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Introduction
Bone metastases (BoMs) occur in approximately 65%–75% of  breast cancer patients with relapsed dis-
ease, resulting in significant comorbidities, such as fractures and chronic pain (1). Following coloni-
zation to the bone, breast cancer cells exploit the local microenvironment by activating osteoclasts, 
which in turn provides proliferative fuel for tumor cells (2). This process is targeted clinically using 
antiosteoclast agents, such as bisphosphonates and RANKL inhibitors, yet these therapies do not confer 
significant survival benefits (3).

Importantly, the majority of  breast cancers that metastasize to bone are estrogen receptor (ER) positive 
and present clinically in the context of  long-term endocrine therapies, such as selective ER modulators and 
aromatase inhibitors (4). In vivo models of  BoM have unfortunately been somewhat restricted to ER-negative 
disease due to the more indolent characteristics of  ER-positive cell lines (5). Molecular characteristics of  
ER-positive specimens that have recurred in an estrogen-blunted system, which represents the major burden 
of  breast cancer BoM, are thus essential to reinforce the significant scientific contributions made using in vivo 
bone metastasis models (6–9). Nonetheless, data sets are currently limited, in part due to the practical difficul-
ties of  obtaining and processing human BoM specimens (10).

Large-scale molecular characterizations of  patient-matched samples — primary tumors and synchro-
nous or asynchronous matched metastases — show that metastatic lesions acquire features distinct from 
primary tumors that are clinically actionable or confer therapy resistance (11–13). Indeed, current treatment 

Bone metastases (BoM) are a significant cause of morbidity in patients with estrogen receptor–
positive (ER-positive) breast cancer; yet, characterizations of human specimens are limited. In this 
study, exome-capture RNA sequencing (ecRNA-seq) on aged (8–12 years), formalin-fixed, paraffin-
embedded (FFPE), and decalcified cancer specimens was evaluated. Gene expression values and 
ecRNA-seq quality metrics from FFPE or decalcified tumor RNA showed minimal differences when 
compared with matched flash-frozen or nondecalcified tumors. ecRNA-seq was then applied on a 
longitudinal collection of 11 primary breast cancers and patient-matched synchronous or recurrent 
BoMs. Overtime, BoMs exhibited gene expression shifts to more Her2 and LumB PAM50 subtype 
profiles, temporally influenced expression evolution, recurrently dysregulated prognostic gene sets, 
and longitudinal expression alterations of clinically actionable genes, particularly in the CDK/Rb/
E2F and FGFR signaling pathways. Taken together, this study demonstrates the use of ecRNA-
seq on decade-old and decalcified specimens and defines recurrent longitudinal transcriptional 
remodeling events in estrogen-deprived breast cancers.
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guidelines in breast cancer recommend a metastatic biopsy to guide therapy in advanced disease if  possible 
(14). Unfortunately, BoMs often undergo harsh decalcification procedures with strong acids to eliminate 
calcium deposits prior to specimen sectioning. Decalcification degrades nucleic acids and can alter results of  
IHC (15–17). Furthermore, formalin-fixed, paraffin embedding (FFPE) — often performed in concert with 
decalcification — causes severe degradation and hydrolysis of  RNA (18). In light of  this, new capture-based 
methods of  nucleic acid sequencing on aged FFPE specimens have shown efficacy in identifying DNA 
variants and even guiding care in academic centers (19–21). Exome-capture RNA sequencing (ecRNA-seq) 
is less well characterized in aged tumor samples, although recent studies on FFPE specimens have shown 
promising expression correlations with flash-frozen tissues (22–24).

Because of  the untapped potential of  archived, decalcified BoM specimens; the burden of  BoMs in 
breast cancer patients; and the lack of  long-term endocrine-treated tumor data sets, the performance of  
ecRNA-seq from decade-old, degraded, and decalcified tumor samples was assessed. Following this evalua-
tion, ecRNA-seq was then applied to a collection of  11 ER-positive patient-matched primary breast cancers 
and BoMs to define transcriptional evolution in breast cancer cells following metastatic colonization in the 
bone and years of  endocrine therapy.

Results
ecRNA-seq of  aged and decalcified breast cancers. To determine the feasibility of  sequencing an aged, FFPE, 
and decalcified tumor cohort, ecRNA-seq on two separate sample sets was performed. The first sample set 
included four cases of  primary breast tumors that, at the time of  resection, were split in two. One section 
was flash frozen and stored at –80°C, and the other tumor section was FFPE and stored at room tempera-
ture. Storage times ranged from 8.2 to 12.3 years. RNA-sequencing quality control (QC) analyses after 
alignment showed differences in GC content and insert size, yet gene body coverage and transcript diver-
sity assignments were largely similar (Figure 1A). After quantifying and normalizing gene abundances, 
expression correlations between frozen and FFPE-matched samples were assessed using log2-transformed 
trimmed mean of  M values–normalized (TMM-normalized) CPM (log2normCPM) values. Pearson r cor-
relations ranged from 0.929 to 0.963, with an average correlation of  0.953 (Figure 1B). The same analysis 
was performed using a second sample set of  matched FFPE-decalcified and FFPE-nondecalcified samples. 
Again, no concerning deviations in ecRNA-seq quality metrics were observed between the two differently 
processed sample groups (Figure 1C), and Pearson r expression correlations ranged from 0.936 to 0.969 
(Figure 1D). Furthermore, correlation matrices of  the two sample sets showed that matched tumor sample 
expression values were more similar to each other than expression values from tumors with equivalent 
processing and storage (Supplemental Figure 1; supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.95703DS1). Full ecRNA-seq metrics from the QC analysis did reveal 
differences in some metrics between FFPE and flash-frozen tissue (i.e., splice junction loci number) that 
may be informative for other applications (Supplemental Tables 1 and 2). In summary, ecRNA-seq shows 
outstanding quality metrics for analysis of  aged FFPE and decalcified BoMs samples.

ecRNA-seq of  breast cancer BoMs. Following the validation of  ecRNA-seq, a cohort of  11 ER-positive 
patient-matched primary tumors and BoMs was acquired through the University of  Pittsburgh Health Sci-
ence Tissue Bank (Table 1 and Supplemental Table 3). Abstracted clinical records showed that nearly all 
patients (10 of  11) were documented as having received adjuvant endocrine therapy, and bone metasta-
sis–free survival ranged from 0 (synchronous) to greater than 5 years, with the most common site of  bone 
metastasis being the vertebral column. ecRNA-seq was performed on the 22 samples, yielding an average 
read count of  59,570,288 and an average Salmon transcript-mapping rate of  92.9% (Supplemental Table 4). 
Consistent with the initial QC studies above, quality metrics on these samples showed consistent gene body 
coverage, GC content, insert sizes, and transcript diversity, regardless of  decalcification status (Supplemen-
tal Figure 2 and Supplemental Table 5). Furthermore, since samples within the cohort had been surgical-
ly excised and banked many years apart, all paired specimens underwent an analysis of  shared variants, 
which confirmed tumor pairs were patient matched (Supplemental Figure 3).

Clustering and temporal expression shifts. Unsupervised hierarchical clustering of  patient-matched pairs 
revealed that decalcification of  BoMs did not produce independent clades, with 5 of  11 BoMs clustering in 
the same doublet clade as their matched primary tumor (denoted with an asterisk in Figure 2A). Notably, 3 of  
5 doublet-clustering cases were synchronous metastases. Discrete PAM50 intrinsic subtype assignments were 
identical in 7 of  11 pairs. Three pairs switched from LumA to LumB in the metastasis and another was classified  



3insight.jci.org   https://doi.org/10.1172/jci.insight.95703

T E C H N I C A L  A D V A N C E

as normal subtype in the primary tumor and LumB in the BoM (Figure 2B). To obtain more granularity than 
discrete PAM50 calls, probability scores for each PAM50 subtype were assigned (Figure 2B and Supplemen-
tal Table 6). Her2 and LumB profile gains (defined as a probability gain of  >10% in a matched BoM) were 
the most common — both being observed in 5 of  11 cases (Figure 2B). Given shifts in expression profiles 
of  BoMs and doublet clustering of  synchronous BoMs, temporal influence on transcriptional evolution was 
analyzed. Pearson r correlations between each patient-matched pair using log2normCPM expression values 
were utilized as a metric for transcriptional similarity. Expression pair similarity was significantly correlated 
(Pearson r = –0.864, P < 0.001) with time from primary tumor diagnosis to bone metastasis (Figure 2C).

Figure 1. Exome-capture RNA sequencing of aged, FFPE, and decalcified tumors. (A) ecRNA-seq quality metrics (GC content, insert size, gene body 
coverage, and cumulative gene assignment diversity) of aged and tumor-matched, formalin-fixed, paraffin-embedded (FFPE) and flash-frozen (FF) 
samples. FF samples in blue, FFPE samples in red (n = 4 pairs). (B) Expression value correlations between four sets of matched tumor samples (FF 
vs. FFPE), along with Pearson r correlations and sample ages. (C) ecRNA-seq quality metrics of matched nondecalcified and decalcified samples. 
Nondecalcified samples in blue, decalcified samples in red (n = 3 pairs). (D) Expression correlations between three sets of matched tumor samples 
(nondecalified vs. decalcified), along with Pearson r correlations.
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Differentially expressed genes in BoMs. To determine genes consistently upregulated or downregulated in 
BoMs, a paired DESeq2 differential gene expression analysis was performed. 207 genes were differentially 
expressed (FDR-adjusted P < 0.10) — 80 genes with increased and 127 genes with decreased expression 
in BoMs (Figure 3A and Supplemental Table 7). Gene ontology analysis was performed to determine 
biological processes represented in the upregulated and downregulated gene sets. Generally, genes within 
osteogenic programs showed the most significant increases in expression, while muscle-related, adhesion, 
and motility gene sets were found to be significantly lost in BoMs (Supplemental Table 8 and Supple-
mental Figure 4). Given that a subset of  these genes may be mediating therapy resistance and/or distant 
metastases, single-sample gene set enrichment analysis (ssGSEA) scores (25) were calculated using tumor 
expression data from patients with long-term outcomes in METABRIC (26). Two separate gene lists were 
created to build the signatures, representing the most significantly upregulated (boneMetSigUp) and down-
regulated (boneMetSigDown) genes in BoMs (Supplemental Table 9). Tumors intrinsically expressing 
higher boneMetSigUp and lower boneMetSigDown ssGSEA scores conferred worse (log-rank P < 0.001) 
disease-specific survival (DSS) outcomes (Figure 3B). To increase the power of  discerning gene expression 
effects due to long-term estrogen deprivation, a differential gene expression analysis was performed exclud-
ing the treatment-naive, synchronous BoMs (n = 8 pairs). This yielded a list of  612 differentially expressed 
genes (DEGs) (Supplemental Table 10), some of  which were not detected as differentially expressed with 
treatment-naive synchronous bone metastasis cases included.

Dysregulated gene sets and RBBP8 expression loss. To determine pathway level changes in breast cancer 
BoMs, a preranked GSEA was performed. All genes were ranked by DESeq2-calculated log2 fold changes 
(metastasis vs. primary, Supplemental Table 11) and then analyzed for enrichments using Molecular Signa-
ture Database (MsigDB) gene sets (http://software.broadinstitute.org/gsea/msigdb; H: hallmark gene sets; 
C6: oncogenic signatures) (27). This yielded several significantly metastasis-enriched and metastasis-dimin-
ished gene sets (FDR q < 0.10, Supplemental Table 12). The three most significantly enriched gene sets in 
metastases involved E2F transcription factor targets, genes mediating the G2M checkpoint, and an experi-
mental perturbation gene set consisting of  genes upregulated with knockdown of  RBBP8 in a breast cell line 
(Figure 4A). Other upregulated gene sets included hedgehog signaling and gene sets associated with Rb loss 
and KRAS gains. The three most significantly negatively correlated gene sets consisted of  an NF-κB/TNF 
gene set, genes involved in epithelial mesenchymal transition, and an embryonic development gene set. We 
further interrogated RBBP8 due to it being the most significant gene set enriched in bone metastasis. As 
predicted by the enrichment, BoMs carried significant RBBP8 expression loss (Wilcoxon signed-rank P = 
0.02), with 5 of  11 metastases (45%) having at least a 2-fold decrease in expression versus patient-matched 

Table 1. Abridged clinicopathological features of patient-matched primary and bone metastasis tumor cohort

Case Age at 
Dx

Histologic 
subtype

Pathological 
stage

ER 
primary

PR 
primary

HER2 
primary

BoM 
location

BoM 
decal

Endocrine Tx HER2 Tx Radio Tx Chemo Tx BMFS OS

17 54 IDC IIIA Pos Pos Neg Ileum Yes Yes No Yes Yes 24 46
19 50 IDC with 

lobular 
features

IV Pos Pos Neg Vertebra No Yes No Yes No 0 75

22 60 IDC IIA Pos Pos Neg Femur No Yes No Yes Yes 18 37
31 59 IDC with 

lobular 
features

IIB Pos Pos Neg Vertebra Yes Yes No Yes Yes 43 55

34 38 IDC IIIA Pos Pos Neg Vertebra Yes Yes No Yes Yes 65 130
43 65 IDC IV Pos Pos Neg Vertebra Yes Yes No Yes No 0 54
44 56 IDC IA Pos Pos Pos Femur No NA Yes Yes Yes 23 42
48 49 ILC IIIC Pos Pos Neg Vertebra No Yes No Yes Yes 28 68
55 56 IDC IV Pos Pos Neg Femur No Yes No NA No 0 137
60 44 IDC IIB Pos Pos Neg Sacrum Yes Yes No Yes Yes 46 53

A25 39 IDC IIIA Pos Pos Neg Femur Yes Yes Yes Yes Yes 38 57

Dx, diagnosis; Tx, therapy; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; IDC, invasive ductal 
carcinoma; ILC, invasive lobular carcinoma; BoM, bone metastasis; BMFS; bone metastasis–free survival; OS, overall survival.
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Figure 2. Unsupervised clustering, intrinsic subtype shifts, and temporal evolution of ER-positive bone metastases. (A) Unsupervised hierarchical 
clustering heatmap (red, high relative expression; blue, low relative expression) of patient-matched pairs (n = 11) using the top 5% most variable 
genes (n = 1,096) across the cohort. Tumor (primary in blue, metastasis in red) and decalcification status (positive in green, negative in black) are 
indicated. Asterisks below heatmap designate patient-matched pairs that cluster in a single doublet clade. (B) Discrete PAM50 assignments (red, 
basal; green, HER2; blue, LumA; purple, LumB; yellow, normal) and PAM50 probabilities for patient-matched pairs. PAM50 probability shifts in 
metastases (if greater than 10%) are marked with black diamonds. (C) Correlation of patient-matched tumor expression similarity versus clinical time 
to metastasis, with Pearson r value and correlation P value.
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primaries (Figure 4B). Tumors intrinsically expressing lower levels of  RBBP8 showed worse disease-specific 
and bone metastasis–free survival outcomes (Figure 4C).

Expression gains and losses in clinically actionable genes. Because of  the observed acquisition of  clinical-
ly actionable targets reported in other studies of  paired primary and recurrent tumors (12, 13), a paired 
expression analysis to define clinically actionable expression changes in ER-positive BoMs was per-
formed (Supplemental Table 13). Using stringent, case-informed cutoffs for expression alterations (Sup-
plemental Figure 5), the genes that most commonly exhibited a longitudinal loss of  expression included 
PIK3C2G (8 of  11 cases, 73%), ESR1 (7 of  11 cases, 64%), and TUBB3 (6 of  11 cases, 55%) (Figure 5A 
and Supplemental Figure 6). Other notable losses were found in GREM1, PTPRT, CDKN2A, KIT, and 
GATA3. The most recurrent longitudinal expression gains were seen in FGFR3 (7 of  11 cases, 64%) 

Figure 3. Differentially expressed genes in patient-matched bone metastases. (A) Heatmap (red, high relative expression; blue, low relative expres-
sion) of log2normCPM values from 207 differentially expressed genes (FDR-adjusted P value [padj] < 0.10, DESeq2) between primary tumors and 
patient-matched bone metastases. Heatmap is segregated into two sections; genes with log2 fold change >0 on top and genes with log2 fold change 
<0 on bottom. Each section is gene sorted by adjusted P values. (B) Disease-specific survival (DSS) outcome differences in ER-positive METABRIC 
tumors using boneMetSigUp (top) and boneMetSigDown (bottom) expression scores as strata. 95% confidence intervals are highlighted along with 
log-rank P values and associated risk tables.



7insight.jci.org   https://doi.org/10.1172/jci.insight.95703

T E C H N I C A L  A D V A N C E

and EPHA3 and PTPRD (6 of  11 cases, 55%). PDGFRA, PTCH1, ALK, HGF, FGFR1, and FGFR4 also 
showed highly recurrent gains (Figure 5B). Interestingly, some expression gains were absent in synchro-
nous bone metastasis cases (cases 19, 43, and 55), yet highly recurrent in long-term endocrine-deprived 
cases (EPHA3, PTPRD, PDGFRA, PTCH1), suggesting clinically actionable, treatment-driven gains in 
endocrine-resistant breast cancer recurrences.

Discussion
Bone is the most common site of  distant recurrence for patients with ER-positive breast cancer, yet compre-
hensive sequencing data sets of  endocrine therapy–treated, metastatic samples are currently limited. This is 
in part due to the challenge of  obtaining tissue and degradation of  nucleic acids caused by decalcification. 
In this study, we found that aged FFPE and FFPE-decalcified tumors showed highly similar transcript quan-
tification values as matched flash-frozen and FFPE-nondecalcified tumors. As a proof  of  concept, we then 
applied ecRNA-seq to a cohort of  patient-matched primary and BoMs collected over a period of  5 years. 
We identified subtle shifts in intrinsic subtypes and found a strong temporal influence on transcriptional 

Figure 4. Dysregulated gene sets and RBBP8 loss in breast cancer bone metastases. (A) Top three enriched and depleted gene sets (by FDR q value) in bone 
metastases from ranked GSEA analysis (n = 11 pairs). Gene list ranking was performed using log2 fold change values from DESeq2 differential expression 
output, where a positive log2 fold change represents increased expression in metastasis (red) and a negative log2 fold change represents decreased expression 
in metastasis (blue). Green lines show running enrichment scores. Black vertical lines below curve show where genes within the query gene set are represent-
ed in the ranked list. Normalized enrichment score (NES) and FDR q values (derived from GSEA tool) are noted below gene set names. (B) RBBP8 expression 
values (log2normCPMs) in primary tumors (blue) and bone metastasis (red). Pairs are connected with a line and Wilcoxon signed-rank P value is shown. (C) 
Disease-specific survival (DSS) outcome differences in ER-positive tumors (METABRIC) and bone metastasis–free survival (BMFS) differences (GSE12276) 
using normalized RBBP8 expression values as strata. 95% confidence intervals are highlighted along with log-rank P values and risk tables.
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evolution in breast cancer recurrences. Furthermore, we created several DEG sets/signatures that are prog-
nostic and point toward acquired RBBP8 loss and CDK/Rb/E2F and FGFR pathway gains as mediators of  
ER-positive breast cancer progression. Finally, we found BoMs commonly gain or lose expression in clini-
cally actionable genes, which may be distinct from primary tumors.

ecRNA-seq is an effective method for quantifying expression on aged, FFPE, and decalcified tumor 
specimens. Previous work has assessed nucleic acid amplification success, DNA sequencing, and RNA 
integrity metrics using decalcified samples (17, 28, 29); however, a comprehensive analysis of  RNA 
sequencing, to our knowledge, has not yet been performed. Consistent with only very minor differences 
between GC content, insert sizes, and other QC metrics, gene expression values between aged-matched 
FFPE/flash-frozen and FFPE-decalcified/FFPE-nondecalcified tumors are highly correlated (Pearson r 
range 0.929–0.969). This study reinforces and should encourage the use of  capture-hybridization approach-
es to sequence RNA from retrospectively collected, low-yield, highly degraded, and decalcified archival 
specimens (Supplemental Table 14 and refs. 22–24). Expanding sample sets and modalities for genome-
wide characterization, especially for rare specimen cohorts that may be impractical to obtain prospectively 
in large numbers, will accelerate translational discoveries.

Given promising results from our evaluation, we applied ecRNA-seq in a proof-of-concept effort to 
characterize the transcriptome of  11 archival patient-matched ER-positive primary and recurrent metas-
tases — 3 cases having treatment-naive, synchronous BoMs and 8 recurrent cases harboring long-term 
endocrine-therapy treated metastases. In the recurrent cases, bone metastasis–free survival ranged from 
18 to 65 months. Despite a large portion of  the BoMs being decalcified, global transcriptome QC metrics 
showed similar features (i.e., GC content, insert sizes, gene body coverage, and transcript assignment diver-
sity) and no outliers. Consistent with this, unsupervised hierarchical clustering showed no distinct clusters 
of  decalcified samples, with 5 BoMs clustering in the same doublet clade as their patient-matched primary 

Figure 5. Recurrent, clinically actionable expression gains and losses in ER-positive bone metastasis. (A) Recurrent expression alteration losses, ranked 
by frequency, for each patient-matched case (columns, n = 11 cases). Each blue tile represents a bone metastasis with a lower log2 fold change vs. its 
matched primary than the case-specific expression loss threshold. Expression values (log2normCPMs) for most recurrent losses (PIK3C2G, ESR1) are pair 
plotted, with corresponding Wilcoxon signed-rank test P values noted. (B) Recurrent expression alteration gains, ranked by frequency. Red tiles represent 
bone metastases with higher log2 fold change than the case-specific expression gain thresholds. The two most recurrent expression gains (FGFR3, EPHA3) 
are also plotted with Wilcoxon signed-rank test P values.
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breast cancer. Interestingly, 3 of  these doublet-clustering pairs were clinically synchronous, treatment-naive 
BoMs, implying limited transcriptional evolution from the primary tumor in synchronous metastases. This 
was further corroborated with a striking negative correlation between patient-matched expression similar-
ity and time to bone metastasis, suggesting metachronous metastases that present later clinically in their 
treatment course are more dissimilar from their derived primary lesions. Intrinsic subtyping revealed 4 
of  the 11 cases changed PAM50 subtypes, with all 4 cases switching to LumB in the metastasis. Subtle 
Her2 and LumB profile shifts were also the most common when observing continuous PAM50 probability 
scores, even in samples that remained concordant in their discrete PAM50 assignments. A recent targeted 
expression study analyzed PAM50 assignments in 123 matched breast cancer metastases, and the authors 
found similar frequencies of  LumB and Her2 acquisitions in ER-positive metastatic tumors (30). Given this 
transcriptional evolution to more LumB and Her2 profiles, a thoughtful reevaluation of  therapy selection in 
the advanced and perhaps the adjuvant setting may be necessary — especially considering HER2-targeted 
therapies are generally reserved for patients with HER2-positive primary disease.

We found 207 genes to be differentially expressed between primary tumors and patient-matched 
BoMs. The top upregulated genes — BGLAP, RANKL, and PTH1R — belonged to osteogenic gene sets 
and all showed significant expression gains. This supports in vivo modeling observations of  breast cancer 
osteomimicry and hijacking of  the bone microenvironment (31). Downregulated gene sets included genes 
involved in broad categories, such as cellular adhesion, hemidesmosome assembly, and epithelium develop-
ment, pointing toward specific biological programs lost following metastatic colonization. Moreover, when 
either the upregulated or downregulated genes are expressed coordinately in primary tumors, we found that 
they confer worse and better outcomes, respectively, in ER-positive tumors, suggesting some tumors may 
develop these transcriptional programs early in their evolution. Finally, a differential expression analysis 
between endocrine-naive primary tumors and long-term endocrine-treated BoMs identified a larger list of  
DEGs. Importantly, known mediators of  endocrine resistance are represented in the list, including dysregu-
lated expression of  Wnt family members (32), expression gains in FGFR1 (33) and FOXC1 (34), and loss of  
ESR1 expression (35). Notably, many of  these genes do not overlap with the differential expression analysis 
that included the synchronous metastases, suggesting expression alterations specific to late recurrent thera-
py-treated tumors. This nonoverlapping gene set included a greater than 2-fold average expression gain of  
ABCG2 — a multidrug resistance protein shown to be active in breast cancer (36, 37) — in therapy-exposed 
metastases and loss of  CDKN2A. CDKN2A encodes p16, a negative regulator of  CDK4/CDK6 and is locat-
ed on a common somatically deleted region (9p21) in cancer (38). Given the recent success of  CDK4/
CDK6-inhibiting compounds (palbociclib and ribociclib) in treating ER-positive breast cancers, this recur-
rent, acquired, metastatic-specific loss of  CDK2NA is a clinically important observation (39–41).

Following significant gene-level changes, a GSEA defined enriched and diminished pathways in breast 
cancer BoMs. Enriched genes included those involved in G2M checkpoint and E2F targets. Consistent 
with the observed LumB enrichments, our data suggest breast cancer cells may develop a more proliferative 
phenotype following bone colonization, and the strong enrichment of  E2F signature in metastatic disease 
again highlights the CDK/Rb/E2F pathway as a prime target. Interestingly, another study that utilized a 
targeted gene expression platform found proliferative gene signatures in ER-positive metastases may be 
more accurate at predicting overall survival than signatures in the primary tumor (30). A survival analysis 
for this work was impractical given the small set of  patient-matched pairs, but future meta-analyses are 
warranted to determine if  gene expression signatures in metastases are better predictors of  overall survival 
in the advanced setting, especially given the significant transcriptomic shifts observed in this study.

The most significant gene set enriched in bone metastasis was an experimental perturbation gene set 
involving the knockdown of  the tumor suppressor RBBP8 (42). RBBP8 (also known as CtIP) binds direct-
ly to Rb, mediates cell cycle regulation, and helps maintain genomic stability, and loss of  RBBP8 incurs 
tamoxifen resistance and sensitizes breast cancer cells to PARP inhibition in vitro (43–46). Concordant 
with the GSEA analysis, BoMs have significant expression loss of  RBBP8, with 45% of  cases showing a 
greater than 2-fold decrease in expression. We found that low RBBP8 expression in ER-positive tumors 
confers poorer DSS and bone metastasis–free survival outcomes. These observations point to RBBP8 loss 
in metastatic breast cancers as being a compelling, perhaps therapeutically relevant candidate for further 
preclinical investigations.

Finally, considering that we have previously shown that brain metastases acquire highly recurrent gains 
in clinically actionable genes following colonization (13), particularly in HER2, we analyzed an expanded 
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set of  these genes in BoMs. All tumors harbored significant gains and losses, some of  which were highly 
recurrent. PIK3C2G, a relatively uncharacterized gene in the PI3K pathway, was the most recurrent gene 
expression loss. Other notable losses included ESR1, CDKN2A, and GATA3. Intriguingly, GATA3 is one 
of  the most recurrently mutated genes in breast cancer, being particularly enriched in ER-positive dis-
ease (47). Moreover, GATA3 inhibits breast cancer metastasis in various model systems, and given that 
losses of  GATA3 in ER-positive BoMs are common, further evaluation of  GATA3 as a potentially tar-
getable breast cancer metastasis suppressor gene should be encouraged (34, 48, 49). Metastatic expres-
sion gains were found in FGFR family members (FGFR3, FGFR4, FGFR1), ALK, and KDR — all protein 
products having small molecules currently in clinical trials. Some highly recurrent expression gains (i.e., 
EPHA3, PTPRD, PDGFRA, PTCH1) were exclusive to long-term endocrine-treated BoMs, suggesting them 
as clinically actionable candidate mediators of  therapy resistance. Collectively, these observations provide 
further evidence of  acquired transcriptional remodeling in metastatic lesions and suggest that precision 
care in advanced cancers may benefit from defining longitudinal changes in tumor transcriptomes. Further 
research into these longitudinal transcriptional remodeling events is demanded — especially given their 
high recurrence rates — including identifying events that may be specific or more likely to occur in metas-
tases from certain anatomic sites, such as HER2 gains in brain metastases (13).

Although this study points toward ecRNA-seq as being a viable option to characterize the transcriptome 
of  archived, decalcified specimens, there are limitations. First, multiple methods are used for decalcifica-
tion with varying effects on nucleic acids, and we were unaware of  this information for the profiled speci-
mens, as it is rarely recorded in clinical notes (17). Second, in metastasis-versus–primary tumor expression 
studies, it is difficult to deconvolute expression contributions from tumor cells and cells within the altered 
microenvironment of  the distant organ site. To limit these artifacts in this study, regions of  high tumor 
cellularity in the bone metastasis were cored by a trained molecular pathologist for RNA extraction, which 
was corroborated by ecRNA-seq–derived tumor purity estimates — as no significant tumor purity differ-
ences between primary and metastatic tumors (Supplemental Table 15) were observed (50). Nonetheless, 
single-cell sequencing approaches will be crucial to bring cell-level resolution to identifying transcriptional 
differences between primary and metastatic cells. Novel computational methods that deconvolute heteroge-
neous sample sets, until single-cell sequencing becomes more widely adopted, will also be essential (51–53). 
All of  this withstanding, features of  this data set are encouraging, such as patient-matched tumors cluster-
ing together, intuitive PAM50 assignments, corroboration of  other groups’ findings, and treatment-specific 
gains and losses. A third limitation is performing an analysis on already colonized metastatic lesions, as this 
likely masks some of  the intermediate steps involved in metastasis, such as epithelial mesenchymal transi-
tion and tumor-initiating programs. Finally, another limitation of  this study is the small sample size. Hope-
fully, these results will encourage the use of  ecRNA-seq to transcriptionally profile other highly degraded 
samples and begin a collection of  genomic data from metastatic or rare tissues for integration. Importantly, 
deidentified clinical data should be provided alongside the sequencing, as in this study, to allow more fluid 
merging of  data sets and inspire clinical phenotype-driven analyses.

In summary, this study both validates the use of  ecRNA-seq to transcriptionally profile highly degraded 
RNA from decade-old and decalcified tumor specimens and defines multiple acquired and lost transcrip-
tional programs in ER-positive BoMs. We highlight acquired changes in the CDK/Rb/E2F and FGFR 
pathways, particularly relevant given the recent clinical use of  CDK4/6 inhibitors, and point toward RBBP8 
as a particularly compelling candidate in breast cancer progression. We also found significant gains in 
clinically actionable genes that may have not been appreciated in primary tumors, reinforcing the need for 
longitudinal characterizations of  tumor transcriptomes to guide clinical care.

Methods
Sample acquisition. Eleven sets of  FFPE primary breast tumors and patient-matched BoMs (total of  22 
samples) were obtained from the Health Sciences Tissue Bank, a certified honest broker facility at the 
University of  Pittsburgh that maintains an IRB-approved protocol for collecting excess tissue and biologi-
cal materials. A molecular pathologist reviewed hematoxylin and eosin slides from each sample and then 
subsequently cut one to two 0.6- to 1-mm cores from the paraffin block exclusively from regions of  high 
tumor cell purity for RNA extraction.

Tissue processing and RNA extraction. Tissues were digested overnight with shaking at 300 rpm at 56°C 
in PKD buffer with the addition of  proteinase K (Qiagen). RNA extraction was then performed with 
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the FFPE RNeasy kit (Qiagen, catalog 73504) according to the manufacturer’s instructions under ster-
ile RNase/DNase-free conditions. RNA concentration was determined with the Qubit 3.0 Fluorometer 
(ThermoFisher Scientific). Quality RNA integrity number scores, and fragment sizes (DV200 metrics) were 
obtained utilizing either the Agilent 2100 Bioanalyzer or the Agilent 4200 TapeStation.

ecRNA-seq. Sequencing library preparation was performed using a minimum of  25 ng RNA according to 
Illumina’s TruSeq RNA Access Library Preparation protocol. Indexed, pooled libraries were then sequenced 
on the Illumina NextSeq 500 platform with high-output flow cell–producing stranded, paired-end reads (2 × 
75 bp). A target count of  50 million reads per sample was used to plan indexing and sequencing runs.

RNA sequencing expression quantification and normalization. RNA transcripts from paired-end FASTQ files 
were mapped and quantified using k-mer–based quasi-mapping with seqBias and gcBias corrections (Salmon 
v0.7.2, 31-kmer index built from GRCh38 Ensembl v82 transcript annotations) (54). Transcript-level abun-
dance estimates were collapsed to gene-level estimates using tximport (55). To filter out nonexpressed genes or 
genes with low expression, only genes harboring a TPM value of more than 0.5 in at least 10% of samples were 
considered. Gene-level counts or log2normCPM values were implemented for subsequent analyses (56, 57).

Expression correlations and ecRNA-seq quality assessment. Exome-capture ecRNA-seq was performed on 
two cohorts. A set of  four aged (ranging from 8–12 years) primary breast cancer specimens that, at the time 
of  surgical resection, were split in half  and either immediately embedded in optimal cutting temperature 
compound and flash frozen for storage at –80°C or FFPE and stored at room temperature. A second cohort 
consisted of  three breast cancer BoMs that, at the time of  resection, were split in half  and either decalcified 
or nondecalcified and processed to FFPE. These data sets were quantified and normalized as described 
above. Pearson r correlations between all samples were determined using log2normCPM values. Reads and 
mapping rates were obtained from Salmon. More detailed ecRNA-seq metrics were calculated and plotted 
using QoRTs (v1.1.8) following two-pass read alignment with STAR (v2.4.2a) for the 11 patient-matched 
cases (58, 59).

tumorMatch patient-matched sample identifier. To confirm samples were patient-matched, variants from 
ecRNA-seq were called using GATK’s Best Practices for variant calling on ecRNA-seq (60). Output.vcf  files 
were then provided to tumorMatch, a custom R script that analyzes a pool of.vcf  files and calculates the 
proportion of  shared variants (POSV) between each sample. These proportion values were visualized 
using corrplot in R (61).

Unsupervised hierarchical clustering and intrinsic subtyping. Hierarchical clustering was performed using 
the heatmap.3 function (https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heat-
maps/heatmap.3.R) in R on log2normCPM values of  the top 5% most variable genes (defined by IQR) 
with 1 minus Pearson correlations as distance measurements and the “average” agglomeration method. 
PAM50 calls were generated using the molecular.subtyping function in genefu (62). A separate cohort of  
exome-capture RNA-sequencing expression data from primary tumors (n = 12 ER negative, 9 ER positive) 
was merged with the bone metastasis cohort to help account for test set bias and increase the stability of  the 
PAM50 assignments (63). To call PAM50 subtypes, for each sample in the bone metastasis cohort, a ran-
dom subset of  primary tumor expression data were added to enforce a balanced distribution of  ER-positive 
and ER-negative tumors. This was repeated 20 times, and the discrete PAM50 subtype was designated as 
the mode of  this 20-fold PAM50 assignment test, while the final probability score was an average of  all 20 
probability scores from genefu.

Differential gene expression. Salmon gene-level counts with effective lengths of  target transcripts were used 
to call DEGs between primary tumors and BoMs using DESeq (64). Given that samples were patient 
matched, a multifactor design was implemented (~patient + tumor [i.e., metastasis vs. primary]). Genes 
with an FDR-adjusted P value of  less than 0.10 were assigned as differentially expressed. An unclustered 
heatmap using log2normCPM values from the 207 DEGs, first segregated by metastatic log2 fold change 
gains and losses and then sorted by DESeq2-adjusted P values, was created in R using heatmap.3. DEGs 
within the MsigDB database that were gained or lost in BoMs were separately interrogated for gene ontol-
ogy (GO: Biological Process) enrichment by computing significant (top 10 gene sets) gene overlaps using 
the MsigDB online tool (27).

ssGSEA signatures and METABRIC survival analyses. Microarray expression along with DSS data were 
obtained from the Molecular Taxonomy of  Breast Cancer International Consortium (METABRIC) through 
Synapse (https://www.synapse.org/, Synapse ID: syn1688369), following IRB approval for data access 
from the University of  Pittsburgh (26). Normalized expression values from IHC-confirmed ER-positive 
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tumors were used to develop a ssGSEA for strongly DEGs (adjusted P < 0.05) between primary tumors and 
BoMs (25). 48 genes that carried positive log2 fold change values and had a corresponding gene expression 
value in METABRIC were assigned to the “boneMetSigUp” signature; 74 genes with negative log2 fold 
change values were assigned to the “boneMetSigDown” signature. A ssGSEA score for each sample from 
both gene sets was calculated using the ssGSEA method implemented in the GSVA R package (65). Binary 
dichotomization of  samples (low vs. high) based on ssGSEA signature score strata (10th, 25th, 50th, 75th, 
90th percentiles) and log-rank testing were used to assess significant differences in DSS (66). The strata with 
the most significant log-rank P values were plotted using survminer from CRAN (67).

Ranked GSEA. To determine pathways significantly enriched or lost in breast cancer BoMs versus patient-
matched primary tumors, GSEA analyses were performed using gene sets with coordinately expressed genes 
representing specific biological and cancer-related pathways (MSigDB: H and C6 sets). Input into GSEA was 
a ranked list (DESeq2 log2 fold change values) of  21,702 genes. Enrichment scores, significance values, and 
plots were generated using default settings of  the Broad Institute’s javaGSEA Desktop Application (v2.2.3).

RBBP8 survival analysis. RBBP8 expression was further interrogated and plotted using log2normCPM 
values from patient-matched tumors. RBBP8 expression influence on DSS in METABRIC ER-positive 
patients was interrogated as described above. RBBP8 expression influence on bone metastasis–free survival 
was assessed by querying a GCRMA-normalized microarray expression data set (GSE12276) from 204 
primary tumors and associated survival data as described above (68).

Gains and losses in clinically actionable genes. The clinically actionable gene set was obtained using the 
Drug Gene Interaction Database (DGBIdB 2.0) (69). Considering that metastatic fold change distributions 
calculated from log2normCPM values for all genes were slightly different for each case, stringent case-spe-
cific fold change thresholds were used to transform continuous fold change values into discrete “expression 
alterations.” More specifically, if  the fold change value for a clinically actionable Gene_X was greater than 
the 95th percentile of  all gene fold change values, in that case, Gene_X would be designated as having a 
significant, case-specific expression gain. If  the fold change value for Gene_Y was lower than the 5th per-
centile, Gene_Y was designated as having a significant, case-specific expression loss (Supplemental Figure 
6 and Supplemental Table 13). After assigning discrete expression alteration calls to clinically actionable 
genes, data were visualized using the oncoprint function in ComplexHeatmap (70).

Data and code. Raw expression values for all samples, as well as R code related to this study, are depos-
ited in GitHub (https://github.com/npriedig/).

Statistics. To determine DEGs between patient-matched primary tumors and BoMs, DESeq2 was used. 
DESeq2 is designed for ecRNA-seq gene-based count abundance estimates and assigns differential expres-
sion P values based on a negative binomial distribution. For Kaplan-Meier curves, the log-rank test was 
used to determine statistically significant differences in event probabilities (i.e., death or time to metastasis) 
based on binary expression or signature strata. For single-gene queries, paired Wilcoxon signed-rank tests 
on log2normCPM values were used. A P value of  less than 0.05 was considered significant. If  error bars are 
shown, they represent mean ± SD. All statistical tests are 2 tailed, unless otherwise specified.

Study approval. A protocol for this study was reviewed and approved by the University of  Pittsburgh 
IRB Office. Tissue and associated data were obtained from the Health Sciences Tissue Bank, a certified 
honest broker facility at the University of  Pittsburgh that maintains an IRB-approved protocol for col-
lecting excess tissue and biological materials. Requirement for informed consent was waived, considering 
all samples were deidentified, there was no more than minimal risk to human subjects, and all tissue was 
obtained as part of  routine clinical care.
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