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The purpose of this paper is to deal with the shared values and uniqueness of analytic functions
on annulus. Two theorems about analytic functions on annulus sharing four distinct values are
obtained, and these theorems are improvement of the results given by Cao and Yi.

1. Introduction

In this paper, we will study the uniqueness problem of analytic functions in the field of
complex analysis and adopt the standard notations of the Nevanlinna theory of meromorphic
functions as explained (see [1–3]).

We use C to denote the open complex plane, C to denote the extended complex plane,
and X to denote the subset of C. For a ∈ C, we say that f(z) − a and g(z) − a have the same
zeros with the same multiplicities (ignoring multiplicities) in X (or C) if two meromorphic
functions f and g share the value a CM (IM) in X (or C). In addition, we also use f = a �
g = a in X (or C) to express that f and g share the value a CM in X (or C), f = a ⇔ g = a in
X (or C) to express that f and g share the value a IM in X (or C), and f = a⇒ g = a in X (or
C) to express that f = a implies g = a in X (or C).

In 1929, Nevanlinna (see [4]) proved the following well-known theorem.

Theorem 1.1 (see [4]). If f and g are two nonconstant meromorphic functions that share five distinct
values a1, a2, a3, a4, and a5 IM in C, then f(z) ≡ g(z).
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After his theorem, the uniqueness theory of meromorphic functions sharing values in
the whole complex plane attracted many investigations (see [2]). In 2003, Zheng [5] studied
the uniqueness problem under the condition that five values are shared in some angular
domain in C. There were many results in the field of the uniqueness with shared values in the
complex plane and angular domain, see ([5–12]). The whole complex plane C and angular
domain all can be regarded as simply connected region. Thus, it is interesting to consider the
uniqueness theory of meromorphic functions in the multiply connected region.Here, we will mainly
study the uniqueness of meromorphic functions in doubly connected domains of complex
plane C. By the doubly connected mapping theorem [13] each doubly connected domain is
conformally equivalent to the annulus {z : r < |z| < R}, 0 ≤ r < R ≤ +∞. We consider
only two cases: r = 0, R = +∞ simultaneously and 0 < r < R < +∞. In the latter case the
homothety z �→ z/

√
rR reduces the given domain to the annulus {z : 1/R0 < |z| < R0}, where

R0 =
√
R/r. Thus, every annulus is invariant with respect to the inversion z �→ 1/z in two

cases.
In 2005, Khrystiyanyn and Kondratyuk [14, 15] proposed the Nevanlinna theory for

meromorphic functions on annuli (see also [16]). We will show the basic notions of the
Nevanlinna theory on annuli in the next section. In 2009, Cao et al. [17, 18] investigated
the uniqueness of meromorphic functions on annuli sharing some values and some sets and
obtained an analog of Nevanlinna’s famous five-value theorem as follows.

Theorem 1.2 (see [18, Theorem 3.2]). Let f1 and f2 be two transcendental or admissible meromor-
phic functions on the annulus A = {z : 1/R0 < |z| < R0}, where 1 < R0 ≤ +∞. Let aj (j = 1, 2, 3,
4, 5) be five distinct complex numbers in C. If f1, f2 share aj IM for j = 1, 2, 3, 4, 5, then f1(z) ≡
f2(z).

Remark 1.3. For the case R0 = +∞, the assertion was proved by Kondratyuk and Laine [16].

From Theorem 1.2, we can get the following results easily.

Theorem 1.4. Under the assumptions of Theorem 1.2, if f1, f2 are two transcendental or admissible
analytic functions on annulus A and f1, f2 share aj IM for j = 1, 2, 3, 4, then f1(z) ≡ f2(z).

In fact, we will prove some general theorems on the uniqueness of analytic functions
on the annuli sharing four values in this paper (see Section 3), and these theorems improve
Theorem 1.4.

2. Basic Notions in the Nevanlinna Theory on Annuli

Let f be a meromorphic function on the annulus A = {z : 1/R0 < |z| < R0}, where 1 < R <
R0 ≤ +∞. We recall the classical notations of the Nevanlinna theory as follows:

N
(
R, f

)
=
∫R

0

n
(
t, f

) − n(0, f)

t
dt + n

(
0, f

)
logR,

m
(
R, f

)
=

1
2π

∫2π

0
log+

∣∣∣f
(
Reiθ

)∣∣∣dθ, T
(
R, f

)
=N

(
R, f

)
+m

(
R, f

)
,

(2.1)
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where log+x = max{logx, 0} and n(t, f) is the counting function of poles of the function f in
{z : |z| ≤ t}. We here show the notations of the Nevanlinna theory on annuli. Let

N1
(
R, f

)
=
∫1

1/R

n1
(
t, f

)

t
dt, N2

(
R, f

)
=
∫R

1

n2
(
t, f

)

t
dt,

m0
(
R, f

)
= m

(
R, f

)
+m

(
1
R
, f

)
, N0

(
R, f

)
=N1

(
R, f

)
+N2

(
R, f

)
,

(2.2)

where n1(t, f) and n2(t, f) are the counting functions of poles of the function f in {z : t < |z| ≤
1} and {z : 1 < |z| ≤ t}, respectively. The Nevanlinna characteristic of f on the annulus A is
defined by

T0
(
R, f

)
= m0

(
R, f

) − 2m
(
1, f

)
+N0

(
R, f

)
(2.3)

and has the following properties.

Proposition 2.1 (see [14]). Let f be a nonconstant meromorphic function on the annulus A = {z :
1/R0 < |z| < R0}, where 1 < R < R0 ≤ +∞. Then,

(i) T0(R, f) = T0(R, 1/f),

(ii) max{T0(R, f1 · f2), T0(R, f1/f2), T0(R, f1 + f2)} ≤ T0(R, f1) + T0(R, f2) +O(1).

By Proposition 2.1, the first fundamental theorem on the annulus A is immediately
obtained.

Theorem 2.2 (see [14] (the first fundamental theorem)). Let f be a nonconstant meromorphic
function on the annulus A = {z : 1/R0 < |z| < R0}, where 1 < R < R0 ≤ +∞. Then

T0

(
R,

1
f − a

)
= T0

(
R, f

)
+O(1) (2.4)

for every fixed a ∈ C.

Khrystiyanyn and Kondratyuk also obtained the lemma on the logarithmic derivative
on the annulus A.

Theorem 2.3 (see [15] (lemma on the logarithmic derivative)). Let f be a nonconstant
meromorphic function on the annulus A = {z : 1/R0 < |z| < R0}, where R0 ≤ +∞, and let λ > 0.
Then,

(i) in the case R0 = +∞,

m0

(
R,
f ′

f

)
= O

(
log

(
RT0

(
R, f

)))
(2.5)

for R ∈ (1,+∞) except for the set ΔR such that
∫
ΔR
Rλ−1dR < +∞;
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(ii) if R0 < +∞, then

m0

(
R,
f ′

f

)
= O

(

log

(
T0
(
R, f

)

R0 − R

))

(2.6)

for R ∈ (1, R0) except for the set Δ′
R such that

∫
Δ′
R
dR/(R0 − R)λ−1 < +∞.

We denote the deficiency of a ∈ C = C ∪ {∞} with respect to a meromorphic function
f on the annulus A by

δ0
(
a, f

)
= δ0

(
0, f − a) = lim inf

r→R0

m0
(
r, 1/

(
f − a))

T0
(
r, f

) = 1 − lim sup
r→R0

N0
(
r, 1/

(
f − a))

T0
(
r, f

) (2.7)

and denote the reduced deficiency by

Θ0
(
a, f

)
= Θ0

(
0, f − a) = 1 − lim sup

r→R0

N0
(
r, 1/

(
f − a))

T0
(
r, f

) , (2.8)

where

N0

(
r,

1
f − a

)
= N1

(
R,

1
f − a

)
+N2

(
R,

1
f − a

)

=
∫1

1/R

n1
(
t, 1/

(
f − a))

t
dt +

∫R

1

n2
(
t, 1/

(
f − a))

t
dt

(2.9)

in which each zero of the function f −a is counted only once. In addition, we use nk)1 (t, 1/(f −
a)) (or n(k1 (t, 1/(f − a))) to denote the counting function of poles of the function 1/(f − a)
with multiplicities ≤ k (or > k) in {z : t < |z| ≤ 1}, each point counted only once. Similarly,

we can give the notationsN
k)
1 (t, f),N

(k
1 (t, f),N

k)
2 (t, f),N

(k
2 (t, f),N

k)
0 (t, f), andN

(k
0 (t, f).

Khrystiyanyn and Kondratyuk [15] first obtained the second fundamental theorem on
the the annulus A. Later, Cao et al. [18] introduced other forms of the second fundamental
theorem on annuli as follows.

Theorem 2.4 (see [18, Theorem 2.3] (the second fundamental theorem)). Let f be a
nonconstant meromorphic function on the annulus A = {z : 1/R0 < |z| < R0}, where 1 < R0 ≤ +∞.
Let a1, a2, . . . , aq be q distinct complex numbers in the extended complex plane C. Let λ ≥ 0. Then,

(i) (q − 2)T0(R, f) <
∑q

j=1N0(R, 1/(f − aj)) −N(1)
0 (R, f) + S(R, f),

(ii) (q − 2)T0(R, f) <
∑q

j=1N0(R, 1/(f − aj)) + S(R, f),
where

N
(1)
0

(
R, f

)
=N0

(
R,

1
f ′

)
+ 2N0

(
R, f

) −N0
(
R, f ′), (2.10)
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and (i) in the case R0 = +∞,

S
(
R, f

)
= O

(
log

(
RT0

(
R, f

)))
(2.11)

for R ∈ (1,+∞) except for the set ΔR such that
∫
ΔR
Rλ−1dR < +∞; (ii) if R0 < +∞, then

S
(
R, f

)
= O

(

log

(
T0
(
R, f

)

R0 − R

))

(2.12)

for R ∈ (1, R0) except for the set Δ′
R such that

∫
Δ′
R
dR/(R0 − R)λ−1 < +∞.

Definition 2.5. Let f(z) be a nonconstant meromorphic function on the annulus A = {z :
1/R0 < |z| < R0}, where 1 < R0 ≤ +∞. The function f is called a transcendental or admissible
meromorphic function on the annulus A provided that

lim sup
R→∞

T0
(
R, f

)

logR
= ∞, 1 < R < R0 = +∞, (2.13)

or

lim sup
R→R0

T0
(
R, f

)

− log(R0 − R) = ∞, 1 < R < R0 < +∞, (2.14)

respectively.

Thus, for a transcendental or admissible meromorphic function on the annulus A,
S(R, f) = o(T0(R, f)) holds for all 1 < R < R0 except for the set ΔR or the set Δ′

R mentioned in
Theorem 2.3, respectively.

3. The Main Theorems and Some Lemmas

Now we show our main results, which improve Theorem 1.4.

Theorem 3.1. Let f, g be two analytic functions on the annulus A = {z : 1/R0 < |z| < R0}, where
1 < R0 ≤ +∞, and let aj ∈ C (j = 1, 2, 3, 4) be four distinct values. If f and g share the two distinct
values a1, a2 CM in A and f = a3 ⇒ g = a3 in A and f = a4 ⇒ g = a4 in A, and f is transcendental
or admissible on A, then f(z) ≡ g(z).

Theorem 3.2. Under the assumptions of Theorem 3.1, with CM replaced by IM, we have either
f(z) ≡ g(z) or

f ≡ a3g − a1a2
g − a4 , (3.1)

and a1 + a2 = a3 + a4, a3, and a4 are exceptional values of f and g in A, respectively.
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Remark 3.3. It is easily seen that Theorems 3.1 and 3.2 are improvement of Theorem 1.4.

To prove the above theorems, we need some lemmas as follows.

Lemma 3.4. Let f, g be two distinct analytic functions on the annulus A = {z : 1/R0 < |z| < R0},
where 1 < R0 ≤ +∞, and let aj ∈ C (j = 1, 2, 3, 4) be four distinct complex numbers. If f = aj ⇒ g =
aj in A for j = 1, 2, 3, 4 and if f is transcendental or admissible on A, then g is also transcendental or
admissible.

Proof. By the assumption of Lemma 3.4 and applying Theorem 2.4(ii), we can get

3T0
(
R, f

) ≤
4∑

j=1

N0

(

R,
1

f − aj

)

+ S
(
R, f

)

≤
4∑

j=1

N0

(

R,
1

g − aj

)

+ S
(
R, f

)

≤ 4T0
(
R, g

)
+ S

(
R, f

)
.

(3.2)

Therefore

T0
(
R, f

) ≤ 4T0
(
R, g

)
+ o

(
T0
(
R, f

))
(3.3)

holds for all 1 < R < R0 except for the set ΔR or the set Δ′
R mentioned in Theorem 2.3,

respectively. Then, fromDefinition 2.5, we get that g is transcendental or admissible on A.

Lemma 3.5. Suppose that f is a transcendental or admissible meromorphic function on the annulus
A = {z : 1/R0 < |z| < R0}, where 1 < R0 ≤ +∞. Let P(f) = a0f

p + a1fp−1 + · · · + ap (a0 /= 0)
be a polynomial of f with degree p, where the coefficients aj (j = 0, 1, . . . , p) are constants, and let
bj (j = 1, 2, . . . , q) be q (q ≥ p + 1) distinct finite complex numbers. Then,

m0

(

R,
P
(
f
) · f ′

(
f − b1

)(
f − b2

) · · · (f − bq
)

)

= S
(
R, f

)
. (3.4)

Proof. From Theorem 2.3 and the definition of m0(R, f), transcendental and admissible
function, we can get this lemma by using the same argument as in Lemma 4.3 in [2].

Lemma 3.6. Let f, g be two distinct analytic functions on the annulus A = {z : 1/R0 < |z| < R0},
where 1 < R0 ≤ +∞. Suppose that f and g share a1, a2 IM in A, and f = a3 ⇒ g = a3 in A and
f = a4 ⇒ g = a4 in A, and aj ∈ C (j = 1, 2, 3, 4) are four distinct finite complex numbers. If f is a
transcendental or admissible function on A, then g is also transcendental or admissible, and

(i) T0(R, g) = 2T0(R, f) + S(R),

(ii) T0(R, f − g) = 3T0(R, f) + S(R);

(iii) T0(R, f) =N0(R, 1/(f − a3)) +N0(R, 1/(f − a4)) + S(R),
(iv) T0(R, f) =N0(R, 1/(f − aj)) + S(R), j = 1, 2,
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(v) T0(R, g) =N0(R, 1/(g − aj)) + S(R), j = 3, 4,

(vi) T0(R, f ′) = T0(R, f) + S(R), T0(R, g ′) = T0(R, g) + S(R),

where S(R) := S(R, f) = S(R, g).

Proof. By the assumption of this lemma and by Theorem 2.4(ii), we have T0(R, f) ≤
3T0(R, g) + S(R, f) and T0(R, g) ≤ 3T0(R, f) + S(R, g). Thus, we can get S(R, f) = S(R, g).

Let

η :=
f ′g ′(f − g)

(
f − a3

)(
f − a4

)(
g − a1

)(
g − a2

) . (3.5)

From the conditions of this lemma, we can get that η is analytic on A and η /≡ 0 unless
f ≡ g. By Lemma 3.5, we havem0(R, η) = S(R, f)+S(R, g) = S(R). Thus, we can get S(R, η) =
S(R).

Since f, g are two nonconstant analytic functions on annulus A and share a1, a2 IM in
A and f = a3 ⇒ g = a3 and f = a4 ⇒ g = a4 in A, again by Theorem 2.4, we have

3T0
(
R, f

) ≤
4∑

j=1

N0

(

R,
1

f − aj

)

+ S
(
R, f

)
, (3.6)

≤ N0

(
r,

1
f − g

)
+ S

(
R, f

)
= T0

(
R, f − g) + S(R, f), (3.7)

≤ T0
(
R, f

)
+ T0

(
R, g

)
+ S(R), (3.8)

T0
(
R, g

) ≤ N0

(
R,

1
g − a1

)
+N0

(
R,

1
g − a2

)
+ S

(
R, g

)
, (3.9)

= N0

(
R,

1
f − a1

)
+N0

(
R,

1
f − a2

)
+ S(R), (3.10)

≤ 2T0
(
R, f

)
+ S(R). (3.11)

From (3.8) and (3.11), we can get (i), and from (3.7), (3.8), and (i), we can get (ii), and
from (3.6), (3.8), (3.10), (3.11), and (i), we can get (iii). Thus, we can deduce that (iv) and (v)
hold easily from (3.6)–(3.11) and (i)–(iii). Now, we will prove that (vi) holds as follows.

First, we can rewrite (3.5) as

f = f ′ g ′

η
(
g − a1

)(
g − a2

) +
f ′g ′(a3f + a4f − a3a4 − fg

)

η
(
f − a3

)(
f − a4

)(
g − a1

)(
g − a2

) . (3.12)

From (3.12) and Lemma 3.5, we can get m0(R, f) ≤ m0(R, f ′) + S(R, f). Since f is
analytic on A, we have

T0
(
R, f

) ≤ T0
(
R, f ′) + 2m

(
1, f ′) − 2m

(
1, f

)
+ S

(
R, f

)
. (3.13)
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From the fact that f is transcendental or admissible, we have

T0
(
R, f

) ≤ T0
(
R, f ′) + S

(
R, f

)
+O(1) = T0

(
R, f ′) + S

(
R, f

)
. (3.14)

On the other hand, since m0(R, f ′) = m0(R, f(f ′/f)) ≤ m0(R, f) + m0(R, f ′/f) + O(1), from
Theorem 2.3, we havem0(R, f ′) ≤ m0(R, f) + S(R, f). Thus, we can get

T0
(
R, f ′) ≤ T0

(
R, f

)
+ S

(
R, f

)
+O(1) = T0

(
R, f

)
+ S

(
R, f

)
. (3.15)

From (3.14), (3.15) and the fact that f is transcendental or admissible, we can get
T0(R, f ′) = T0(R, f) + S(R, f). Similarly, we can get T0(R, g ′) = T0(R, g) + S(R, g).

Thus, we complete the proof of this lemma.

4. The Proof of Theorem 3.1

Suppose f /≡ g. By the assumption of Theorem 3.1, we can get the conclusions (i)–(vi) of
Lemma 3.6 and that g is transcendental or admissible on A. Set

ψ1 :=
f ′(f − a3

)

(
f − a1

)(
f − a2

) − g ′(g − a3
)

(
g − a1

)(
g − a2

) ,

ψ2 :=
f ′(f − a4

)

(
f − a1

)(
f − a2

) − g ′(g − a4
)

(
g − a1

)(
g − a2

) .

(4.1)

By Lemma 3.4, we can get

m0
(
R, ψi

)
= S

(
R, f

)
+ S

(
R, g

)
= S(R), i = 1, 2. (4.2)

Moreover, we can proveN0(R, ψi) = O(1) (i = 1, 2). In fact, the poles of ψi in A only can occur
at the zeros of f −aj and g −aj (i, j = 1, 2) in A. Since f, g share a1, a2 CM in A, we can see that
if z0 ∈ A is a zero of f − aj with multiplicity m(≥ 1), then z0 ∈ A is a zero of g − aj (j = 1, 2)
with multiplicitym(≥ 1). Suppose that

f − aj = (z − z0)mαj(z), g − aj = (z − z0)mβj(z), (4.3)

where αj(z), βj(z) are analytic functions in A and αj(z0)/= 0, βj(z0)/= 0 (j = 1, 2); by a simple
calculation, we have

ψi(z0) = K

(
α′j(z0)

αj(z0)
−
β′j(z0)

βj(z0)

)
(
i, j = 1, 2

)
, (4.4)

where K is a constant. Therefore, we can get that ψi (i = 1, 2) are analytic in A. Thus, from
(4.2), we can get T0(R, ψi) = m0(R, ψi) +O(1) = S(R) (i = 1, 2).
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If ψi /≡ 0, i = 1, 2, then we have

N0

(
R,

1
f − a3

)
≤N0

(
R,

1
ψ1

)
≤ T0

(
R, ψ1

)
+ S

(
R, f

)
+O(1) = S(R),

N0

(
R,

1
f − a4

)
≤N0

(
R,

1
ψ2

)
≤ T0

(
R, ψ2

)
+ S

(
R, f

)
+O(1) = S(R).

(4.5)

From (4.5) and Lemma 3.6(iv), we have T0(R, f) ≤ S(R). Thus, since f, g are transcendental
or admissible functions on A, that is, f and g are of unbounded characteristic, and from the
definition of S(R), we can get a contradiction.

Assume that one of ψ1 and ψ2 is identically zero, say ψ1 ≡ 0; then we have

N
(2
0

(
R,

1
g − a4

)
=N

(2
0

(
R,

1
f − a4

)
. (4.6)

From (3.5), we can see that g(z1) = a4 implies that f(z1) = a4 for such z1 ∈ A satisfying
η(z1)/= 0. Since T0(R, η) = S(R), we have

N
1)
0

(
R,

1
g − a4

)
=N

1)
0

(
R,

1
f − a4

)
+ S(R). (4.7)

From (4.6) and (4.7), we can get

N0

(
R,

1
g − a4

)
=N0

(
R,

1
f − a4

)
+ S(R). (4.8)

Similarly, when ψ2 ≡ 0, we can get

N0

(
R,

1
g − a3

)
=N0

(
R,

1
f − a3

)
+ S(R). (4.9)

From (4.8), (4.9), and Lemma 3.6(i), (v), we can get

2T0
(
R, f

)
=N0

(
R,

1
f − a3

)
+ S(R) (4.10)

or

2T0
(
R, f

)
=N0

(
R,

1
f − a4

)
+ S(R). (4.11)

Since f, g are transcendental or admissible functions on the annulus A, we can get a
contradiction again.

Thus, we complete the proof of Theorem 3.1.
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5. The Proof of Theorem 3.2

Suppose that f /≡ g. By Theorem 2.4(ii) and the fact that f is transcendental or admissible on
A, we have

2T0
(
R, f

)
+N0

(
R,

1
g − a4

)
≤ N0

(
R,

1
f − a1

)
+N0

(
R,

1
f − a2

)
+N0

(
R,

1
f − a3

)

+N0

(
R,

1
g − a4

)
+ S

(
R, f

)

≤ N0

(
R,

1
f − g

)
+ S

(
R, f

)

≤ T0
(
R, f

)
+ T0

(
R, g

)
+ S

(
R, f

)
+ S

(
R, g

)
.

(5.1)

Therefore, we have

T0
(
R, f

)
+N0

(
R,

1
g − a4

)
≤ T0

(
R, g

)
+ S

(
R, f

)
+ S

(
R, g

)
. (5.2)

Similarly, we have

T0
(
R, g

)
+N0

(
R,

1
f − a3

)
≤ T0

(
R, f

)
+ S

(
R, g

)
+ S

(
R, f

)
. (5.3)

From (5.2) and (5.3), we can see that T0(R, f) = T0(R, g) + S(R, f) + S(R, g), and

N0

(
R,

1
f − a3

)
= S

(
R, f

)
+ S

(
R, g

)
, N0

(
R,

1
g − a4

)
= S

(
R, f

)
+ S

(
R, g

)
. (5.4)

Thus, from (5.2), (5.3), and the definition of S(R), we can get that g is also
transcendental or admissible on A when f is transcendental or admissible on A.

From (5.1)–(5.4), we can also get

2T0
(
R, f

)
=N0

(
R,

1
f − a1

)
+N0

(
R,

1
f − a2

)
+ S(R). (5.5)

From (5.5), we can see that “almost all” of zeros of f − ai (i = 1, 2) in A are simple.
Similarly, “almost all” of zeros of g − ai (i = 1, 2) in A are simple, too. Let

ϕ1 :=
(a1 − a3)f ′(f − a2

)

(
f − a1

)(
f − a3

) − (a1 − a4)g ′(g − a2
)

(
g − a1

)(
g − a4

) ,

ϕ2 :=
(a2 − a3)f ′(f − a1

)

(
f − a2

)(
f − a3

) − (a2 − a4)g ′(g − a1
)

(
g − a2

)(
g − a4

) .

(5.6)
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By Lemma 3.5, we can get that m0(R, ϕi) = S(R) (i = 1, 2). Since f, g share a1, a2 IM in A and
from (5.2), we have N0(R, ϕi) = S(R) (i = 1, 2). Therefore, we can get T0(R, ϕi) = S(R), (i =
1, 2).

If ϕ1 /≡ 0, then we have N0(R, 1/(f − a2)) ≤ N0(R, 1/ϕ1) = S(R). Thus, from (5.5), we
can get a contradiction easily. Similarly, when ϕ2 /≡ 0, we can get a contradiction, too. Hence,
ϕ1, ϕ2 are identically equal to 0. Then, we have (ϕ1 − ϕ2)/(a1 − a2) ≡ 0, that is,

f ′

f − a3 − g ′

g − a4 − f ′

f − a1 +
g ′

g − a1 − f ′

f − a2 +
g ′

g − a2 ≡ 0, (5.7)

which implies that

f − a3
g − a4 ·

(
g − a1

)(
g − a2

)

(
f − a1

)(
f − a2

) ≡ c, (5.8)

where c is a nonzero constant. Rewrite (5.8) as

g2 −
(

a1 + a2 −
cγ

(
f
)

f − a3

)

g + a1a2 +
ca4γ

(
f
)

f − a3 ≡ 0, (5.9)

where γ(f) := (f − a1)(f − a2). The discriminant of (5.9) is

Δ
(
f
)
=
(
a1 + a2 −

cγ(f)
f − a3

)2

− 4

(

a1a2 +
ca4γ

(
f
)

f − a3

)

:=
℘
(
f
)

(
f − a3

)2 , (5.10)

where

℘(z) :=
(
(a1 + a2)(z − a3) − cγ(z)

)2 − 4a1a2(z − a3)2 − 4ca4γ(z)(z − a3) (5.11)

is a polynomial of degree 4 in z. If a is a zero of ℘(z) in A, obviously a/=a3. Then, from (5.9),
f(z) = a implies that

g(z) =
1
2

(
a1 + a2 −

cγ(a)
a − a3

)
:= b. (5.12)

Set

φ1 :=
f ′g ′(f − g)

(
f − a1

)(
g − a2

)(
f − a3

)(
g − a4

) ,

φ2 :=
f ′g ′(f − g)

(
f − a2

)(
g − a1

)(
f − a3

)(
g − a4

) ,

φ =
φ2

φ1
=

(
f − a1

)(
g − a2

)

(
f − a2

)(
g − a1

) .

(5.13)
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By Lemma 3.5, we can get m0(R, φi) = S(R) (i = 1, 2). And by a simple calculation, we
can get N0(R, φi) = S(R) (i = 1, 2). Then we have T0(R, φi) = S(R) (i = 1, 2), thus we have
T0(R, φ) = S(R).

Assume that f is not a Möbius transformation of g; then φ is a nonconstant function.
Since

℘(a1) = ((a1 + a2)(a1 − a3))2 − 4a1a2(a1 − a3)2 = (a1 − a3)2(a1 − a2)2 /= 0,

℘(a2) = ((a1 + a3)(a2 − a3))2 − 4a1a2(a2 − a3)2 = (a2 − a3)2(a1 − a2)2 /= 0.
(5.14)

From a/=ai (i = 1, 2) and (5.8), we can get

N0

(
R,

1
f − a

)
≤N0

(
R,

1
φ − ξ

)
≤ T0

(
R, φ

)
= S(R), (5.15)

where ξ = (a − a1)(b − a2)/(a − a2)(b − a1). Since f is transcendental or admissible analytic in
A, by Theorem 2.4(ii) and (5.4), we can get

T0
(
R, f

) ≤N0

(
R,

1
f − a3

)
+N0

(
R,

1
f − a

)
+ S(R) = S(R). (5.16)

Since f, g are transcendental or admissible functions on A, from the above inequality,
we can get a contradiction. Therefore, we can get that f is a Möbius transformation of g on
A. Since f, g are transcendental or admissible functions on A, by a simple calculation, we can
get easily that a1 + a2 = a3 + a4 and

f ≡ a3g − a1a2
g − a4 . (5.17)

Furthermore, a3, a4 are Picard exceptional values of f and g in A, respectively.
Thus, we complete the proof of Theorem 3.2.
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