L))

Check for
updates

A Foundation for Representing and
Querying Moving Objects

RALF HARTMUT GUTING
FernUniversitat Hagen
MICHAEL H. BOHLEN

Aalborg University

MARTIN ERWIG
FernUniversitat Hagen
CHRISTIAN S. JENSEN
Aalborg University

NIKOS A. LORENTZOS
Agricultural University of Athens
MARKUS SCHNEIDER
FernUniversitat Hagen

and

MICHALIS VAZIRGIANNIS
Athens University of Economics and Business

Spatio-temporal databases deal with geometries changing over time. The goal of our work is to
provide a DBMS data model and query language capable of handling such time-dependent
geometries, including those changing continuously that describe moving objects. Two funda-
mental abstractions are moving point and moving region, describing objects for which only the

This work was partially supported by the CHOROCHRONOS project, funded by the EU under
the Training and Mobility of Researchers Programme, Contract ERB FMRX-CT96-0056.
Authors’ addresses: R. H. Giiting, Praktische Informatik IV, FernUniversitdt Hagen, Hagen,
D-58084, Germany; email: gueting@fernuni-hagen.de; M. H. Bohlen, Department of Computer
Science, Aalborg University, Aalborg, DK-9220, Denmark; email: boehlen@cs.auc.dk; M.
Erwig, Praktische Informatik IV, FernUniversitadt Hagen, Hagen, D-58084, Germany; email:
erwig@fernuni-hagen.de; C. S. Jensen, Department of Computer Science, Aalborg University,
Aalborg, DK-9220, Denmark; email: csj@cs.auc.dk; N. A. Lorentzos, Informatics Laboratory,
Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece; email:
lorentzos@auadec.aua.ariadne-t.gr; M. Schneider, Praktische Informatik IV, FernUniversitat
Hagen, Hagen, D-58084, Germany; email: markus.schneider@fernuni-hagen.de; M. Vazirgian-
nis, Department of Informatics, Athens University of Economics and Business, Patision 76,
Athens, 10434, Greece.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 2000 ACM 0362-5915/00/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000, Pages 1-42.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F352958.352963&domain=pdf&date_stamp=2000-03-01

2 . R. H. Giting et al.

time-dependent position, or position and extent, respectively, are of interest. We propose to
represent such time-dependent geometries as attribute data types with suitable operations,
that is, to provide an abstract data type extension to a DBMS data model and query language.
This paper presents a design of such a system of abstract data types. It turns out that besides
the main types of interest, moving point and moving region, a relatively large number of
auxiliary data types are needed. For example, one needs a line type to represent the projection
of a moving point into the plane, or a “moving real” to represent the time-dependent distance
of two moving points. It then becomes crucial to achieve (i) orthogonality in the design of the
type system, i.e., type constructors can be applied uniformly; (ii) genericity and consistency of
operations, i.e., operations range over as many types as possible and behave consistently; and
(iii) closure and consistency between structure and operations of nontemporal and related
temporal types. Satisfying these goals leads to a simple and expressive system of abstract data
types that may be integrated into a query language to yield a powerful language for querying
spatio-temporal data, including moving objects. The paper formally defines the types and
operations, offers detailed insight into the considerations that went into the design, and
exemplifies the use of the abstract data types using SQL. The paper offers a precise and
conceptually clean foundation for implementing a spatio-temporal DBMS extension.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query
languages; H.2.8 [Database Management]: Database applications—Spatial databases and
GIS

General Terms: Languages, Theory

Additional Key Words and Phrases: Abstract data types, algebra, moving objects, moving
point, moving region, spatio-temporal databases, spatio-temporal data types

1. INTRODUCTION

A common characteristic of concrete, physical objects is that they have a
position and an extent in space at any point in time. This applies to
countries, land parcels, rivers, taxis, forest-harvesting equipment, fishing
boats, air planes, glaciers, lakes, forests, birds, polar bears, and persons, to
name but a few types of objects.

A wide and increasing range of database applications manage such space
and time-referenced objects, termed spatio-temporal objects. In these data-
base applications, the current as well as the past and anticipated future
positions and extents of the objects are frequently of interest. This brings
about the need for capturing these aspects of the objects in the database.

As an example, forest management involves the management of spatio-
temporal objects. Forest-harvesting machines have Global Positioning Sys-
tem (GPS) devices attached. A harvesting machine cuts down a pine tree
while holding on to the tree; it then strips off the branches while simulta-
neously cutting the tree into logs of specified lengths and placing the logs in
different piles so that similar logs go into the same pile. During this
process, the machine measures the amount and properties of the harvested
wood (e.g., volumes, diameters, and lengths) and transmits this informa-
tion, together with the positions of the piles, to headquarters. Together
with the orders for wood, this information, along with the present locations
of the harvesting machines, is then used for scheduling the pickup of
already harvested wood as well as further harvesting.
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Two types of spatio-temporal objects may be distinguished, namely
discretely moving objects and continuously moving objects. For the former
type of object, e.g., land parcels, it is relatively easy to keep track in the
database of the objects’ changing positions and extents. This may be
accomplished by more or less frequent database updates, and solutions
exist for capturing and querying discretely changing spatial positions and
extents. For example, this may be accomplished by using separate spatial
and temporal columns in relational tables. A time interval in the temporal
column describes when the spatial value is valid. However, if we consider
the temporal development of a spatial value as a function of time, then this
strategy can only represent stepwise constant functions.

Objects that change position or extent continuously, termed moving
objects, for short, are pervasive; but in contrast to the discretely changing
objects, they are much more difficult to accommodate in the database.
Supporting these kinds of moving objects is exactly the challenge addressed
by this paper. It is not feasible to capture these with separate spatial and
temporal values, since we do not have stepwise constant functions any
longer, and the database cannot be updated for each change to the objects’
spatial aspect. Another tack must be adopted.

The paper defines a complete framework of abstract data types for
moving objects. The proposed framework is intended to serve as a precise
and conceptually clean foundation for the representation and querying of
spatio-temporal data. While proposals exist for spatial and temporal types,
no framework has previously been proposed for spatio-temporal types that
includes support for moving objects. (Section 6 positions this paper’s
contribution with respect to related research.)

The framework takes at its outset a set of basic types including standard
data types such as integer and Boolean; spatial data types, including point
and region; and the temporal type instant. The next step is to introduce
type constructors that may be applied to the basic types, thus creating new
types. For example, the type constructor “moving” that maps an argument
type to the type that is a mapping from time to the argument type is
included. This leads to types such as moving point, which is a function from
instant to point. For example, a harvesting machine’s position may be
modeled as a moving point.

The framework emphasizes three properties, namely: closure, simplicity,
and expressiveness. For example, closure dictates that types exist for the
domains and ranges of types that are functions between types.

It is important to note that in a design of abstract data types like the one
of this paper, the definitions of the structure of entities (e.g., values of
spatial data types) and of the semantics of operations can be given at
different levels of abstraction. For example, the trajectory of a moving point
can be described either as a curve or as a polygonal line in two-dimensional
space. In the first case, a curve is defined as an (certain kind of) infinite set
of points in the plane without fixing any finite representation. In the
second case, the definition uses a finite representation of a polygonal line,
which in turn defines the infinite point set making up the trajectory of the
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moving point. In Erwig et al. [1999], the difference between these two
levels of modeling is discussed at some depth, and the terms abstract and
discrete modeling are introduced for them. Basically, the advantage of the
abstract level is that it is conceptually clean and simple, because one does
not have to express semantics in terms of the finite representations. One is
also free to later select different kinds of finite representations, e.g.,
polygonal lines, or descriptions based on splines. On the other hand, the
additional step of fixing a finite representation is still needed. The advan-
tage of discrete modeling is that it is closer to implementation.

The design of this paper is an abstract model in this sense. However, care
has been taken to define all data types and operations in such a way that
an instantiation with finite representations (e.g., set of polygons for a
region) is possible without problems.

The proposed abstract data types may be used as column types in
conventional relational DBMSs, or they may be integrated in object-
oriented or object-relational DBMSs. It is also possible for a user or a
third-party developer to implement abstract data types based on this
paper’s definitions in an extensible DBMS, e.g., a so-called universal
server.

The paper is structured as follows. Abstract data types consist of data
types and operations that encapsulate the data types, i.e., they form an
algebra. Section 2 discusses the embedding of such an algebra into a query
language. Section 3 proceeds to present the data types in the framework;
Section 4 defines the appropriate sets of operations to go with the data
types; Section 5 explores the expressiveness of the resulting language
within two application areas; Section 6 covers related research; and Section
7 concludes the paper and and points to and identifies promising directions
for future research.

2. PRELIMINARIES: LANGUAGE EMBEDDING

In order to illustrate the use of the framework of abstract data types in
queries, they must be embedded in a query language. A range of languages
would suffice for this purpose, including theoretical and practical lan-
guages as well as relational, object-relational, and object-oriented lan-
guages. We do not care which language our design, which can be viewed as
an application-specific sublanguage, is embedded. In the examples we show
an embedding into a relational model and an SQL-like language, with
which most readers should be familiar.

To achieve a smooth interplay between the embedding language and an
embedded system of abstract data types, a few interface facilities and
notation are needed, expressible in one form or another in most object-
oriented or object-relational query languages. In order not to be bound to
any particular SQL standard, we briefly explain our notation for these
facilities.
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Assignments. The construct LET <name> = <query > assigns the result
of query to a new object called name which can then be used in further
steps of a query.

Multistep queries. A query can be written as a list of assignments,
separated by semicolons, followed by one or more query expressions. The
latter are displayed as the result of the query.

Conversions between sets of objects and atomic values. In relational
terms, this means that a relation with a single tuple and a single attribute
can be converted into a typed atomic value and vice-versa. We use the
notation ELEMENT&Kquery >) and SET(<attrname >, <value >) for this.
For example, the expression SET(name, “John Smith”) returns a relation
with an attribute name and a single tuple having John Smith as the value
of that attribute.

Defining derived attributes. We assume that arbitrary ADT operations
over new or old data types may occur anywhere in a WHERElause, as long
as in the end a predicate is constructed, and they can be used in a SELECT
clause to produce new attributes, with the notation

<new attrname > AS <expression >

Defining operations. We allow for the definition of new operations derived
from existing ones, in the form LET <name> = <functional expres-
sion >. A functional expression has the form FUN (<parameter list >)
<expression >; it corresponds to lambda abstraction in functional lan-
guages.

Example 1. This example shows how a new operation “square” can be
defined and used.

LET square = FUN (m:integer) m * m; square(5)

Defining aggregate functions. Any binary, associative, and commutative
operation defined on a data type can be used as an aggregate function
over a column of that data type, using the notation AGGRK attrname >,
<operator >, <neutral element  >). In case the relation is empty, the
neutral element is returned. In case it has a single tuple, then that single
attribute value is returned; otherwise the existing values are combined by
the given operator. Moreover, a name for the aggregate function can be defined
by LET <name>=AGGREGATE(operator >, <neutral element >).

Example 2. Given a relation emp(name: string, salary: int, perma-
nent: bool), we can sum all salaries by

SELECT AGGR(salary, +, 0) FROM emp

We can determine whether all employees have permanent positions by

LET all = AGGREGATE(nd, TRUE);
SELECT all(permanent) FROM emp
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Table I. Signature for Stack Operations

Operator Signature

empty — STACK
push STACK X INT — STACK
pop STACK — INT

3. SPATIO-TEMPORAL DATA TYPES

In this and the next section we define a system of data types and
operations, or an algebra, suitable for representing and querying geome-
tries changing over time, and in particular, moving objects. Defining an
algebra consists of two steps. In the first step we design a type system by
introducing some basic types as well as some type constructors. For each
type in the type system, its semantics is given by defining a carrier set. In
the second step we design a collection of operations over the types of the
type system. For each operation, its signature is defined, describing the
syntax of the operation, i.e., the correct argument and result types, and its
semantics is given by defining a function on the carrier sets of the
argument types. In this section we define the type system; operations are
given in Section 4.

3.1 The Type System

We define the type system as a signature. Any (many-sorted) signature
consists of sorts and operators, where the sorts control the applicability of
operators (see, e.g., Loeckx et al. [1996]). A signature generates a set of
terms. Signatures are well known from the definition of abstract data
types. For example, in the description of a stack we have sorts STACK,
INT, and BOOL, and operators push, pop, and empty, as shown in Table I.
A term of this signature is push(empty, 8).

When we use a signature for defining a type system, the sorts are called
kinds and describe certain subsets of types, and in the role of operators we
have type constructors. The terms generated by the signature describe
exactly the types available in our type system. For more background on this
technique for defining type systems and algebras, see Guting [1993].

Table II shows the signature defining our type system. Here, kinds are
written in capitals and type constructors in italics.

Terms, and therefore types, generated by this signature are, e.g., int,
region, moving(point), range(int), etc. The range type constructor is appli-
cable to all the types in the kind BASE and all types in kind TIME, hence
all types that can be constructed by it are range(int), range(real), range
(string), range(bool), and range(instant). Type constructors with no argu-
ments, for example region, are types already and are called constant types.

One can see that quite a few types are around. Although the focus of interest
are the spatio-temporal types, especially moving(point) and moving(region),
to obtain a closed system of operations it is necessary to include the related
spatial, time, and base types into the design.
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Table II. Signature Describing the Type System

Type constructor Signature

int, real, string, bool — BASE

point, points, line, region — SPATIAL
instant — TIME
moving, intime BASE U SPATIAL — TEMPORAL
range BASE U TIME — RANGE

So far we have just introduced some names for types. In the sequel we
describe their semantics first informally, and then formally by defining
carrier sets. We start with the constant types and then discuss (proper)
type constructors.

3.1.1 Base Types. The base types are int, real, string, and bool. All base
types have the usual interpretation, except that each domain is extended
by the value 1 (undefined).

Definition 1. For a type «a its carrier set is denoted by A«. The carrier
sets for the types int, real, string, and bool, are defined as

Aint é Z ) {J—}’
Areal é R U {J-},
Agping 3 V' U {1}, where V is a finite alphabet,

Ay, A {FALSE, TRUE} U {1}

We sometimes need to talk about the carrier set without the undefined
value. As a shorthand for this, we define A, & A \{Ll}.

3.1.2 Spatial Types. Basic conceptual entities that have been identified
in spatial database research are point, line, and region [Giiting 1994]. In
our design we use four types called point, points, line, and region. They are
illustrated in Figure 1.

Informally, these types have the following meaning. A value of type point
represents a point in the Euclidean plane or is undefined. A points value is
a finite set of points. A line value is a finite set of continuous curves in the
plane. A region is a finite set of disjoint parts called faces, each of which
may have holes. It is allowed that a face lies within a hole of another face.
Each of the three set types may be empty.

Formal definitions are based on the point set paradigm and on point set
topology. The point set paradigm expresses that space is composed of
infinitely many points and that spatial objects are distinguished subsets of
space which are viewed as entities. Point set topology provides concepts of
continuity and closeness and allows one to identify special topological
structures of a point set like its interior, closure, boundary, and exterior.
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apointvalue gpointsvalue dinevalue aregion value
Fig. 1. The spatial data types.

We assume the reader is familiar with basic concepts of topology! [Gaal
1964]. Point and point set types are still quite simple:

Definition 2. The carrier sets for the types point and points are:

A

-points é RZ U {l}>

A

P

vints 2 {P C R? | P is finite}
For the definition of lines, we need the concept of a curve.

Definition 3. A curve is a continuous mapping f : [0, 1] — R? such that
Va,b € [0, 1] : fla) = f(b) > a = b O{a, b} = {0, 1}.

Let rng(f) = {p € R*| Ja € [0, 1] : f(a) = p}. Two curves f, g are
called equivalent iff rng(f) = rng(g). The points f(0) and f(1) are called
the end points of f. If f(0) = f(1) = p, then we say [ is a loop in p.

This definition allows loops (f(0) = f(1)), but forbids equality of different
interior points and equality of an interior with an end point.

The curves that we want to deal with must be simple in the sense that
the intersection of two curves yields only a finite number of proper
intersection points (disregarding common parts that are curves them-
selves). This is ensured by the following definitions.

Definition 4. Let @ C R? and p € Q. p is called isolated Q : & Je €
R, e>0:U(p, e) N (Q\{p}) = 0.

Here U(p, €) denotes an open disk around p with radius €. The set of all
isolated points in @ is denoted as isolated(Q).

Definition 5. Let C be the set of all curves w.r.t. Def. 3. A class of curves
C' C C is called simple : & Vc¢q, co € C' : isolated(rng(c,) N rng(csy))
is finite.

In the simple Euclidean spaces considered in this paper, these notions can be characterized
as follows. Let X be the space (i.e., R or R?) and S C X. For € > 0, let U(x, €) = {p € X |
d(p, x) < €} be an e-disk around x, where d is the distance metric. A point x € X belongs to
the interior of S, denoted S°, if there exists an e-disk around x contained in S. It belongs to the
boundary of S, denoted 9S, if every e-disk around x intersects both S and the complement of
S. It belongs to the exterior of S, denoted S¢, if it is in the interior of the complement of S. The
closure of S is S U 9S. A set is closed if it contains its boundary. Hence any set S partitions
the space X into three disjoint parts S°, 9S, and S°.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.
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The line data type is to represent any finite union of curves from some
class of simple curves. When the abstract design of data types given in this
paper is implemented by some discrete design (as explained in the intro-
duction), some class of curves will be selected for representation, for
example, polygonal lines, curves described by cubic functions, etc. We just
require that the class of curves selected has this simplicity property. This is
needed, for example, to ensure that the intersection operation between two
line values yields a finite set of points representable by the points data type.

A finite union of curves basically yields a graph structure embedded into
the plane (whose nodes are intersections of curves and whose edges are
intersection-free pieces of curves). Given a set of points of such a graph,
there are many different sets of curves resulting in this point set. For
example, a path over the graph could be interpreted as a single curve or as
being composed of several curves. The following definitions ensure that (i) a
line value is a point set in the plane that can be described as a finite union
of curves, and (ii) there is a unique collection of curves that can serve as a
“canonical” representation of this point set.

Definition 6. Let f, g be curves. They are quasi-disjoint iff Va, b € (0,
1) : fla) # f(b). They meet in a point p iff Ja, b € {0, 1} : fla) = p =
g(b).

Definition 7. Let S be a class of curves. A C-complex over S is a finite set
of curves C C S such that

(1) Vf,g € C, f # g: f and g are quasi-disjoint.

2 Vf,geC,f+g:fandg meetinp = (FJh € C, f # h # g such that
f and A meet in p) O (f or g is a loop in p).

The set of points of this C-complex is denoted points(C), is U.ccrng(c).
The set of all C-complexes over S is denoted by CC(S). The second
condition ensures that whenever two curves meet in a point p, then at least
three (ends) of these curves must meet at this point, and so it is not
possible to merge the two curves into one.

Definition 8. Let S be a simple class of curves. The carrier set of the line
data type is

Ay A{Q C R?1 3C € CC(S) : points(C) = Q}

Since for a given line value @ there is a unique®? C-complex C with
points(C) = @, we can denote it by sc(Q) (the simple curves of Q).

2To be precise, the C-complex is uniquely determined up to the equivalence of the curves in it.
Essentially this means that the graph structure (as a set of curves corresponding to edges) is
uniquely determined; but for the definition of a single edge, one C-complex may have a curve f
and another one a curve g, where f and g are equivalent, i.e., rng(f) = rng(g). The graph
structure is uniquely determined because edges (curves) intersect only in their end points and
are maximal.
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For some operations we need a notion of components of a line value. Let
meet* denote the transitive closure of the meet relationship on curves. This
is an equivalence relation that partitions a C-complex into connected
components, denoted components(C) (each of which is a C-complex as well).
For a line value @, the decomposition into corresponding point sets is
defined as blocks(Q) = {points(C') | C' € components(sc(Q))}.

A region value is defined as a point set in the plane with a certain
structure. Similarly as for line, we first define the structure, called an
R-complex now, and its associated point set, and then define a region as a
point set that could belong to such an R-complex. Again, for a region point
set, its R-complex is uniquely defined.

For the definition, we need the concept of a regular closed set. A set @
C R?is called regular closed if the closure of its interior coincides with the
set itself, i.e., @ = closure(Q°). The reason for this regularization process
is that regions should not have geometric anomalies such as an isolated or
dangling line or point features and missing lines and points in the form of
cuts and punctures.

Definition 9. Two regular closed sets @ and R are called quasi-disjoint:
& @ N R is finite.

Definition 10. Let S be a class of curves. An R-complex over S is a finite
set R of nonempty, regular closed sets, such that

(1) Any two distinct elements of R are quasi-disjoint.
(2) Vr € R, 3¢ € CC(S) : ar = points(c).

Here dr denotes the boundary of . Each element of the R-complex is called
a face. The union of all points of all faces is denoted points(R). The set of
all R-complexes over S is denoted RC(S).

Hence, a region can be viewed as a finite set of components called faces.
Any two faces of a region are disjoint except for finitely many “touching
points” at the boundary. Moreover, the definition ensures that boundaries
of faces are simple in the same sense that lines are simple. For example,
the intersection of two regions will also produce only finitely many isolated
intersection points. Note that the boundary of a face has outer as well as
possibly inner parts, i.e., the face may have holes.

Definition 11. Let S be a simple class of curves. The carrier set of the
region data type is defined as

A,iion A{Q C R*1 IR € RC(S) : @ = points(R)}

We require that the same class S of curves is used in defining the line and
the region type. Since for a given region value @, its R-complex is uniquely
defined, we can denote it by faces(®).

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.
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We extend the shorthand A to the spatial data types, and in fact to all
types whose carrier set contains sets of values. For these types «, we define

A, A A NG

3.1.3 Time Type. Type instant represents a point in time or is unde-
fined. Time is considered to be linear and continuous, i.e., isomorphic to the
real numbers.

Definition 12. The carrier set for instant is
Ainstant é R ) {J—}

3.1.4 Temporal Types. From the base types and spatial types, we want
to derive corresponding temporal types. The type constructor moving is
used for this purpose. It yields for any given type « a mapping from time to
«. More precisely, this means the following:

Definition 13. Let a be a data type to which the moving type constructor

is applicable, with carrier set A,. Then the carrier set for moving(a), is
defined as follows:

A oving) 2 : Aioans — Ag is a partial function OT(f) is finite}

Hence, each value f from the carrier set of moving(a) is a function
describing the development over time of a value from the carrier set of «.
The condition “ I'(f) is finite” says that f consists of only a finite number of
continuous components. This is made precise in the Appendix, where a
generalized notion of continuity is defined. This condition is needed (i) to
ensure that projections of moving objects (e.g., into the 2D plane) have only
a finite number of components; (ii) for the decompose operation defined
below; and (iii) as a precondition to make the design implementable.

For all “moving” types we introduce extra names by prefixing the
argument type with an “m”, that is, mpoint, mpoints, mline, mregion, mint,
mreal, mstring, and mbool. This is just to shorten some signatures.

The temporal types obtained through the moving type constructor are
functions, or infinite sets of pairs (instant, value). It is practical to have a
type for representing any single element of such a function, i.e., a single
(instant, value)-pair, for example, to represent the result of a time-slice
operation. The intime type constructor converts a given type « into a type
that associates instants of time with values of «.

Definition 14. Let « be a data type to which the intime type constructor
is applicable with carrier set A,. Then the carrier set for intime(a), is
defined as follows:

Aintime(a) é Ainstant X Aa

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.
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3.1.5 Range Types (Sets of Intervals). For all temporal types we would
like to have operations that correspond to projections into the domain and
the range of the functions. For the moving counterparts of the base types,
e.g., moving(real) (whose values come from a one-dimensional domain), the
projections are, or can be, compactly represented as sets of intervals over
the one-dimensional domain. Hence, we are interested in types to represent
sets of intervals over the real numbers, over the integers, etc. Such types
are obtained through a range type constructor.

Definition 15. Let « be a data type to which the range type constructor
is applicable (and hence on which a total order < exists). An a-interval is
asethAasuchthath,y EX,Vz2EA, :x<z <y>ze€elX

Two a-intervals are adjacent, if they are disjoint and their union is an
a-interval. An a-range is a finite set of disjoint, nonadjacent intervals. For
an a-range R, points(R) denotes the union of all its intervals.

Intervals may include their left and/or right boundaries or not, and so be
left-open, etc.

Definition 16. Let a be any data type to which the range type construc-
tor is applicable. Then the carrier set for range(«) is

A ey 21X C A, | 3 an a-range R : X = points(R)}

Again, a range value X has a unique associated a-range denoted by
intvls(X).

Because we are particularly interested in ranges over the time domain,
we introduce a special name for this type: periods = range(instant).

3.2 Rationale for this Design

The most important design principles that led to this particular choice of
data types are the following:

(1) Closure and consistency between nontemporal and temporal types. For
all base types and all spatial types, corresponding temporal types are
introduced through the moving constructor. The use of the type construc-
tor, instead of ad-hoc definition of temporal types, ensures consistency.

(2) Closure under projection. For all temporal types, data types must be
available to represent the results of projections into the (time) domain
and range, as well as the result of a time-slice operation.

(8) Uniform support of point vs. point set view. All data types belong to
either a one-dimensional or a two-dimensional space. This third princi-
ple requires that, in each space, we have data types to represent a
single value (called a point) and a set of values (a point set). This is the
basis for the definition of generic operations described in the next
section, and is explained in more detail there.

A deeper discussion of design considerations can be found in Giiting et al.
[1998].
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4. OPERATIONS

4.1 Overview

The design of the operations adheres to three principles: (i) design opera-
tions that are as generic as possible; (ii) achieve consistency between
operations on nontemporal and temporal types; and (iii) capture the inter-
esting phenomena.

The first principle is crucial, as our type system is quite large. To avoid a
proliferation of operations, it is mandatory to find a unifying view of
collections of types. The basic approach to achieve this is to relate each type
to either a one-dimensional or a two-dimensional space and to consider all
values either as single elements or subsets of the respective space. For
example, type int describes single elements of the one-dimensional space of
integers, while range(int) describes sets of integers. Similarly, point de-
scribes single elements of two-dimensional space, whereas points, line, and
region describe subsets of the two-dimensional space.

Second, in order to achieve consistency of operations on nontemporal and
temporal types, we proceed in two steps. In the first, we define operations
on nontemporal types. In the second, we systematically extend operations
defined in the first step to the temporal variants of the respective types.
This is called lifting.

Third, in order to obtain a powerful query language, it is necessary to
include operations that address the most important concepts from various
domains (or branches of mathematics). Whereas simple set theory and
first-order logic are certainly the most fundamental and best-understood
parts of query languages, we also need to have operations based on order
relationships, topology, metric spaces, etc. There is no clear recipe to
achieve closure of interesting phenomena; nevertheless, this should not
keep us from having concepts and operations such as distance, size of a
region, relationships of boundaries, and the like.

Section 4 is structured as follows. Section 4.2 develops an algebra over
nontemporal types, based on the generic point and point set (value vs.
subset of space) view of these types. The classes of operations considered
are shown in Table III, which also gives an overview of operations by just
listing their names.

Section 4.3 defines operations on temporal types. The classes of opera-
tions are shown in Table IV.

Finally, an operation that is based on our data types is needed, but
requires a manipulation of a set of objects in the database (e.g., a relation).
It is called decompose and is treated in Section 4.4.

4.2 Operations on Nontemporal Types

In this section we first carefully study operations on nontemporal types.
Although the focus of the paper is on the treatment of moving objects, and
hence on temporal types, this first step is crucial because later all these
operations will, by the process of lifting, become operations on temporal
types as well. The following design is adapted to that purpose.
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Table III. Classes of Operations on Nontemporal Types

Class Operations

Predicates isempty
=, #, intersects, inside
<, =, =, >, before
touches, attached, overlaps, on_border, in_interior

Set Operations intersection, union, minus
crossings, touch_points, common _border
Aggregation min, max, avg, center, single
Numeric no_components, size, perimeter, duration, length, area
Distance and Direction distance, direction
Base Type Specific and, or, not

Table IV. Classes of Operations on Temporal Types

Class Operations

Projection to Domain/Range deftime, rangevalues, locations, trajectory
routes, traversed, inst, val

Interaction with Domain/Range atinstant, atperiods, initial, final, present
at, atmin, atmax, passes

When when

Lifting (all new operations inferred)

Rate of Change derivative, speed, turn, velocity

As motivated above, we take the view that we are dealing with single
values and sets of these values in one-dimensional and two-dimensional
spaces. The types can then be classified according to Table V. (Remember
that by temporal types we mean types representing functions of time.
Types instant and periods are not temporal types in this sense.)

Table V shows that we are dealing with five different one-dimensional
spaces called Integer, Boolean, etc., and one two-dimensional space called
2D. For example, the two types belonging to space Integer are int and
range(int). One-dimensional spaces are further classified as being discrete
or continuous. The distinction between one-dimensional and two-dimen-
sional spaces is relevant because only the one-dimensional spaces have a
(natural) total order. The distinction between discrete and continuous
one-dimensional spaces is important for certain numeric operations. To
have a uniform terminology in any of the respective spaces, we call a single
element a point and a subset of the space a point set, and we classify types
accordingly as point types or point set types.

Example 3. We introduce the following example relations for use within
this section, representing cities, countries, rivers, and highways in Europe.
city(name: string, pop: int, center: point)
country(name:  string, area: region)
river(name:  string, route: line)
highway(name: string, route: line)
4.2.1 Notation for Signatures. Let us briefly introduce notation for
signatures that are partly based on Table V. In defining operation signa-
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Table V. Classification of Nontemporal Types

1D Spaces 2D Space
discrete continuous
Integer Boolean String Real Time 2D
point int bool string real instant  point

point set range(int) range(bool) range(string) range(real) periods  points, line, region

tures and semantics, 7 and o are type variables, ranging over all point and
all point set types of Table V, respectively. If several type variables occur in
a signature (e.g., for binary operations), then they are always assumed to
range over types of the same space. Hence, in a signature m X ¢ — «a we
can, for example, select the one-dimensional space Integer and instantiate
7 to int and o to range(int). Or we can select the two-dimensional space 2D
where we can instantiate 7 to point and o to either points, line, or region.

A signature o; X 09 — « means that the type variables o, and o, can be
instantiated independently; nevertheless, they have to range over the same
space. In contrast, a signature ¢ X o — « says that both arguments have
to be of the same type. The notation « ® B — v is used if any order of the
two argument types is valid, hence it is an abbreviation for signatures
aX B —vyand B X o — 7.

Some operations are restricted to certain classes of spaces; these classes
are denoted as 1D = {Integer, Boolean, String, Real, Time}, 2D = {2D},
1Dcont = {Real, Time}, 1Dnum = {Integer, Real, Time}, and cont = {Real,
Time, 2D}. A signature is restricted to a class of spaces by putting the name
of the class behind it in square brackets. For example, a signature « —
[1D] is valid for all one-dimensional spaces.

A single operation may have several functionalities (signatures). Some-
times, for a generic operation, there exist more appropriate names for
arguments of more specific types. For example, there is a size operation for
any point set type; however, for type periods, it makes more sense to call
this size duration. In such a case, we introduce the more specific name as
an alias with the notation size[duration].

In defining semantics, u, v, ... denote single values of a 7 type, and
U, V, ... generic sets of values (point sets) of a o type. For binary
operations, u or U refers to the first and v or V to the second argument.
Furthermore, b (B) ranges over values (sets of values) of base types, and
predicates are denoted by p. We use u to range over moving objects and
t(T) to range over instant values (periods).

For the definition of the semantics of operations, we generally assume
strict evaluation, i.e., for any function f,, defining the semantics of an
operation op we assume f,,(..., L,...) = L. We will therefore not
handle undefined arguments explicitly in definitions.
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Table VI. Unary Predicates

Operation Signature Semantics
isempty[undefined] = — bool u=1
o — bool Uu=90

The syntax for operations in queries is the prefix notation op(arg;,

., arg,). Exceptions are the comparison operators =, <, etc., and the
Boolean operators and and or, for which it is customary to have infix
notation. For two operators, when and decompose, a special syntax is
defined explicitly below.

4.2.2 Predicates. We consider unary and binary predicates. On this
abstract level, there are not many unary predicates one can think of. For a
single point, we can ask whether it is undefined, and for a point set, we can
ask whether it is empty. The generic predicate isempty is used for this
purpose (Table VI).

To achieve some completeness, the design of binary predicates is based
on the following strategy. First, we consider possible relationships between
two points (single values), two point sets, and a point vs. a point set in the
respective space. Second, orthogonal to this, predicates are based on three
different concepts, namely set theory, order relationships, and topology.
Order means total order here, which is available only in one-dimensional
spaces. Topology means considering for a point set U its boundary U and
interior U°.

This design space for binary predicates is shown in Table VII. The idea is
to systematically evaluate the possible interactions between single values
and sets and, based on that, to introduce (names for) operations. For
example, we find that checking whether boundaries intersect is important,
and then introduce touches as a name for this. Note that operations in the
middle column are available in one-dimensional (ordered) spaces in addi-
tion to those in the other columns. As a result, we obtain the signature in
Table VIII.

We have not offered any predicates related to distance or direction (e.g.,
“north”). However, such predicates can be obtained via numeric evaluations
(see Section 4.2.6).

A discussion of the completeness of the predicates can be found in Giiting
et al. [1998].

4.2.3 Set Operations. Set operations are fundamental and are available
for all point-set types. Where feasible, we also allow set operations on point
types, thus allowing expressions such as u minusv and U minus u.
Singleton sets or empty sets that result from this use are interpreted as
point values. This is possible because all domains include the undefined
value (L), whose meaning we identify with the empty set. Permitting set
operations on point types is especially useful in the context of temporal
types, as we shall see later. There is no union operation on two single
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Table VII. Analysis of Binary Predicates

Set Theory Order (1D Spaces)  Topology
point vs. u=v,u#0v u<v,u=v
point u=v,u>v
point set vs. U=V, U#V U before V daU N 9V # 0 (touches)
point set U NV # 0 (intersects) aU N V° # 0 (attached)
U C V (inside) U° N V? # 0 (overlaps)
point vs. u € U (inside) u before V u € U (on_border)
point set U before v u € U’ (in_interior)

Table VIII. Binary Predicates

Operation Signature Semantics
=, # a X — bool u=v,u#v
o1 X 0y — bool U=V, U#V
intersects o, X oy — bool UnNnv+190
inside o1 X 0y — bool ucv
T X o — bool u€eyVv
<, =, =, > T X — bool [1D] u < v ete.
before o X 09 — bool [1D] VueU,VveV:iu=sv
T X o — bool [1D] VveV:iu=sv
o X — bool [1D] VueU:u=v
touches o, X 0y — bool aU NV # 0
attached o X 0y — bool aUNVe+490
overlaps oy X 0y — bool uenve+90
on_border T X o — bool u € il
in_interior T X o — bool ueu°

points because the result could be two points, which cannot be represented
as a value of point type.

Defining set operations on a combination of one- and two-dimensional
point sets is more involved. This is because we are using arbitrary closed or
open sets in the one-dimensional space, whereas only closed point sets
(points, line, and region) exist in the two-dimensional case. The restriction
to closed point sets in the two-dimensional case is a natural and common
one. Regions lacking part of their boundary or interior points or curves
appear unnatural. On the other hand, in the one-dimensional space it is
necessary to admit open intervals, since these are the domains of temporal
(function) types. When a value changes at time ¢ from a to b, we have to
decide what exactly the value is at time ¢. If at time ¢ it is already b, then
we have a right-open time interval (with value a) up to time £, and a
left-closed interval with value & starting at #. This justifies a different
treatment of one- and two-dimensional point sets.

Because our two-dimensional types are closed, it is necessary to apply a
closure operation after applying the set operations on such entities, which
adds all points on the boundary of an open set.
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Whereas in all the one-dimensional spaces there is only a single point set
type, in two-dimensional space there are three. This requires an analysis of
which argument type combinations make sense (return interesting results),
and what the result types are.

Generally, if we apply set operations to values of different types, we get
results that are a mixture of zero-, one-, and two-dimensional point sets,
i.e., points, lines, and proper regions. Usually, one is mainly interested in
the results of the highest dimension. This is reflected in the concept of
regularized set operations [Tilove 1980]. For example, the regularized
intersection removes all lower-dimensional pieces from the result of the
corresponding intersection result. We also adopt regularization in our
framework as the semantics of the three standard set operations, union,
minus, and intersection, in two dimensions.

On different argument type combinations, the three set operations be-
have as follows:

—Union of arguments of equal types has the usual semantics. Due to
regularization, for unions on different types, the result is the higher-
dimensional argument. This result is not interesting, since we know it
already. Hence, we define union for equal types only.

—Difference always results in the type of the first argument. Closure has
to be applied to the result. Only those combinations of argument types
return new results where the dimension of the second argument is equal
or higher to that of the first. If the dimension of the second argument is
smaller, then by closure, the first argument value is returned unchanged.
We allow difference on all type combinations, even though some of them
are not relevant.

—Intersection produces results of all dimensions smaller or equal to the
dimension of the lowest-dimensional argument. For example, the inter-
section of a line value with a region value may result in points and lines.
We define the intersection operator for all type combinations with
regularized semantics, i.e., it returns the highest-dimensional part of the
result. To make other kinds of results available, we introduce specialized
operators, called, e.g., common_border or touch_points.

As a result, we obtain the signatures shown in Table IX (some notation
used in the column “Semantics” is explained below). They are divided into
five groups, the first two concerning point/point and point vs. point-set
interaction. The last three groups deal with point-set/point-set interaction
in one- and two-dimensional spaces; the last group introduces specialized
intersection operations to obtain lower-dimensional results. The notation
min(oy, 0y) refers to taking the minimum in an assumed “dimensional”
order points < line < region.

The definition of semantics in Table IX uses predicates is2D and is1D to
check whether the argument is of a two-dimensional or one-dimensional
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Table IX. Set Operations

Operation Signature Semantics

intersection T X -7 if u = v then u else L

minus T X -7 ifu = v then L else u

intersection T o -7 ifu € V then u else L

minus T X o -7 ifu € V then L else u

o X m -0 if is2D(U) then p(U\{v})

else U\{v}

union TQ o - if is1D(V) or type(V) = points
then V U {u} else V

intersection, o X o -0 [ID] UNV,U\V,UUYV

minus, union

intersection o, X oy — min(oy, 03) [2D] see Def. 17

minus o X oy - oy [2D] p(@1\Q2)

union o X o -0 [2D] @, U @,

crossings line X line — points see Def. 17

touch_points region ® line — points

region X region — points
common_border region X region — line

type, respectively. Also, the notations p(Q), @°, and dQ are used for
closure, interior, and boundary of @, respectively. For example, in the
second group of operations, the second definition for minus says that in
two dimensions, after subtracting a point v from a point set U, the closure
is applied, whereas in one dimension the result is taken directly. Defini-
tions for intersection that did not fit into the table are as follows.

Definition 17. The semantics of intersection operations is defined as
follows. Let P, L, and R, possibly indexed, denote arguments of type points,
line, and region, respectively. Let @ be an argument of any of the three
types. For commutative operations we give the definition for one order of
the arguments only, as it is identical for the other order. Definitions are
ordered by argument combinations.

fintersection(P, @) & P N Q

ferossings(Li1, Lo) A fp € L, N Ly[p is isolated in L; N Ly}
finterseetion(L1, L2) & (L1 N Ly)\ferossings(L1, L)
frouch_pointsL> B) & {p € L N R[p is isolated in L N R}
fintersection(Ls R) 2 (L N R)\fiouch_points(L; R)
fintersection(R1, R2) & p((R1 N R,)")

feommon_border(B1, R2) & fintersection(dR1, IRy)
ftouch_points(E1, F2) At crossings(0F21, OR)
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Table X. Aggregate Operations

Operation Signature Semantics

min, max o — 7 [1ID]  min(p(U)), max(p(U))

avg o — 7 [1Dnum] 1 2 sup(T) + inf(T)
Iintvls(U)I Teintvls(U) 2

t int 2D 1 ~

avglcenter] points — 7 [2D] ;EPEUP

avglcenter] line — [2D] _1° éllel|
”U” cEsc(U)c ¢

avglcenter] region — 7 [2D] 1 _
MfU<x, y)dU where M fUdU

single o — if 3u : U = {u} then u else L

The following example shows how with union and intersection we also
have the corresponding aggregate functions over sets of objects (relations)
available.

Example 4. “Determine the region of Europe from the regions of its
countries.”

LET sum = AGGREGATH{nion, TheEmptyRegion) ;
LET Europe = SELECT sum(area) FROM country

This makes use of the facility for constructing aggregate functions
described in Section 2. TheEmptyRegion is some empty region constant
defined in the database.

4.2.4 Aggregation. Aggregation reduces sets of points to points (Table X).

In one-dimensional space, where total orders are available, closed sets
have minimum and maximum values, and functions (min and max) that
extract these are provided. For open and half-open intervals, we choose to
let these functions return infimum and supremum values, i.e., the maxi-
mum and minimum of their closure. This is preferable over returning
undefined values.

In all domains that have addition, we can compute the average (avg). In
2D, the average is based on vector addition, and is usually called the
center (of gravity).

It is often useful to have a “casting” operation available to transform a
singleton set into its single value. For example, some operations have to
return set types, although the result is often expected to be a single value.
The operation single does this conversion.

Example 5. The query “Find the point where highway Al crosses the
river Rhine!” can be expressed as:

LET RhineAl = ELEMENT(
SELECT single(crossings (R.route, H.route))
FROM river R, highway H
WHERE R.name= “Rhine” and H.name = “Al” and
R.route intersects H.route)
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The result can be used as a point value in further queries, whereas
crossings returns a points value.

In the definition of semantics, the one for the average of a line value
needs some explanation. Recall that sc(U) denotes the set of simple curves
from which line U is built. We define the x- and y-projections of a curve c:
Vu € [0, 1] : c,(u) = x and ¢, (u) = y iff c¢(u) = (x, y). Then the length
of a curve c, denoted ||c|, is defined as

1

——
llel| = J\/c’x(u)z + ¢, (w)*du
0

where, e.g., ¢, is the derivative of c,, that is, dc,(v)/du. The length of a
line U, denoted |U]||, is given by the sum of the lengths of its curves, hence
|U|| = Xcesew)|c]l. The average of a curve c is defined as a point vector:

1
E:[C(Au)du

0

In the definition of avg (or center) of a region, integration is done over
pieces of the region according to the general formula

f flx, y)dS

S

which integrates a function f defined on the two-dimensional plane over an
arbitrary region S. In this case integration is done over the vectors (x, y)
for each piece dU.

4.2.5 Numeric Properties of Sets. For sets of points, some well-known
numeric properties exist (Table XI).

For example, the number of components (no_components) is the num-
ber of disjoint maximal connected subsets, i.e., the number of faces for a
region, connected components for a line graph, and intervals for a one-
dimensional point set. The size is defined for all continuous set types (i.e.,
for range(real), periods, line, and region). For one-dimensional types, the
size is the sum of the lengths of component intervals; for line, it is the
length; and for region, it is the area. For the region type, we are addition-
ally interested in the size of the boundary, called perimeter.

Example 6. “List for each country its total size and the number of
disjoint land areas.”

SELECT name, area(area), no_components(area) FROM country
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Table XI. Numeric Operations

Operation Signature Semantics
no_components o — int [1D]  lintvls(U)I
no_components points — int U

no_components line — int 1blocks(U)|
no_components region — int Ifaces(U)I

size[duration] o — real [1Dcont]  Xreintvisw)sup(T) — inf(T')
size[length] line — real 1T

size[areal region — real J,dU

perimeter region — real flengtn(dU)

Table XII. Distance and Direction Operations

Operation  Signature Semantics
distance T X 7 — real [1Dcont] I|u — vl
T® o — real [1Dcont] min{lu — vIilb € V}
o X o — real [1Dcont] min{lu — vilk € U, v € V}
T X T — real 2Dl  dist(u, v) = \,/(u.x —v.x)?2+ (uy — v.y)?
TQ o — real [2D]  min{dist(u, v)[b € V}
o X o — real [2D]  min{dist(u, v)(k € U, v € V}
direction point X point — real see below

Example 7. “How long is the common border of France and Germany?”

LET France =

ELEMENT(SELECT area FROM country WHERE name= “France”);
LET Germany =

ELEMENT(SELECT area FROM country WHERE name= “Germany”);
length(common_border(France, Germany))

4.2.6 Distance and Direction. A distance measure exists for all continu-
ous types. The distance function determines the minimum distance be-
tween the closest pair of points from the first and second arguments. The
distance between two points is the absolute value of the difference in
one-dimensional space and the Euclidean distance in two-dimensional
space. The time domain inherits arithmetics from the domain of real
numbers, to which it is isomorphic.

The direction between points is sometimes of interest. A direction
function is thus included that returns the angle of the line from the first to
the second point, measured in degrees (0 = angle < 360). Hence, if q is
exactly north of p, then direction(p, q) = 90. If p = g, then the direction
operation returns the undefined value 1. A formal definition is straightfor-
ward, but a bit lengthy and omitted here; it can be found in Giiting et al.
[1998].

Example 8. “Find all cities north of and within 200 kms of Munich!”

LET Munich = ELEMENT(SELECT center FROM city WHERE name =
“Munich”);
SELECT name FROM city
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Table XIII. Boolean Operations

Operation Signature Semantics
and, or bool X bool — bool as usual (with strict evaluation)
not bool — bool

Table XIV. Operations for Projection of Temporal Values into Domain and Range

Operation Signature Semantics

deftime moving(«a) — periods dom ()

rangevalues moving(a) — range(a) [1D]  rng(w)

locations moving(point) — points isolated(rng(p))
moving(points) — points isolated(Urng(p))

trajectory moving(point) — line rng (1) \focations( )
moving(points) — line U rng(l-L) \flocations(u’)

traversed moving(line) — region p((Urng(w)) °)
moving(region) — region Urng(w)

routes movmg(lme) — line P(U rng(“)) \ftraversed(“‘)

inst intime(a) — instant t where u = (¢, v)

val intime(a) -« v where u = (¢, v)

WHEREdistance(center, Munich) < 200 and
direction(Munich, center) >= 45 and
direction(Munich, center) <= 135
In this way we can express direction relationships such as north, south,
etc., via numeric relationships.

4.2.7 Specific Operations for Base Types. Some operations on base types
are needed that are not related to the point/point set view. We mention
them because they have to be included in the scope of operations to be
lifted, i.e., the kernel algebra (see Table XIII).

4.2.8 Scope of the Kernel Algebra. The kernel algebra is defined to
consist of the types in BASE U SPATIAL, together with all operations
defined in Section 4.2, restricted to these types.

4.3 Operations on Temporal Types

Values of temporal types (i.e., types moving(«)) are partial functions of the
form £ : A,psian: — A,. In the following sections we discuss operations for
projection into domain and range, interaction with values from domain and
range, the when operation, lifting, and operations related to rate of
change.

4.3.1 Projection to Domain and Range. For values of all moving types
(which are functions), operations are provided that yield the domain and
range of these functions (Table XIV). The domain function deftime returns
the times for which a function is defined.

In one-dimensional space, operation rangevalues returns values as-
sumed over time as a set of intervals. For the two-dimensional types,
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operations are offered to return the parts of the projections corresponding
to our data types. For example, the projection of a moving point into the
plane may consist of points and of lines; these can be obtained separately
by operations locations and trajectory, respectively. In particular, if a
moving point (or point set) changes its position in discrete steps only, then
locations returns its projection as a points value. Operation routes
similarly returns the projection of a discretely moving line value. The more
natural projections of continuously moving objects are obtained by opera-
tions trajectory and traversed.

For values of intime types, the two trivial projection operations inst and
val are offered, yielding the two components.

All the infinite point sets that result from domain and range projections
are represented in collapsed form by the corresponding point set types. For
example, a set of instants is represented as a periods value, and an infinite
set of regions is represented by the union of the points of the regions, which
is represented in turn as a region value. That these projections can be
represented as finite collections of intervals, faces, etc., and hence corre-
spond to our data types, is due to the continuity condition required for
types moving(a) (see Section 3.1.4).

The design is complete in that all projection values in domain and range
can be obtained. This was one of the major principles in the design of the
type system, as discussed in Section 3.2.

For defining the semantics of operations on temporal types, a little more
notation is needed. For a partial function f: A — B we write f(x) = L
whenever f is undefined for x € A. To adjust the undefined value 1L for
values of type points, line, and region to ), we use the function:

0 ifx = 1L O« € {points, line, region}
x ] a= .

x otherwise
The domain of f is given by dom(f) = {x € A | f(x) # L}. Similarly, the
range of f is defined by rng(f) ={y € B dx € A : f(x) = y}. If the
elements of rng(f) are sets, then we write U rng(f) as an abbreviation of

the union of all these sets, i.e., U rng(f) = UYErnng.

Example 9. To illustrate operations on temporal types, we use the
example relations:

flight(airline: string, no: int, from: string, to: string, route: mpoint)
weather(name:  string, kind: string, area: mregion)
site(name:  string, pos: point)

Attributes airline and no of the relation flight identify a flight. In
addition, the relation records the names of the departure and destination
cities and the route taken for each flight. The last attribute is of type
moving(point). We assume that a flight’s route is defined only for the times
the plane is in flight and not when it is on the ground.
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The relation weather records weather events such as high pressure
areas, storms, or temperature maps. Some of these events are given names
to identify them. The attribute kind gives the type of weather event, such
as “snow-cloud” or “tornado,” and the area attribute provides the evolving
extent of each weather event.

Relation site contains positions of certain well-known sites such as the
Eiffel tower, Big Ben, etc.

Example 10. With the operations of this section we can formulate the
following queries: “How long is the part of the route of flight LH 257 that
lies within France?”

LET route257 = ELEMENT(
SELECT route FROM flight WHERE airline = “LH” and no = 257);
length(intersection(France, trajectory(route257))

“What are the departure and arrival times of flight LH 257?”
min(deftime(route257)) ; max(deftime(route257));

Example 11. “At what time and distance does flight 257 pass the Eiffel
tower?”

We assume a closest operator with signature mpoint X point —
intime(point), which returns time and position when a moving point is
closest to a given fixed point in the plane. We will later show how such an
operator can be defined in terms of others.

LET EiffelTower =

ELEMENT(SELECT pos FROM site WHERE name= “Eiffel Tower”);
LET pass = closest(route257, EiffelTower);
inst(pass) ; distance(EiffelTower , val(pass))

4.3.2 Interaction with Points and Point Sets in Domain and Range. In
this section we systematically study operations that relate the functional
values of moving types with values either in their (time) domain or their
range. For example, a moving point moves through the two-dimensional
plane; does it pass a given point or region in this plane? Does a moving real
ever assume the given value 3.5? Besides comparison, one can also restrict
the moving entity to the given domain or range values, e.g., get the part of
the moving point when it was within the region, or determine the value of
the moving real at time ¢ or within time interval [, ¢,].

In Table XV, the first group of operations concerns interaction with time
domain values, the second interaction with range values. Operations atin-
stant and atperiods restrict a moving entity to a given instant, resulting
in a pair (instant, value), or to a given set of time intervals, respectively.
The atinstant operation is similar to the timeslice operator found in most
temporal relational algebras (see, e.g., McKenzie and Snodgrass [1991];
Ozsoyoglu and Snodgrass [1995]). Operations initial and final return the
first and last (instant, value) pair, respectively. Operation present allows
one to check whether the moving value exists at a given instant, or is ever
present during a given set of time intervals.
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Table XV. Interaction of Temporal Values With Values in Domain and Range

Operation  Signature Semantics

atinstant  moving(a) X instant — intime(a) (&, p(t) 1 @

atperiods moving(a) X periods — moving(a) {t,y) enl t €T}

initial moving(a) — intime(«a) hmmmf(domm))“(t)

final moving(«a) — intime(a) immsup(dom(,m“

present moving(a) X instant — bool n(t) # L

present moving(a) X periods — bool fatperioas(, T') # 0

at moving(a) X « — moving(a) [1D] {(¢,y) €E nly = b}

at moving(a) X range(a) — moving(a) [1DI {(¢,y) € 1y € B}

at moving(a) X point — mpoint 2Dl {(¢t,y) € uly = u}

at moving(a) X B — moving(a) [2D] {(¢t,y) € nly € U}

atmin moving(a) — moving(a) [1D]  {(¢,y) € p |y = min(rng(n))}
atmax moving(a) — moving(a) [1D] {(¢,y) € n |y = max(rng(wn))}
passes moving(a) X B — bool fat(p, x) # 0

In the second group, the purpose of at is again restriction (such as
atinstant, atperiods), this time to values in the range. For one-dimen-
sional space, restriction by either a point or a point-set value returns a
value of the given moving type. For example, we can reduce a moving real
to the times when its value was between 3 and 4. In two dimensions, the
resulting moving type is obtained by taking the minimum of the two
argument types « and B with respect to the order point < points < line
< region. For example, the restriction of a moving(region) by a point will
result in a moving( point). This is analogous to the definition of result types
for intersection in two dimensions in Section 4.2.3.

In one-dimensional spaces, operations atmin and atmax restrict the
moving value to the times when it is minimal or maximal with respect to
the total order on this space. Operation passes allows one to check whether
the moving value ever assumed (one of) the value(s) given as a second
argument.

For the definition of semantics, notation for the arguments is defined in
Section 4.2.1. In particular, u is a function argument and a function is a set
of (argument, value) pairs.

All of these operations are of interest from a language design point of
view. Some of them are derived, however, so they can be expressed by other
operations in the design. For example, we have

present(f, ) =not(isempty(val(at instant(f, t) )))
Example 12. “When and where did flight 257 enter the territory of
France ?”
LET entry = initial (at(route257, France)) ; inst(entry) ; val(entry)
Example 13. “For which periods of time was the Eiffel Tower within
snow storm ‘Lizzy’ ?”

LET Lizzy = ELEMENT(SELECT area FROM weather
WHERE name= “Lizzy” and kind = “snow storm”) ;
deftime(at(Lizzy, EiffelTower))
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Table XVI. The when Operation

Operation  Signature Semantics Syntax

when moving(a) X (a — bool) — moving(a) {(¢,y) € ul p(y)} argoplarg,]

4.3.3 The Elusive when Operation. We now consider (speculate about)
an extremely powerful, yet conceptually quite simple, operation called
when, whose signature is shown in Table XVI. The idea is that we can
restrict a time-dependent value to the periods when its range value fulfils
some property specified as a predicate. If we had such an operator, we could
express a query such as “Restrict a moving region mr to the times when its
area was greater 1000” as

mr when [FUN (r: region) area(r) > 1000]
Here the result would again be of type mregion.

Whereas such an operation would be very powerful and desirable, it is
questionable whether such a definition makes any sense. This is because
the operator has to call for evaluation of the parameter predicate infinitely
many times, since our moving entities are functions over a continuous
domain. Looping over an infinite domain is inherently impossible. So for
the moment this operation seems impossible to implement.

4.3.4 Lifting Operations to Time-Dependent Operations. Section 4.2 sys-
tematically defines operations on nontemporal types, the kernel algebra.
This section uniformly lifts these operations to apply to the corresponding
moving (temporal) types.

Consider an operation to be lifted. The idea is to allow any argument of
the operation to be made temporal and to return a temporal type. More
specifically, the lifted version of an operation with signature a; X ... X
a, — B has signatures o'; X ... X &', = moving(B) with o € {a,,
moving(a;)}. So each of the argument types may change into a time-
dependent type that will transform the result type into a time-dependent
type as well. The operations that result from lifting are given the same
name as the operation they originate from. For example, the intersection
operation with signature

region X point — point
is lifted to the signatures
mregion X point — mpoint
region X mpoint — mpoint, and
mregion X mpoint — mpoint.

To define the semantics of lifting, we note that an operation op : o,
X ... X a, — B can be lifted with respect to any combination of argument
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types. Such a combination can be conveniently described by a set of indices
L C {1, ..., k} for the lifted parameters, and we define

o =

L moving(a;) ifi € L
o; otherwise

Thus, the signature of any lifted version of op can be written as op : ot
X ... X af — moving(B). If f,, is the semantics of op, we now have to
define the semantics of f%, for each possible lifting L. For this, we define
what it means to apply a possibly lifted value to an instant-value:

o | %@ ifi €L
% () = { x;  otherwise

Now we can define the functions (ﬁ, pointwise by

f(f}lj(xh st xk) = {(t’ ﬁ)p(x%(t)a e 7x£(t)))|:t € Ainstant}

This lifting of operations generalizes existing operations that did not
appear to be of great utility to operations that are quite useful. For
example, an operator that determines the intersection of a region with a
point may not be of great interest, but the operation that determines the
intersection between a region and an mpoint (“get the part of the mpoint
within the region”) is quite useful. This explains why Section 4.2.3 takes
care to define the set operations for all argument types, including single
points.

The fact that now all operations of the kernel algebra are also available
as time-dependent operations results in a very powerful query language.
Here are some examples.

Example 14. We can formulate pretty involved queries such as “For how
long did the moving point mpmove along the boundary of region r ?”

duration(deftime(at(on_border(mp, r), TRUE)))

Here predicate on_border yields a result of type mbool. This result is
defined for all times that mpis defined and has value TRUE or FALSE.
Operation at reduces the definition time of this mbool to the times when it
has value TRUE.

Example 15. “Determine the periods of time when snow storm ‘Lizzy’
consisted of exactly three separate areas.”

deftime(at(no_components(Lizzy) = 3, TRUE))

Again, this works because ‘Lizzy’ is of type mregion, hence the lifted
versions of no_components and equality apply.

Example 16. We are now able to define the closest operator of Example
11 within a query:
LET closest= FUN (mp:mpoint, p: point)
atinstant(mp, inst(initial(atmin(distance(mp, p)))))
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This depends on the lifted distance operator. We reduce the resulting
mreal to the times when it is minimal, take the first such (instant, value)
pair and then the instant from this pair. Finally, the original moving point
is taken at this instant.

Lifting is the key to achieving the goal of consistency and closure
between nontemporal and temporal operations, as explained in Section 4.1.

4.3.5 The Elusive when Revisited. After lifting the operations of the
kernel algebra, it turns out that we have another way of expressing the
query of Section 4.3.3: “Restrict a moving region mr to the times when its
size was greater 1000”. Using when, this was written as

mr when[FUN (r: region) area (r) > 1000]
Using the lifted versions of area and > , this is equivalent to
atperiods(mr, deftime(at(area(mr) > 1000, TRUE)))

Why is it suddenly possible to realize the effect of the apparently
unimplementable when? The reason is that we did not try to evaluate the
parameter expression area (r) > 1000 on infinitely many instances of
parameter r, but instead evaluated its “lifted version” area (mr) > 1000
on the original argument mr of when. In terms of implementation, there
are two different functions (algorithms) for area, one that is applicable to
region values, and one that is applicable directly to mregion values. We do
not call the first algorithm (applicable to region values) infinitely many
times, but instead the latter (applicable to mregion values) just once.

This is in fact a general technique for translating when queries. It is
applicable for all parameter expressions of when that are formed using
operations of the kernel algebra only. The translation is

x when[FUN(y: «) p(y)] = atperiods(x, deftime(at(p(y) 6, TRUE)))

The substitution 6 = {y/x}, applied to p(y) , replaces each occurrence of
y with the original moving object x (of type moving(a)). Hence, when can
be implemented by rewriting it in this way. So based on lifting and
rewriting, we have in fact obtained an effective implementation of the
when operator.

4.3.6 Rate of Change. An important property of any time-dependent
value is its rate of change, i.e., its derivative. To determine which of our
data types this concept is applicable to, consider the definition of the
derivative, given next.

o fe+ A~ f1)
Fo=im=y

This definition, and thus the notion of derivation, is applicable to any
temporal type moving(a) with a range type « that (i) supports a difference
operation and (ii) supports division by a value of type real.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.



30 . R. H. Guting et al.

Table XVII. Derivative Operations

Operation Signature Semantics

derivative mreal — real W where p'(t) = lim,  (u(t + 8) — w(t))/ 8
speed mpoint ~ — mreal w where p'(t) = lim,  faistance(nt(t + 8), w(t))/ 8
turn mpoint ~ — mreal w where ' (t) = lim,  fairection(p(t + 8), w(t))/ 8
velocity mpoint  — mpoint W where p'(t) = lim,  (u(t + 8) — w(t)/ 6

Type real clearly qualifies as a range type. For type point, at least three
operations may assume the role of difference in the definition, namely the
Euclidean distance, the direction between two points, and the vector
difference (viewing points as 2D vectors). This leads to three different
derivative operations, which we call speed, turn, and velocity, respec-
tively (see Table XVII). Note that we can get the acceleration of a moving
point mpas a number by derivative(speed(mp) and as a vector, or moving
point, by velocity(velocity(mp).

The notion of derivation does not apply to the discrete data types int,
string, and bool because there is no division available (for string and bool, a
difference operation is also absent). There is also no obvious way to define
difference and division for regions, although some ideas for this are
discussed in Giting et al. [1998].

Example 17. Nevertheless, one can still observe, for example, the
growth rate of a moving region: “At what time did snow storm Lizzy expand
most?”

inst(initial(atmax(derivative(area(Lizzy )))))

Example 18. “Show on a map the parts of the route of flight 257 when
the plane’s speed exceeds 800 km/h.”

trajectory(atperiods(route257 , deftime(at(speed(route257) > 800, TRUE))))

Of course, the background of the map still has to be produced by a
different tool or query.

4.4 QOperations on Sets of Objects

All operations defined in Sections 4.2 and 4.3 apply to “atomic” data types
only, i.e., attribute data types with respect to a DBMS data model. All data
types of our design, as described in Section 3, and including the temporal
ones, are atomic in this sense. However, sometimes in the design of data
types for new applications there are operations of interest that cannot be
formulated in terms of the atomic data types alone, but need to manipulate
a set of database objects (with attributes of the new data types) as a whole.
An example in spatial databases is the computation of a Voronoi diagram.
Such data type related operations on sets of objects have been introduced
earlier, for example, in the ROSE algebra [Giiting and Schneider 1995].
In the design of this paper we need only a single set operator, called
decompose. Its purpose is to make the components of values of point set
types accessible within a query. “Components” refers to connected compo-
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Table XVIII. Operations on Sets of Database Objects

Operation Signature Semantics
decompose set(wy) X (wq; = o) X ident — set(wy)  see Def. 18
set(w,) X (w; — moving(a)) X ident — set(wy)  see Def. 18

nents; all our point set types are defined to have a structure that consists of
a finite number of connected components. For any range type, a component
is a single interval; for the types points, line, and region, a component is a
single point, a maximal connected subgraph, and a face, respectively (this
is defined formally below).

Decomposition basically transforms a value of some point set type o into
a set of values of the same type o such that each value in the result set
contains a single component.

Similarly, decompose makes the connected components of temporal
data types available. Here a component is a maximal continuous part of the
function value.

As a manipulation of a set of database objects, this is treated as follows.
The first argument of decompose is a set of database objects (e.g., a set of
tuples in the relational model). The second argument is a function (e.g., an
attribute name) that maps an object (e.g., a tuple) into a value of some
point set type. The third argument is an identifier, used as a name for a
new attribute. The result set of objects is produced as follows: For each
object u with an attribute value that has 2 components, decompose
returns & copies of u, each of which is extended by one of the £ component
values (under the new attribute). The signature is shown in Table XVIII.

The syntax for applying this operator is arg; oplarg,, args]. The se-
mantics can be defined formally as follows.

Let S be a value of any of our point set types, and w a value of a temporal
type. We first define a generic function comp to decompose S or w into a
finite set of values of the same type, namely:

intvls(S) if S is of type range(a)
{{p}p € S} if S is of type points
blocks(S)  if S is of type line
faces(S) if S is of type region

comp(S) =

comp(n) = I'(n)

Here I'(w) is the function that determines the maximal continuous compo-
nents of a moving object u as defined in the Appendix.

Let O = {04, ..., 0,} be a set of database objects (e.g., tuples) and let
attr be a function yielding an attribute value of a database object o € O.
Let name be a name for the new attribute. Furthermore, let © be a
function that appends an attribute value to a database object, or an
attribute to an object type. Then
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faecompose(O, attr, name) = {o ®vlb € O, v € comp(attr(o))}
The type mapping performed by the decompose operator is
1-decompose(set(0‘)1), w; —> 7, name) = set(wl @ (name’ 'Y))

That is, the result is a set of objects with an additional attribute “name” of
type v.

Example 19. Consider the relation country(name: string, area: region)
introduced earlier. The query

country decompose[area,part]
returns a relation with schema (name: string, area : region, part : region)

Example 20. This example illustrates decomposition of a temporal
value. Let us assume that flight 257 alternates between being over land
areas of Europe and over the sea. We would like to see a list of time
periods, ordered by duration, when flight 257 was over land.

LET land257 = SET(route , at(route257, Europe))
decompose[route, piece] ;

SELECT start AS min(deftime(piece)) ,
duration AS duration(deftime(piece))
end AS max(deftime(piece)) ,

FROM land257

ORDER BY duration

Here the at operation restricts flight 257 to the parts above Europe
(whose area was computed earlier in Example 4). The SET constructor
transforms this into a relation with one tuple and a single attribute route
containing this value. Then decompose is applied to this relation, which
puts each component of the moving point into a separate tuple. The relation
land257 created in this way is then processed in the next part of the query.

5. APPLICATION EXAMPLES

To illustrate the query language resulting from our design, in this section
we consider two rather different example applications. The first, related to
multimedia presentations, has relatively simple spatio-temporal data that
change only in discrete steps. The second, forest fire analysis, allows us to
show some more advanced examples on moving objects, and on moving
regions in particular.

5.1 Multimedia Scenario

Multimedia presentations are good examples of spatio-temporal contexts.
Here we have multimedia objects that are presented for some time occupy-
ing space on the screen (we assume that they are rectangles) and then they
disappear. A crucial part of a multimedia scenario is the set of spatio-
temporal relationships/constraints that define the spatial and/or temporal
order of media object presentations [Vazirgiannis et al. 1998]. The ability to
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Fig. 2. Spatial and temporal layout of a news clip.

query the spatio-temporal configuration of a multimedia presentation
would be an important aid to multimedia application designers.

A sample scenario for a news clip might be described as follows. The news
clip starts with presentation of image A located at point (50, 50) relative to
the origin of the application. Background music E starts at the same time.
Video clip B starts 10 seconds later. It appears to the right side (18 cm) and
below the upper side of A (12 cm), and so forth. The spatial and temporal
configuration (or “layout”) of the scenario is illustrated in Figure 2.

We assume that the following relational schema is used to store informa-
tion about objects that participate in the presentation as moving regions:

object(name:  string, actor : mregion)

In this case, actors are boxes (trivial moving regions) that result from the
presentation of an object for some time. We can then formulate the
following queries.

Example 21. “What is the screen (spatial) layout at the 5th second of the
application?”

SELECT val(atinstant(actor, 5)) FROM object WHERE present(actor, 5)
Example 22. “What is the temporal layout of the application between
the 10th and the 18th second of the application?”

SELECT name intersection(deftime(actor), [10,18])
FROM object
WHEREHnNtersects(deftime(actor), [10,18])

Example 23. “Which objects overlap spatially object A during its presen-
tation?”

SELECT Y.name

FROM object X, object Y |

WHERERNtersects(X.actor, Y.actor) and X.name = “A” and
Y.name =/= "A"

5.2 Forest Fire Control Management

In a number of countries like the USA, Canada, and others, fire is one of
the main agents of forest damage. Forest fire control management mainly
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pursues the two goals of learning from past fires and their evolution and of
preventing fires in the future by studying weather and other factors like
cover type, elevation, slope, distance to roads, and distance to human
settlements. Specialized geographical information systems enriched by a
temporal component and by corresponding analysis tools could be appropri-
ate systems to support these tasks.

In a very simplified manner this application example considers the first
goal of learning from past fires and their evolution in space and time. We
assume a database containing relations with schemas:

forest(forestname: string, territory: mregion)
forest_fire(firename: string, extent: mregion)
fire_fighter(fightername: string, location:  mpoint)

The relation forest records the location and the development of differ-
ent forests growing and shrinking over time through clearing, cultivation,
and destruction processes, for example. The relation forest fire docu-
ments the evolution of different fires from their ignition up to their
extinction. The relation fire_fighter describes the motion of fire fighters
being on duty from their start at the fire station up to their return. The
following sample queries illustrate enhanced spatio-temporal database
functionality.

Example 24. “When and where did the fire called ‘The Big Fire’ have its
largest extent?”
LET TheBigFire = ELEMENT(
SELECT extent FROM forest_fire WHERE firename = “The Big Fire") ;
LET max_area = initial(atmax(area(TheBigFire))) ;
atinstant(TheBigFire , inst(max_area)) ;
val(max_area)
The second argument of atinstant computes the time when the area of
the fire was maximum. The area operator is used in its lifted version.

Example 25. “Determine the total size of the forest areas destroyed by
the fire called ‘The Big Fire’.” We assume a fire can reach several, perhaps
adjacent, forests.

LET ever = FUN (mb:mbool) passes(mb, TRUE) ;

LET burnt =
SELECT size AS area(traversed(intersection(territory, extent)))
FROM forest_fire, forest
WHERE firename = “The Big Fire” and

ever(intersects(territory, extent)) ;

SELECT SUM(size)

FROM burnt

Here the intersects predicate of the join condition is a lifted predicate.
Since the join condition expects a Boolean value, the ever predicate checks
whether there is at least one intersection between the two mregion values
just considered.

Example 26. “When and where was the spread of fires larger than 500
km?2?”
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LET big_part =
SELECT big_area AS extent  when[FUN (r: region) area(r) > 500]
FROM forest_fire

SELECT *

FROM big_part

WHERmot(isempty(deftime(big_area)))

The first subquery reduces the moving region of each fire to the parts
when it was large. For some fires this may never be the case, and hence for
them big_area may be empty (always undefined). These are eliminated in
the second subquery.

Example 27. “How long was fire fighter Th. Miller enclosed by the fire
called ‘The Big Fire,” and which distance did he cover there?

SELECT time AS duration(deftime(intersection (location, TheBigFire))) ,
distance AS length(trajectory(intersection(location, TheBigFire)))
FROM fire_fighter
WHERE fightername = “Th. Miller”
We assume that the value ‘TheBigFire’ has already been determined as
in Example 24 and that we know that Th. Miller was in this fire (otherwise
time and distance will be returned as zero).

Example 28. “Determine the times and locations when ‘TheBigFire’
started.”

We assume that a fire can start at different times with different initial
regions that may merge into one or even stay separate. The task is to
determine these initial regions. This is a fairly complex problem, and one
may wonder whether it can be expressed with the given operations at all.
We show that it is possible.

The crucial point is that with no_components we have a tool to find the
transitions when a new region (face) was added to the moving region
describing the fire. We find the times of these transitions and then go back
to the moving region itself to determine the new face starting at this time.

LET number_history =

SET(number , no_components(TheBigFire)) decompose[number, no] ;
LET history =

SELECT period AS deftime(no), value AS single(no)

FROM number_history ;
LET pairs =

SELECT intervall AS X.period, interval2 AS Y.period

FROM history X, history Y

WHERBEmax(X.period) = min(Y.period) and X.value < Y.value ;
SELECT starttime AS  min((interval2) ,

region AS minus(val(initial(atperiods(TheBigFire, interval2)))

val(final(atperiods(TheBigFire, intervall))))

FROM pairs

In the first step, the lifted version of no_components produces a moving
integer describing how many components “TheBigFire” had at different
times. We put this into a single attribute/single tuple relation and then
apply decompose. For a moving integer, each change of value produces
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another component, hence after decompose there is one tuple for each
value with its associated time interval.

In the second step, relation history  is computed, which has for each of
these components its time interval and value. In the third step, a self-join
of history  is performed to find pairs of adjacent time intervals where the
number of components increased. In the final step, we compute the transi-
tion times (when the number of components increased) as well as the new
fire regions. These can be obtained by subtracting the final region of the
earlier time interval from the initial region of the later time interval.

Since this observes only changes in the number of components, but not
yet the change from 0 to 1, we still have to get the very first time and
region of the fire. However, these are very easy to determine by inst(ini-
tial(TheBigFire)) and val(initial(TheBigFire))

Note that the ability to observe structural changes via no_components,
as demonstrated in the previous example, is important for many applica-
tions. For example, one can find transitions when states merged or split
(e.g., reunification), when disjoint parts of a highway network were con-
nected, etec.

6. RELATED WORK

The core of this paper’s contribution is a framework of data types for
capturing the time-varying spatial extents of moving objects. We cover in
turn the relation to spatial and temporal databases, then consider a variety
of related spatio-temporal proposals. Finally, attention is devoted to the
relation to the data types available in object-relational database systems.

The traditional database management systems, offering a fixed set of
types for use in columns of tables, are generally inadequate for managing
spatial, let alone spatio-temporal, data. The restriction to the use of
standard data types forces a decomposition of spatial values into simple
components, thus distributing the representation of even a single polygon
over many rows. This renders even simple queries difficult to formulate;
and they are hopelessly inefficient to process because the decomposed
spatial values must be reconstructed.

Observations such as these have led to an abstract data type view of
spatial entities with suitable operations, used as attribute types in rela-
tional or other systems. Spatial types and operations have been used in
many proposals for spatial query languages, for example, Giiting [1988]
and Egenhofer [1994], and they have been implemented in prototype
systems, such as Roussopoulos et al. [1988] and Giiting [1989]. Dedicated
designs of spatial algebras with formal semantics are given in Scholl and
Voisard [1989]; Gargano et al. [1991]; and Giiting and Schneider [1995].

Perhaps, in part because of the pervasiveness of time and their simpler
structures, time types are already supported by existing database systems,
and the SQL standard offers types such as DATE TIME, and TIMESTAMP
[Melton and Simon 1993]. In the research domain, semantic foundations for
interpreting time values [Snodgrass 1995, chap. 5] and efficient formats
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[Snodgrass 1995, chap. 25] for storing time values have been proposed
[Dyreson and Snodgrass 1994], as has extensible, multicultural support,
including support for multiple languages, character sets, time zones, and
calendars. Most proposals adopt bounded, discrete, and totally ordered
types for the representation of time.

The temporal database community has also explored the use of temporal
types, but mainly with a focus on temporal base types and at an abstract
data-model level. Thus, a number of temporal data models (e.g., TERM
[Klopprogge and Lockemann 1983]; HRDM [Clifford 1982; Clifford and
Croker 1987]; and Gadia’s temporal data model [Gadia 1988]) offer types
that are functions from time to types corresponding to the base types in
this paper. The related time-sequences data model [Tansel et al. 1993,
chap. 11] allows attribute values that are basically sequences of time-value
pairs.

Next, temporal data models may be generalized to be spatio-temporal.
The idea is simple: Temporal data models provide built-in support for
capturing one or more temporal aspects of the database entities. It is
conceptually straightforward to also associate the database entities with
spatial values. Concrete proposals include a variant of Gadia’s temporal
model [Tansel et al. 1993, chap. 2]; a derivative of this model [Cheng and
Gadia 1994]; and STSQL [Bohlen et al. 1998]. Essentially, these proposals
introduce functions from the product of time and space to base domains,
and they provide languages for querying the resulting databases. These
proposals are orthogonal to the specifics of types, and simply and abstractly
assume types of arbitrary subsets of space and time; no frameworks of
spatio-temporal types are defined. Over the past decade, Lorentzos has
studied the inclusion of a generic interval column data type in multiple
papers [Lorentzos and Mitsopoulos 1997]. This type may be used for
representing time intervals as well as lengths, widths, heights, etc.

From the other side, it is also possible to generalize spatial data models
to become spatio-temporal. The data model by Worboys [1994] represents
this approach. Here spatial objects are associated with two temporal
aspects and a set of operators for querying is given. However, this model
does not provide an expressive type system, but basically offers only a
single type, termed ST-complex, with a limited set of operations. In
addition, two papers exist that consider spatio-temporal data as a sequence
of spatial snapshots, and in this context address implementation issues
related to the representation of discrete changes of spatial regions over
time [Kampke 1994; Raafat et al. 1994].

Sistla et al. [1997] present a model for moving objects along with a query
language. This model represents the positions of objects as continuous
functions of time. However, the model captures just the current and
anticipated, near future positions, in the form of motion vectors. The main
issue addressed is how often motion vectors need to be updated to guaran-
tee some bound on the error in predicted positions. This model does not
describe complete trajectories of moving objects, as is done in this paper,
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nor does it offer a comprehensive set of types and operations. Moving
regions are not addressed.

Work in constraint databases is applicable to spatio-temporal settings, as
arbitrary shapes in multidimensional spaces can be described. Papers that
explicitly address spatio-temporal examples and models include Grumbach
et al. [1998] and Chomicki and Revesz [1997]. However, this kind of work
essentially assumes the single type “set of constraints” and is not concerned
with types in the traditional sense. Operations for querying are basically
those of relational algebra on infinite point sets. Recent work recognizes
the need for including other operations, e.g., distance [Grumbach et al.
1998].

The Informix Dynamic Server with Universal Data Option offers type
extensibility [Informix Press 1997a]. So-called DataBlade modules may be
used with the system, thus offering new types and associated functions that
may be used in columns of database tables. Relevant to this paper, the
Informix Geodetic DataBlade Module [Informix Press 1997b] offers types
for time instants and intervals as well as spatial types for points, line
segments, strings, rings, polygons, boxes, circles, ellipses, and coordinate
pairs. Informix does not offer any integrated spatio-temporal data types.
Limited spatio-temporal data support may be obtained only by associating
separate time and spatial values. The framework put forward in this paper
provides a foundation allowing Informix or a third-party developer to
develop a DataBlade that extends Informix with expressive and truly
spatio-temporal data types.

Since 1996, the Oracle DBMS has offered a so-called spatial data option,
termed a Spatial Cartridge, that allows the user to better manage spatial
data [Oracle Corp. 1997]. Current support encompasses geometric forms
such as points and point clusters, lines and line strings, and polygons and
complex polygons with holes. However, no spatio-temporal types are avail-
able in Oracle.

The support offered by Oracle resembles the support offered by DB2’s
Spatial Extender [Davis 1998], which offers spatial types such as point,
line, and polygon, along with “multi” versions of these, as well as associated
functions, yielding several spatial ADTs. Like Oracle, spatio-temporal
types are absent.

7. CONCLUSIONS

The contribution of this paper is an integrated, comprehensive design of
abstract data types involving base types, spatial types, time types, as well
as consistent temporal and spatio-temporal versions of these. Embedding
this in a DBMS query language, one obtains a query language for spatio-
temporal data, and moving objects in particular, whose flexibility, expres-
sivity, and ease of use is so far unmatched in the literature. Some unique
aspects of our framework are the following:

—The emphasis on genericity, closure, and consistency.
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—The abstract level of modeling. This design includes the first comprehen-
sive model of spatial data types (going beyond the study of just topologi-
cal relationships) formulated entirely at the abstract infinite point set
level.

—Continuous functions. This is also to our knowledge the first model that
deals systematically and coherently with continuous functions as values
of attribute data types.

—Lifting. The idea of defining a kernel algebra over nontemporal types
that is then lifted uniformly to operations over temporal types seems to
be a new and important concept to achieve consistency between nontem-
poral and temporal operations.

Complete, precise definitions of signatures for all operations and of the
semantics of types and operations have been provided. The usability of the
design as a query language has been demonstrated by example applications
and queries.

In this paper we have restricted attention to moving spatial objects in the
two-dimensional space. This is motivated by the fact that spatial data types
in 2D have been in the focus of database research and are well understood.
Also, the temporal versions of two-dimensional objects are embedded in a
three-dimensional space, which is still easy to comprehend and visualize.
An extension to moving points in the three-dimensional space would
probably not be difficult. However, a comprehensive design like the one in
this paper, including moving volumes, their projection into space, etc.,
seems much more involved and is left to future work.

The next steps in the line of work suggested by this paper are (i) Design
a discrete model. As mentioned earlier, the abstract model of this paper has
to be instantiated by selecting discrete representations. The issues arising
at this step are discussed in some detail in Erwig et al. [1999]. (ii) Given a
discrete model, design appropriate data structures for the types and
algorithms for the operations. (iii) Implement the data structures and
algorithms in the form of a DBMS extension package for some extensible
DBMS interface (e.g., as a data blade).

A design of a discrete model has in the meantime been presented in
Forlizzi et al. [2000], and the implementation of an extension package is
underway.

APPENDIX: Definition of Continuity

We are interested in a generalized definition of continuity that is valid for
all our temporal data types (i.e., types moving(a)), whereas the well-known
classical definition refers only to real-valued functions. The definition
should capture discrete changes. A discrete change occurs when, for exam-
ple, a new point appears in a points value, a curve in a line value suddenly
turns by 90 degrees, or a region value (“from one instance to the next”) is
suddenly displaced to a new position. Intuitively, discontinuity means that
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the value changes in a single step without traversing all the intermediate
stages.

We start by slightly modifying the basic definition of continuity. Since we
are interested in temporal functions, the definition is given for them
directly, rather than in more abstract terms.

Definition 19. Let f: Ajysiant — Ay, and t € A,pgane. f 1S Y-continuous
in ¢ iff

Vy > 0 Je > 0 such that V& < e: (At =), ft)) < v

where v, €, 6 € R, and ¢ is a function ¢ : A, XA, - R.

Hence, continuity ise determined by the function i, which expresses a
measure of dissimilarity of its two arguments. It should be zero iff the two
values are equal, and it should approach zero when the two values get more
and more similar. The definition then says that for any chosen threshold vy,
we can find an e-environment of ¢ where dissimilarity is bounded by .

Definition 20. For any type a to which the moving type constructor is
applicable, the dissimilarity function s is defined as follows:

0 ifx =
a € {int, string, bool} : Y(x, y) { nemY

1 otherwise
a =real : Y(x,y) = lx — yl
a = point : y(p1, ps) = d(p1, ps)

a = points : Y(py, p2) = 2d(p, Py) + ;d(p, Py)
DEr2

pePy

1 1
o =line: (L, Ly) = D f d(c(w), Lydu + >, f d(c(u), Ly)du

cesc(L1) 0 cesc(L1)

a = region : (R, Ry) = size(R{\R,) + size(R;\R,)

Here d(p;, ps) denotes the Euclidean distance between two points, d(p, P)
the distance from p to the closest point in P. Similarly, for a line L, d(p, L)
denotes the distance from p to the closest point in L. Finally, size(R) denotes
the area of a region R.

This means that there are no continuous changes for the three discrete
types; whenever the value changes, a discontinuity occurs. For points,
dissimilarity is the sum over the distances from each point of one set to the
closest point in the other set. For lines, the idea is the same; one just needs
to integrate over the simple curves. For regions, dissimilarity is the area of
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the symmetric difference. Note that the definition fulfils the requirements
stated for ¢ above.

Based on this, the values of our types moving(a) can be partitioned along
the time domain into maximal continuous pieces. For a value u €
A oving(a)» We denote by I'(u) its set of maximal continuous components.
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