in TNC. In addition, sulforaphane
exposure effectively inhibited the expression of nNOS and c-Fos, reduced the number of nNOS and c-Fos
immunoreactive neurons in TNC, and attenuated the tactile thresholds induced by NTG injection.

Conclusion: Oxidative stress was involved in nitroglycerin-induced hyperalgesia. Activation of the Nrf2/ARE
pathway inhibited the activation of TGVS and prevented the induction of hyperalgesia. Sulforaphane might
therefore be an effective agent for hyperalgesia. Further studies are needed to discover the underlying mechanisms
of the process.
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Background
Migraine is a primary headache disorder characterized
by recurring, episodic, and unilateral throbbing pain in
the head. Cutaneous hyperalgesia occurs during mi-
graine attacks, and is a risk factor for the recurrent at-
tack and chronification of migraine [1, 2]. Exploring the
potential mechanisms of this feature may warrant pre-
ventive treatment strategies.
Nitroglycerin (NTG) is widely used to create a vali-

dated animal model of migraine for further exploration
of the pathogenesis and treatment of the disorder [3, 4].
Systemic administration of NTG causes a delayed spon-
taneous headache attack and induces the consequent
central sensitization in migraineurs or rats via an NO-
dependent pathway [5–7]. And trigeminovascular system
(TGVS) activation participates in the nociceptive trans-
mission, thereby enhancing this chronic sensitization
process [8].
Several studies have shown that oxidative stress plays

a role in central sensitization [9, 10]. Reactive oxygen
species scavenger alleviates hyperalgesia in rats with
neuropathic pain, suggesting that potential role of anti-
oxidants [11, 12]. It has been found that the nuclear fac-
tor E2-related factor 2/antioxidant response element
(Nrf2/ARE) pathway is the most important endogenous
antioxidant defense system, and plays a critical role in
regulating cellular oxidation, cell defense, and protection
[13]. Increasing data points out the protective role of
Nrf2/ARE pathway activation in the brain [14]. However,
the role of Nrf2/ARE pathway in hyperalgesia in mi-
graine remains unclear.
Thus, the aim of this study was to investigate the role

of Nrf2/ARE pathway in NTG-induced hyperalgesia and
its underlying mechanism. By doing so, we expect to
find an effective therapeutic approach for this disorder.

Methods
Animals
Male Sprague-Dawley rats (n = 132, weight 180-220 g)
obtained from the Laboratory Animal Center of Sun
Yat-sen University (Guangzhou, China) were used for
the study. The animals were housed in groups of 3–4
with water and food available ad libitum and were kept
under a 12-h light/dark cycle at constant temperature
(25 ± 1 °C) conditions. All experiments were conducted
according to the international association for the study
of pain (IASP) guideline and every effort was made to
minimize animal suffering.

Drug administration
NTG (Beijing Yimin Pharmaceutical Co., Ltd, China)
was injected subcutaneously (s.c) in the back of rats
(10 mg/kg) from a stock of 5.0 mg/ml. Control rats were

subcutaneously injected with an equal volume of 0.9 %
normal saline (NS) as a vehicle for NTG [3].
R, S-Sulforaphane (SFN) (LKT Laboratories, Inc., St.

Paul, MN) was dissolved in sterilized distilled water ac-
cording to the instructions, and a dose of 5 mg/kg was
administered intraperitoneally (i.p) based on previous
studies [15, 16]. The vehicle group was also injected in-
traperitoneally with an equal volume of sterilized water.

Experimental protocol
First, 60 rats were randomly separated into ten groups
according to the different time points (0, 0.5 h, 1 h, 2 h,
and 4 h) after NTG/NS injection. TNC tissue samples of
the rats were taken for analyzing the expression levels of
total cell Nrf2, nuclear Nrf2, HO, and NQO1 using west-
ern blot. A group of 18 rats was used to demonstrate the
cell localization of Nrf2 in TNC among the groups
(Control, NTG 2 h, and NTG 4 h) by immunofluores-
cence. Second, rats were divided into five groups as fol-
lows: 1) Control group (n = 6), rats received NS (s.c) in a
volume equal to that of NTG, 2) SFN plus control group
(n = 6), rats received SFN (5 mg/kg i.p) 30 min before
NS (s.c), 3) NTG group (n = 6), rats received NTG
(10 mg/kg s.c), 4) H2O plus NTG group (n = 6), rats re-
ceived sterilized distilled water (i.p) 30 min before NTG
(10 mg/kg s.c), and 5) SFN plus NTG group (n = 6), rats
received SFN (5 mg/kg i.p) 30 min before NTG (10 mg/
kg, s.c). Von Frey hair testing was used to evaluate the
tactile sensitivity threshold. Western blot was used to
detect the c-Fos, nNOS, nuclear Nrf2, HO1, and NQO1
expressions in TNC. Finally, rats were divided into four
groups as follows: 1) Control group (n = 6), rats received
a subcutaneous injection of NS (s.c) in a volume equal
to that of NTG, 2) NTG group (n = 6), rats received
NTG (10 mg/kg s.c), 3) H2O plus NTG group (n = 6),
rats received sterilized distilled water (i.p) 30 min before
NTG (10 mg/kg, s.c), and 4) SFN plus NTG group (n = 6),
rats received SFN (5 mg/kg i.p) 30 min before NTG
(10 mg/kg, s.c). Immunofluorescence was performed to
evaluate the numbers of c-Fos and nNOS-immunoreactive
neurons in TNC.

Behavior test
Tactile sensitivity threshold was evaluated with cali-
brated (0.008 g, 0.02 g, 0.04 g, 0.07 g, 0.4 g, 0.6 g, 1.0 g,
1.4 g, 2.0 g, 4.0 g, 6.0 g, 8.0 g, 10.0 g, and 15.0 g) von
Frey hairs (Stoelting Co., Wood Dale, Illinois, USA) by
the up-down method as described previously [17, 18].
Briefly, the rats were accommodated in the testing
chambers for a period of 30 min prior to the testing. A
series of von Frey hairs with logarithmically incremental
stiffness was applied to the periorbital region of the face
and middle of the plantar surface of the front paw for 6-
8 s at intervals of 30 s between consecutive stimuli.
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Quick withdrawal or licking of front paw in response to
the stimulus or scratching of the periorbital region in
response to the stimulus was considered as a positive re-
sponse. The tactile thresholds to the stimuli of von Frey
hairs were analyzed at baseline, 0.5, 1, 2, 3, and 4 h after
NTG or NS injection by experimenters who were
blinded to each rat group.

Immunofluorescence staining
Rats were anaesthetized with 10 % chloral hydrate
(3 ml/kg, i.p) and then perfused transcardially with 0.9 %
saline at 4 °C followed by 4 % paraformaldehyde in phos-
phate buffered saline (PBS 0.1 mol/L, pH 7.4). Regions
from the medulla oblongata to the first cervical cord were
immediately isolated, fixed in 4 % paraformaldehyde, cryo-
protected in 30 % sucrose, frozen, and serially sectioned
1–5 mm from obex (10 μm-thick transverse sections) on a
cryostat (CM1900, Leica, Heidelberg, Germany). Sections
were incubated with primary antibody against Nrf2 (rabbit
polyclonal antibody, dilution 1:200, Abcam, UK), neuronal
nuclei NeuN (mouse monoclonal antibody, dilution 1:500,
Millipore, USA), c-Fos (rabbit monoclonal antibody, dilu-
tion 1:200, Abcam, UK), and nNOS (rabbit monoclonal
antibody, dilution 1:200, CST, USA). After rinsing in PBS
(0.01 mol/L, pH 7.4), sections were incubated for 1 h at
25 °C with secondary antibody, Alexa Fluor 488-
conjugated anti-rabbit IgG (1:200, Jackson, USA) or
Dylight 549-conjugated anti-mouse IgG (1:200, Jackson,
USA). Sections were mounted in fluorescent mounting
medium (R&D systems, Minneapolis, MN, USA), and sig-
nals were detected using a fluorescence microscope
(BX51, Olympus, Japan). Negative control sections were
incubated with PBS instead of primary antibodies and they
showed no positive signals. The number of c-Fos- and
nNOS-immunoreactive neurons in TNC confined to a
400 × 300 μm square was determined using Image J soft-
ware (version 1.4.3.67, NIH). Data from 10 regions sam-
pled from each section (10 sections per rat) were averaged
and presented as number per 1.2 × 105 μm2 in TNC.

Immunoblotting
After anaesthetizing as described above, the TNC was
rapidly dissected, 1–5 mm from obex, homogenized in
tissue lysates (Pierce, Rockford, IL, USA) with protease
inhibitor cocktail (Merck, Darmstadt, Germany), and the
protein concentration was determined using BCA re-
agent (Pierce, Rockford, IL, USA). Equal amounts of
protein extracts were separated electrophoretically on
10 % sodium dodecyl sulfate-polyacrylamide gels and
transferred onto polyvinylidene difluoride membranes
(Millipore, Temecula, CA, USA). After blocking with
5 % skimmed milk for 1 h, the membranes were
incubated with primary antibody against Nrf2 (rabbit
polyclonal antibody, dilution 1:1000, Abcam, UK), HO1

(rabbit monoclonal antibody, dilution 1:1000, Abcam,
UK), NQO1 (rabbit polyclonal antibody, dilution 1:1000,
Abcam, UK), c-Fos (rabbit monoclonal antibody, dilu-
tion 1:500, Abcam, UK), nNOS (rabbit monoclonal anti-
body, dilution 1:1000, CST, USA), β-actin (mouse
monoclonal antibody, dilution 1:5000, Sigma, USA), and
fibrillarin (mouse monoclonal antibody, dilution 1:4000,
Abcam, UK). For the negative control, rabbit primary
antibody was replaced by normal serum. This was
followed by adding horseradish peroxidase-conjugated
anti-mouse or anti-rabbit secondary antibody (dilution
1:5000, Jackson, USA). An enhanced chemiluminescence
kit (Millipore, Temecula, USA) was used for the
visualization of the bands. Densitometric analysis was
performed using Image J software.

Statistical analysis
All data are expressed as the mean ± SD. Statistical ana-
lyses were performed using IBM SPSS version 17.0
(SPSS Inc., Chicago, IL, USA). Data at different time
points were analyzed using a two-way analysis of vari-
ance (ANOVA) followed by Bonferroni post-hoc-test.
Other data were analyzed using a one-way ANOVA
followed by Bonferroni post-hoc-test. P value < 0.05 was
considered as statistically significant.

Results
NTG altered the antioxidant system in TNC
To investigate the changes in the antioxidant system in
rats treated with NTG, we analyzed Nrf2 expression in
the nuclear and total cell fractions of TNC from rat
models (Fig. 1). The subcutaneous administration of
NTG (10 mg/kg) significantly increased Nrf2 levels in
the total cell and nuclear fractions. This increase began
within 0.5 h and persisted for 4 h after NTG injection.
The control group with NS injection showed no statis-
tical difference at the different time points. Moreover,
immunofluorescence analysis (Fig. 2) showed that Nrf2
was located only in the neuronal cytoplasm of control
group. Whereas, both nucleus and cytoplasm of neurons
in the NTG group shared an obvious Nrf2 existence. We
further analyzed the protein levels of two typical Nrf2-
regulated phase II enzymes, HO1 and NQO1, in TNC of
the rat models (Fig. 3). The expression of these two
proteins also increased within 0.5 or 1 h, and persisted
for 4 h after NTG exposure.

Sulforaphane increased the expression of Nrf2 and the
downstream proteins
To determine the possible mechanism of Nrf2 effect, we
used sulforaphane, a small-molecule inducer of this
factor, to regulate the Nrf2/ARE pathway in this study.
We performed immunoblotting to analyze the nuclear
Nrf2, HO1, and NQO1 expressions. As shown in Fig. 4,
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Fig. 1 Effect of NTG injection on Nrf2 protein levels in the total and nuclear fractions of rat TNC a Representative immunoblots of TNC lysates.
Total Nrf2 levels b and nuclear Nrf2 levels c were elevated as early as 0.5 h and persisted for 4 h after NTG injection. β-actin was used
as a loading control for total Nrf2. Fibrillarin was used to assess the purity of the nuclear fraction. Data are presented as relative density units normalized
to β-actin or Fibrillarin, and expressed as mean ± SD (*P < 0.01 vs the control group, # P < 0.01 vs NTG 0 h group, n = 6 per group)

Fig. 2 Co-localization images of Nrf2 with NeuN in TNC. Red indicates Nrf2 immunoreactivity, green indicates NeuN immunoreactivity, and yellow
indicates merged signal. In control group a-c of the TNC, Nrf2 is present mainly in the cytoplasm (shown by arrows). In the NTG 2 h group d-f and
NTG 4 h group g-i, Nrf2 staining was observed both in the cytoplasm and in the nucleus (shown by arrows). Bar = 50 μm. The arrows indicate cells
shown in the top right corner of images c, f, i at about 10 times magnification
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Fig. 3 Effect of NTG injection on the levels of Nrf2 downstream proteins HO1 and NQO1 in rat TNC. a Representative immunoblots of TNC.
Compared to the NS group or NTG 0 h group, HO1 levels were elevated at 0.5 h, 1 h, 2 h, and 4 h after NTG injection b and NQO1 levels were
elevated at 1 h, 2 h, and 4 h after NTG injection c. β-actin was used as the loading control. Data are presented as relative density units normalized
to β-actin, and expressed as mean ± SD. (* P < 0.05 vs the control group, **P < 0.01 vs the control group, # P < 0.01 vs NTG 0 h group, n = 6
per group)

Fig. 4 Effect of sulforaphane (SFN) on the levels of Nrf2 and downstream proteins HO1 and NQO1 in rat TNC 4 h after NTG injection. a
Representative immunoblots of TNC. Nuclear Nrf2 b, HO1 c and NQO1 d levels were significantly increased in the SFN plus NTG group compared
to those in the H2O plus NTG group. Moreover, these protein expressions were increased in the SFN plus control group compared to those in
the control group b, c, d. Data are presented as the mean ± SD. (* P < 0.05, ** P < 0.01, n = 6 per group)
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sulforaphane treatment significantly increased nuclear
Nrf2 level in NTG-treated rats (Fig. 4b). Moreover, it re-
sulted in a significant increase in HO1 and NQO1 levels
in these animals, compared to those in the control sam-
ples (Fig. 4c and d). Meanwhile, these protein expression
levels were also increased in the sulforaphane plus con-
trol group compared to those in the control group.

Sulforaphane pretreatment inhibited NTG-induced TGVS
activation
Increased neuronal nitric oxide synthase (nNOS) and
pro-oncogene c-Fos expressions in TNC are considered
as the markers of TGVS activation [19, 20]. To check
whether Nrf2 was involved in NTG-induced TGVS acti-
vation, we measured the expression levels of nNOS and
c-Fos in NTG-treated samples at 4 h after sulforaphane
pretreatment. As shown in Fig. 5, sulforaphane signifi-
cantly reversed NTG-induced increase in nNOS and
c-Fos expression. It also significantly reduced the
number of nNOS- and c-Fos-immunoreactive neurons
in TNC (Fig. 6).

Sulforaphane pretreatment alleviated the NTG-induced
cutaneous hyperalgesia
We further investigated the efficacy of sulforaphane
pretreatment on tactile sensitivity with calibrated von
Frey hairs. We observed that subcutaneous administra-
tion of NTG significantly reduced the periorbital sensory

and front paw withdrawal thresholds compared to that
seen in the control group, which began 0.5 h after NTG
injection (Fig. 7). Withdrawal thresholds of the front
paw were significantly elevated in sulforaphane-
pretreatment rats from 0.5–4 h after NTG injection
(Fig. 7a). For periorbital tactile threshold analysis, an ob-
vious increase was observed in the sulforaphane group
from 1–4 h after NTG injection, as compared to the ve-
hicle group (Fig. 7b).

Discussion
Our study showed that the Nrf2/ARE signaling pathway
in TNC was activated during NTG-induced migraine in
rats. Sulforaphane pretreatment enhanced Nrf2 activa-
tion, increased the expression of HO1 and NQO1,
decreased the expression of nNOS and c-Fos, and
alleviated the NTG-induced hyperalgesia. These results
indicated that oxidative stress was involved in NTG-
induced hyperalgesia. Antioxidants may alleviate hyper-
algesia via the suppression of TGVS activation. This
study showed for the first time that sulforaphane, a nat-
ural Nrf2 activator compound, plays a protective role in
NTG-induced hyperalgesia.
Under normal conditions, Nrf2 existence remains in

the cytosol. Oxidative stressors can cause Nrf2 to trans-
locate to the nucleus, thereby activating the Nrf2 path-
way [21]. In this study, we observed that subcutaneous
administration of NTG significantly increased nuclear

Fig. 5 Effect of sulforaphane pretreatment on the levels of proteins nNOS and c-Fos in rat TNC 4 h after NTG injection. a Representative immunoblots
of TNC. nNOS b and c-Fos c levels were significantly increased in the NTG group compared to those in the control group, decreased in the SFN plus
NTG group compared to those in the H2O plus NTG group. Data are presented as the mean ± SD. (* P < 0.05, ** P < 0.01, n = 6 per group)
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Nrf2 expression in rat TNC. The levels of the two typical
Nrf2-regulated phase II enzymes, HO1 and NQO1, were
also increased. These data indicate that NTG induces
oxidative stress, which contributes to the activation of
Nrf2/ARE pathway. Moreover, NTG-induced oxidative
stress has been proved to be involved in migraine patho-
genesis [22, 23]. Thus, we believe that the Nrf2/ARE
pathway is an endogenous adaptive compensatory factor
in migraine. Similar to the situation in NTG-treated
changes, Nrf2/ARE pathway is also activated in ischemic
stroke, traumatic brain injury, and subarachnoid
hemorrhage, and it shows compensatory adaptation
[24–26]. Despite these observations, the mechanism of
Nrf2/ARE pathway activation needs to be investigated
further. NO induces Keap1 disulfide formation, Keap1
S-nitrosylation, or Keap1 S-guanylation. It can also in-
duce oxidative or nitrosative stress which possibly

induce the following activation of Nrf2, directly or indir-
ectly through CRM1 or PI3K/PKC signaling pathway
[27]. We also found that the total cellular Nrf2 expres-
sion was elevated. Consistent with the findings of the
present study, inorganic arsenic induced an increase in
Nrf2 protein by enhancing Nrf2 transcription [28]. We
suggest that NTG may promote Nrf2 transcription,
thereby increasing the Nrf2 protein level.
Activation of the Nrf2/ARE pathway is critical for neu-

roprotection [14, 29]. As an activator of Nrf2 pathway,
sulforaphane is well known for its antioxidant and
detoxification effects by inducing phase II genes [13].
We found in this study that sulforaphane activated Nrf2,
upregulated downstream HO1 and NQO1, suppressed
TGVS activation, and ameliorated the decrease of tactile
thresholds in NTG-induced rats. These findings indi-
cated that sulforaphane was probably involved in anti-

Fig. 6 Effect of sulforaphane pretreatment on the number of nNOS- and c-Fos-immunoreactive cells in rat TNC 4 h after NTG injection. Panels a-d
correspond to nNOS immunofluorescence staining, panels f-i correspond to c-Fos immunofluorescence staining. a,f control group. b,g NTG group.
c,h SFN + NTG group. d,i the white rectangle frame indicates the representative anatomical site observed. Quantitative analysis showed that
nNOS-immunoreactive e and c-Fos-immunoreactive cells j were all increased in the NTG group compared to those in the control group, but
decreased in the SFN plus NTG group compared to those in the H2O plus NTG group. (* P < 0.05 for SFN + NTG vs H2O + NTG group, # P < 0.05
for NTG vs control group, n = 6 per group) (a, b, c, f, g, h: Bar = 50 μm; d, i: Bar = 200 μm)

Di et al. The Journal of Headache and Pain  (2016) 17:99 Page 7 of 9



hyperalgesia through the anti-oxidative stress Nrf2/ARE
pathway. In addition, previous studies have shown that
Nrf2-/- cells exhibit increased nNOS and c-Fos expres-
sion and oxidative damage [30, 31]. These data were
similar to our findings of the suppressive effects of Nrf2
on nNOS and c-Fos. It is believed that activation of Nrf2
would inhibit TGVS ability by down-regulating nNOS
and c-Fos expression. The above mechanisms may partly
account for the efficacy of sulforaphane in migraine
treatment. Moreover, anti-hyperalgesia efficacy of sulfo-
raphane suggests that this compound reduces the pro-
duction of proinflammatory cytokines and inhibits
microglia activation [32–34]. These anti-inflammatory
effects of sulforaphane may also contribute to its role in
migraine treatment.
The present study shows that sulforaphane plays a

therapeutic role in migraine solely via TNC neuronal

activation. In future studies, Nrf2 gene knockout rats
could be used to investigate the protective effect of
sulforaphane. The underlying mechanism of sulforaphane
action on migraine needs further investigation.

Conclusions
In summary, our study initially demonstrated a critical
role of the Nrf2/ARE signaling pathway in NTG-induced
hyperalgesia rats. Our findings indicated that an Nrf2 ac-
tivator, sulforaphane, inhibited the trigeminovascular
system activation and prevented the induction of hyper-
algesia, which provides a novel insight into the potential
application of antioxidants as novel candidates in drug
development for migraine.
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