Skip to main content
Log in

Role of the Atlantic Multidecadal Oscillation in formation of seasonal air temperature anomalies in the Northern Hemisphere according to model calculations

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Atlantic Multidecadal Oscillation (AMO), associated with variations in oceanic heat transport in the North Atlantic and the Atlantic sector of the Arctic, influences appreciably the climate of the Northern Hemisphere (NH). From the 1970s to early 2000s, there was a growth in the AMO index, coinciding with the trend of global warming. To estimate the AMO contribution to the NH seasonal temperature changes, we analyzed the numerical experiments with the atmospheric general circulation model (ECHAM5) coupled to the thermodynamic model of the upper mixed ocean layer using anomalous ocean heat convergence fluxes associated with the AMO. As part of the research, we studied the relative contribution of anomalous heat fluxes in the Atlantic and the Arctic. It is shown that AMO can explain about 40% of the observed winter and summer temperature changes over the last three decades. The vertical structure of the AMO-related temperature changes has also much in common with empirical estimates. In particular, the model reproduces the Arctic amplification with maximum temperature trends near the surface at high NH latitudes. AMO in the model leads to more probable anomalously cold temperature regimes in February on the territory of Russia, despite the rise of the mean February temperature. Also, we indicated more a probable development of anomalously hot Julys, particularly in European Russia. It is shown that an important contribution to the seasonal variations comes from anomalous heat fluxes in the Arctic, which are generally disregarded when the effect of North Atlantic Multidecadal Oscillation in the Northern Atlantic is modeled. The results obtained indicate an important role of AMO in the formation of weather and climate anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Schlesinger and N. Ramankutty, “An oscillation in the global climate system of period 65–70 years,” Nature (Gr. Brit.) 367(6465), 723–726 (1994).

    Article  ADS  Google Scholar 

  2. T. L. Delworth and M. E. Mann, “Observed and simulated multidecadal variability in the Northern Hemisphere,” Clim. Dyn. 16(9), 661–676 (2000).

    Article  Google Scholar 

  3. M. E. Mann and J. Park, “Global-scale modes of surface temperature variability on interannual to century timescales,” J. Geophys. Res., D 99(12), 25819–25833 (1994).

    Article  ADS  Google Scholar 

  4. M. Latif, E. Roeckner, M. Botzet, M. Esch, H. Haak, S. Hagemann, J. Jungclaus, S. Legutke, S. Marsland, U. Mikolajewicz, and J. Mitchell, “Reconstructing, monitoring, and predicting multidecadal-scale changes in the north atlantic thermohaline circulation with sea surface temperature,” J. Clim. 17(7), 1605–1614 (2004).

    Article  ADS  Google Scholar 

  5. S. K. Gulev, O. Zolina, and S. Grigoriev, “Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data,” Clim. Dyn. 17(10), 795–809 (2001).

    Article  Google Scholar 

  6. I. I. Mokhov, V. A. Semenov, V. Ch. Khon, M. Latif, and E. Rekner, “Correlation between climate anomalies in Eurasia and North Atlantic and natural variations in Atlantic thermohaline circulation from long-term model calculations,” Dokl. Akad. Nauk 419(5), 687–690 (2008).

    Google Scholar 

  7. I. I. Mokhov, D. A. Smirnov, and A. A. Karpenko, “Estimates of a correlation between variations in the global near-surface temperature with different natural and anthropogenic factors on the basis of observation data,” Dokl. Akad. Nauk 443(2), 225–231 (2012).

    Google Scholar 

  8. A. B. Polonskii, “Global warming, large-scale processes in the “ocean-atmosphere” system, thermohaline catastrophe and their impact on the climate of Atlantic-European region,” in Modern Oceanology Problems (Marine Hydrophysical Institute, National Academy of Sciences of Ukraine, Sevastopol, 2008), is. 5 [in Russian].

    Google Scholar 

  9. V. A. Semenov, “Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region,” Dokl. Earth Sci. 418(1), 91–94 (2008).

    Article  ADS  Google Scholar 

  10. V. A. Semenov, I. I. Mokhov, and M. Latif, “Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades,” Izv. Atmos. Ocean. Phys. 48(4), 355–372 (2012).

    Article  Google Scholar 

  11. V. Semenov, M. Latif, D. Dommenget, N. S. Keenlyside, A. Strehz, T. Martin, and W. Park, “The impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature,” J. Clim. 23(21), 5668–5677 (2010).

    Article  ADS  Google Scholar 

  12. J. R. Knight, C. K. Folland, and A. A. Scaife, “Climate impacts of the atlantic multidecadal oscillation,” Geophys. Rev. Lett. 33(17) (2006). doi 10.1029/2006GL026242

    Google Scholar 

  13. R. T. Sutton and D. L. R. Hodson, “Atlantic ocean forcing of North American and European summer climate,” Science 309(5731), 115–118 (2005).

    Article  ADS  Google Scholar 

  14. R. T. Sutton and D. L. R. Hodson, “Climate response to basin-scale warming and cooling of the North Atlantic Ocean,” J. Clim. 20(5), 891–907 (2007).

    Article  ADS  Google Scholar 

  15. I. I. Zveryaev and S. K. Gulev, “Seasonality in secular changes and interannual variability of European air temperature during the twentieth century,” J. Geophys. Res. 114, D02110 (2009). doi 10.1029/2008JD010624.

    ADS  Google Scholar 

  16. E. Roeckner, G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, and A. Tompkins, The Atmospheric General Circulation Model ECHAM 5. Part I. Model Description (Max Planck Inst. Meteorol., Hamburg, 2003).

    Google Scholar 

  17. Q. J. Meng, M. Latif, W. Park, N. S. Keenlyside, V. A. Semenov, and T. Martin, “Twentieth century walker circulation change: data analysis and model experiments,” Clim. Dyn. 38 (2012).

  18. V. A. Semenov, M. Latif, J. H. Jungclaus, and W. Park, “Is the observed NAO variability during the instrumental record unusual?,” Geophys. Rev. Lett. 35, L11701 (2008). doi 10.1029/2008GL033273

    Article  ADS  Google Scholar 

  19. J. W. Hurrell, J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, “A new sea surface temperature and sea ice boundary dataset for the community atmosphere model,” J. Clim. 21(19), 5145–5153 (2008).

    Article  ADS  Google Scholar 

  20. J. Hansen, R. Ruedy, J. Glascoe, and M. Sato, “GISS analysis of surface temperature change,” J. Geophys. Res., D 104(24), 30997–31022 (1999).

    Article  ADS  Google Scholar 

  21. R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousky, H. Dool, R. Jenne, and M. Fiorino, “The NCEP 50-year reanalysis: monthly means CD-ROM and documentation,” Bull. Amer. Meteorol. Soc. 82(2), 247–267 (2001).

    Article  ADS  Google Scholar 

  22. R. G. Graversen, T. Mauritsen, M. Tjernstrom, E. Källén, and G. Svensson, “Vertical structure of recent arctic warming,” Nature (Gr. Brit.) 451(7174), 53–56 (2008).

    Article  ADS  Google Scholar 

  23. J. A. Screen and I. Simmonds, “The central role of diminishing sea ice in recent arctic temperature amplification,” Nature (Gr. Brit.) 464(7293), 1334–1337 (2010).

    Article  ADS  Google Scholar 

  24. I. I. Mokhov and I. A. Gorchakova, “Radiative and temperature effects of the 2002 summer fires in Moscow region,” Dokl. Akad. Nauk 400(4), 528–531 (2005).

    Google Scholar 

  25. I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47(6), 653–660 (2011).

    Article  Google Scholar 

  26. V. Petoukhov and V. A. Semenov, “A link between reduced Barents-Kara Sea ice and cold winter extremes over northern continents,” J. Geophys. Res. 115, D21111 (2010). doi 10.1029/2009JD013568

    Article  ADS  Google Scholar 

  27. C. Schar, P. L. Vidale, D. Luthi, C. Frei, C. Haberli, M. A. Liniger, and C. Appenzeller, “The role of increasing temperature variability in European summer heatwaves,” Nature (Gr. Brit.) 427(6972), P. 332–336 (2004).

    Article  ADS  Google Scholar 

  28. I. I. Mokhov and A. M. Obukhov, “Action as an integral of climatic characteristic structures: Estimates for atmospheric blockings,” Dokl. Akad. Nauk 409(3), 403–406 (2006).

    Google Scholar 

  29. I. I. Mokhov, V. A. Semenov, V. Ch. Khon, and F. A. Pogarskii, “Change of sea ice extent in the Arctic and the associated climatic effects: detection and simulation,” Led Sneg 122(2), 53–62 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zuev.

Additional information

Original Russian Text © V.A. Semenov, E.A. Shelekhova, I.I. Mokhov, V.V. Zuev, K.P. Koltermann, 2014, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.A., Shelekhova, E.A., Mokhov, I.I. et al. Role of the Atlantic Multidecadal Oscillation in formation of seasonal air temperature anomalies in the Northern Hemisphere according to model calculations. Atmos Ocean Opt 27, 253–261 (2014). https://doi.org/10.1134/S1024856014030087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856014030087

Keywords

Navigation