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Abstract—Hyperspectral imaging technology are widely used in
vegetation, agriculture, and other fields, especially in land cover
classification of complex scenes. Higher spectral resolution has
become the focus of the development of hyperspectral imaging
technology for classification. The advent of airborne AISAIBIS
sensor reaches 0.11 nm ultrahyperspectral resolution. The ultrahy-
perspectral imagery shows great advantages in classification with
its increasing spectral resolution. But its spatial resolution is limited
because of the imaging mechanism, which brings great difficulties
to the accurate extract of fine and regular objects. Therefore, we
proposed an optimal fusion and classification strategy based on
the complementary advantage information of ultrahyperspectral
and high spatial resolution image. The fusion feasibility and effec-
tiveness were verified by various fusion methods. And a quality
evaluation system was developed to assess the quality of fusion
results. Besides, a multiresolution segmentation optimization and
classification evaluation scheme was proposed to comparatively
analyze the effect of optimal fusion result on improving classifica-
tion accuracy. Results show that the classification accuracy of the
optimal fused image reaches 88.10%, and 7.11%-19.03% higher
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than that of original images. It fully validates the effectiveness of
the strategy proposed in this article.

Index Terms—AisalBIS sensor, classification, fusion, phase
camera, ultrahyperspectral resolution.

1. INTRODUCTION

YPERSPECTRAL imaging technology plays a vital role
H in precision monitoring of agriculture, forestry manage-
ment, environmental governance, detection of vegetation dis-
eases, and other fields [1], [2], [3], [4], [5], [6], [7]. In particular,
land cover classification is the basis and crucial part of the
above-mentioned fields. Its development is more inseparable
from hyperspectral remote sensing technology. In recent years,
hyperspectral image classification received extensive attention
in classification studies [8], [9]. It has become a significant
way to promote the development of classification research with
the data advantage of fast, large-scale, and high information
dimension. For further precise land cover classification, hyper-
spectral sensor with higher instrument performance is urgently
required. It poses extremely high challenges not only for spatial
and spectral resolution, but also for the stability and accuracy of
the system [10].

The advent of airborne AISAIBIS sensor has achieved ultra-
hyperspectral resolution of 0.11 nm. AISAIBIS sensor is the
commercial application of the FLUO module of hyperspectral
plant imaging spectrometer system for European Space Agency
Earth Exploration Project (FIEX) [11]. The ultrahyperspectral
image obtained by AISAIBIS sensor can provide richer and
finer spectral information than existing public hyperspectral
datasets [12], [13], [14], [15], [16], [17]. Rich spectral informa-
tion brought by hyperspectral image provides many important
features to ground object recognition. Therefore, it will play
a huge role in improving the recognition accuracy of different
objects in complex land cover scenarios.

However, the spatial resolution of the ultrahyperspectral im-
age is greatly limited. Because the precise spectral resolution
reduces the effective detection energy of each spectral band of
the sensor, resulting in the performance decrease of parameters
such as spatial resolution and signal-to-noise ratio. While finer
spatial information is essential for maintaining the regularity and
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integrity of the object boundary, and the accurate identification
of well-textured objects [18]. At present, there have been many
studies of hyperspectral and high spatial resolution data fusion
to solve the problem of the spatial resolution deficiencies in
hyperspectral classification [19]. Fused images are considered
to contain both advantages of high spatial and hyperspectral
resolution images. Thereby it can provide richer spatial detail
and spectral information for classification.

Chen et al. [20] carried out multisource remotely data fu-
sion (hyperspectral, multispectral, and DEM) for land cover
classification research. Results show that coarse-resolution data
(hyperspectral) was superior to map detailed forest types after
adding fine-resolution data (multispectral). Besides, Song et al.
[21] used various fusion methods to conduct object recogni-
tion experiment based on multispectral and panchromatic data.
Compared with multispectral image, the recognition accuracy
of some ground objects was significantly improved after fusion.
Yokoya et al. [22] compared and analyzed the effect of ten
fusion methods based on hyperspectral and multispectral data
fusion. Their performance of classification in different datasets
was tested. It was found that Hysure method achieved the highest
classification accuracy in Pavia University dataset. Further, some
scholars have developed fusion strategies using deep learning
methods [23].

In summary, various fusion researches show that: the land
cover classification by fusing images with different spatial
resolution is superior to that only using hyperspectral data. It
can effectively supplement the problem of insufficient spatial
information of hyperspectral data in ground object recognition
[24]. However, whether these strategies are suitable for the
fusion of ultrahyperspectral data and higher spatial resolution
data remains to be verified.

In fusion research based on ultrahyperspectral and high spatial
resolution data, the following points should be noticed.

1) The existing fusion strategies are susceptible to varying
degrees of information loss [25]. Images with different
resolutions not only contain redundant information to
be removed, but also have complementary advantage in-
formation for classification. Information loss leads to the
important features of original images not being maximum
preserved [25], [26], [27].

2) The existing fusion methods lack an effective and uniform
evaluation system. To assess the quality and robustness of
the fused images, an appropriate evaluation mechanism is
needed [28].

3) The object segmentation is an essential part in object-
oriented classification [29]. The optimal settings of seg-
mentation parameters vary greatly from data to data during
the segmentation process [30].

This article proposed an optimal spatial-spectral information
fusion strategy for classification based on high spatial resolution
image from Phase camera and ultrahyperspectral resolution im-
age from AISAIBIS sensor. The main contributions of this article
were as follows: developing a variety of spatial-spectral infor-
mation fusion strategies to solve the resolution inconsistency
and mismatch of data sources from different sensors; building a
quality evaluation system from the aspects of brightness, shape,
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TABLE I
PARAMETER SETTINGS OF AISAIBIS SENSOR

Parameter Setting Value Setting

Binning 2x2

Spectral sampling 0.11 nm
Frames per second (FPS) 60
Ground pixel size I m

Flight Altitude 1450 m
Spatial pixels 768

FPS Width 768 m

texture, and spectrum to evaluate the ability of fused images in
retaining spatial detail and spectral advantage information of the
original data; developing a multiresolution segmentation opti-
mization scheme based on the spatial and spectral characteristics
of different data sources to generate their optimal segments for
classification; and using object-oriented classification method
to compare the contribution of the data before and after fusion
to the improvement of land cover classification. This article is
believed to be valuable for further research of ultrahyperspectral
image in fusion and land cover classification.

II. SYSTEM DESCRIPTION AND STUDY AREA

A. Airborne Campaign Based on AISAIBIS Sensor and Phase
Camera

Airborne campaign was conducted between 03:00 and 04:00
(UTC TIME) on May 25, 2020, using AISAIBIS sensor (ultra-
hyperspectral imaging spectrometer) combined with Phase One
iXU-RS 1000 aerial camera (high spatial resolution imaging
equipment).

AISAIBIS sensors utilize SPECIM imaging spectrometer
with high transmittance (F/1.7) and the new camera detection
technology, sSCMOS. It can maintain ultrahigh spectral sampling
accuracy (0.11 nm) and excellent image quality. Its massive
spectral information is particularly valuable for improving the
accuracy of ground object recognition that has small differences.
Besides, even in fast imaging flight conditions, AISAIBIS still
has low noise, and high dynamic acquisition range. Table I gives
the parameter settings of the AISAIBIS sensor during the flight
campaign.

Phase camera provides high spatial resolution image with
superior image quality. Its spatial resolution is as high as 0.133
m, which provides rich spatial detail information and texture in-
formation for different ground object identification in land cover
classification. It is developed by industry-leading experts and
technical teams. In terms of hardware, it can ensure compliance
with the requirements of aerial photography of various scenes.



QU et al.: FUSING ULTRAHYPERSPECTRAL AND HIGH SPATIAL RESOLUTION INFORMATION 1603
TABLE II 108°0'0"E 116°0'0"E 124°0'0"E 109°26'0"E 109°26'30"E
PARAMETER SETTINGS OF PHASE CAMERA ; ; - ' : !
o Taiwon - \ 3
z| o _ >
Parameter Setting Value Setting h - |2
i g
Focal length (mm) 50.0 South China Sea
z
B
CCD pixel size (um) 4.6 2 |2
Legend =
CCD Width (mm x mm) 40.0568x%53.3968 -:ﬂm;
amboo
[0 construction
. . wasteland z
Ground pixel size 0.133 £l ater £
Relative flying height 1450m () N (b) 0 02 04km
Fig. 2. Location of the study area. (a) Study area in Hainan Province.
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Fig. 1. Integration of airborne detection system. (a) System environment.
(b) Installation and distribution of sensors.

In terms of software, it provides a variety of software solutions
to seamlessly connect the entire acquisition and pre-processing
process [31]. Table II gives the parameter settings of the phase
camera during the flight campaign.

To ensure data acquisition process of the two sensors is
synchronous, both sensors must be in the same coverage scene,
climatic conditions, acquisition time, and lighting conditions.
Therefore, we integrated the two sensors and fixed them to
different locations of the same manned airborne detection device
(see Fig. 1). On this basis, an inertial navigation system was
added to record the flight trajectory.

B. Overview of the Study Area

The study area of this article is situated in Xiqing, cen-
tral Danzhou City, Hainan Province, China [see Fig. 2(a)].
Geographically, it lies in latitudes between 19°32'22"N
and 19°33’48"N, and longitudes between 109°25'50"E and
109°26/31”E. It covers a total area of 1.9 km? with an average
altitude of 100m above the mean sea level.

The ground validation data [see Fig. 2(b)] was obtained
through field surveys based on field sampling of the land-cover
types. Based on the field surveys, the study site was classified
into arbor forest (arbor), bamboo forest (bamboo), water body
(water), construction land (construction), and wasteland.

In the entire experimental area, arbor land accounts for the
highest proportion, covering more than 80%. Construction land

(b) Ground validation data of the study area.

Ultra-hyperspectral Resolution Image High Spatial Resolution Image

_ Optimal Spatial-spectral Fusion Strategy for Maximum
: " , :

of Spatial-sp

Quality Evaluation of Fusion results

Qualitative Analysis itative A:

|
|
|
|
|
ui |
|
|
|
» ] —
| shape texture spectrum
|
|
|
|
|
|
|

Information Extraction

Spatial Registration

Spatial-spectral Fusion

|
[ I 1
Nearest Neighbor Diffusion Gram-Schmidt
Pan Sharpening “Transform

brightness pearure feature feature

\ \ \ |
I

the Optimal Fusion Result

Pansharp

the Optimal Segments of

Data with Different Sources the Optimal Fusion and Classification Strategy

Pl Seepentazion Comparison Analysis of Land Cover Classification
[ Optimization for Classification ,,,}
| | |
! |
| | RF classifier Classification Method — —— SVM classifier
| Segmentation Purameter Optimization !
i
|
| y—’—\ | ‘ C ive Visual Classif
| h .
! = S— shape | Analysis Accuracy Evaluation
|
! . | OA KIA
|
! i
| |
| i

Fig. 3. Framework of fusing ultrahyperspectral and high spatial resolution
information for classification based on phase camera and AISAIBIS sensor.

and bare land are secondary. In which the construction land
mainly includes residential land, traffic land, and other lands
for public facilities. Bare land is covered with a small amount
of grass. Bamboo land and water body account for the lowest
proportions, of which bamboo covers only one place, and water
body covers six small places.

Tobe used in land cover classification, Training samples (1050
points) and test samples (450 points) were obtained by random
sampling from ground validation data.

III. METHODS

The strategy of spatial-spectral fusion and classification based
on high spatial resolution image from Phase camera and ultrahy-
perspectral resolution image from AISAIBIS sensor is presented
in Fig. 3.

First, the spatial-spectral fusion experiments were carried out
in three steps: spatial registration between images, and feature
extraction; selection of fusion methods, and quality evaluation
of fusion results. It used three fusion methods in this process,
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including Pansharp (PS), Gram—Schmidt (GS) transform, and
nearest neighbor diffusion pan sharpening (NND) [32], [33],
[34]. The best fusion result was filtered through subjective and
quantitative analysis indicators. Then, the multiresolution seg-
mentation optimization for classification evaluation was carried
out in two steps.

1) Multiresolution segmentation optimization through con-
stant adjustment of parameters combination [35].

2) Classification of the segments by support vector machine
(SVM) classifier and random forest (RF) classifier, respec-
tively.

Based on the classification results, comparative accuracy eval-

uation was conducted to further verify the effectiveness of the
result of the optimal spatial-spectral information fusion strategy.

A. Strategy of Optimal Spatial-Spectral Information Fusion
for Maximum Preservation of Spatial-Spectral Information

Different sensors have different physical properties and imag-
ing principles. So that there is not a one-to-one correspondence
between the ground objects in the resulting images of different
sensors. This will not only exacerbate the spatial-spectral fu-
sion error, but also seriously reduce the classification accuracy.
Therefore, spatial geometry registration is necessary in this
section. It is to match two or more images taken for the same
object from different sensors, times, or angles. In this article,
high spatial resolution image from Phase camera was taken as
reference image. And ultrahyperspectral resolution image from
AISAIBIS sensor was taken as image to be registered. To ensure
a one-to-one correspondence between the ground objects of the
reference image and image to be registered, 51 tie points were
identified according to the invariance, uniqueness, stability, and
independence. Based on those tie points, the quadratic polyno-
mial correction model was selected to match images obtained
by AISAIBIS sensor and phase camera [36].

However, spatial geometry registration only solves the image
matching problem. The data redundancy generated by massive
ultrahyperspectral and high spatial resolution information also
has a significant impact on fusion quality and classification
accuracy. Some studies have shown that abundant spectral in-
formation may bring about the “curse of dimensionality” [37].
Therefore, feature extraction is also an important part in this
section. To achieve effective selection of key information from
high-dimensional spectral features, we selected principal com-
ponent analysis (PCA) as spectral feature extraction method.
The spectral information of the image can be greatly preserved
through this method.

The characteristics of different data sources differ widely.
Their fusion requirements also vary widely. Therefore, methods
selection for spatial-spectral fusion in this article is the main
difficulty. This article selected three different fusion methods
(PS, GS, and NND) to achieve the efficient fusion of advantage
information of high spatial resolution image and ultrahyperspec-
tral resolution image that is beneficial to classification.

PS is to calculate the relationship of the grey value of high
spatial and ultrahyperspectral resolution images. It matches the
grey value of the fusion band to the best by the least variance
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technology [38]. Then, grey distribution of a single band is
adjusted to reduce the color deviation of fused images [39]. It can
realize the simultaneous fusion of multiple bands. Spectral and
spatial features of the original images can also be well retained
(that is high fidelity).

GS begins with the simulation of low spatial resolution Pan
image based on high spatial and ultrahyperspectral resolution
images [seen in (1)] [40]. Then, multidimensional linear or-
thogonal transformation is carried out based on simulated image
and ultrahyperspectral image. After that, GS inverse transform
is performed to get fused images [seen in (2)—(5)] [41]. For
fused images obtained by this method, the components after the
transformation are orthogonal. The order of the components is
not sorted by the size of information contents. This method has
high-fidelity characteristics. It also has no limits on the number
of the original image bands. While this method usually takes
longer time than other methods when the source data are large

k

P:ZWiXBi (H

i=1

where P is the gray value of the simulated image; ¢ is the band
number; k is the total number of bands; W is the weight; and
B; is the ith gray value of the hyperspectral image
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where GSr is the Tth component after GS transformation; By is
the Tth band of the original ultrahyperspectral image; and pp is
the mean gray value of the 7th band of ultrahyperspectral image
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where ¢(Br, GS;) is the covariance of the Tth band of ultra-
hyperspectral image; o the sample standard deviation of the
T-band of ultrahyperspectral image; C' is the number of columns
of the image; and R is the number of rows of the image.

NND is a method with high operation efficiency and high
speed [42]. First, ultrahyperspectral resolution image is adjusted
to the same spatial resolution as high spatial resolution image.
Then spectral contribution vectors of the same frequency band
number are obtained by linear regression. Finally, each pixel
spectrum of fused image is weighted by adjacent pixels of the
original hyperspectral image. The weight is determined by high
spatial resolution image diffusion model [43]. Through this
method, color distortion can be reduced. And the integrity of
the spectrum before and after fusion can be preserved.
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B. Quality Evaluation for Selection of the Optimal
Spatial-Spectral Information Fusion Strategy

To assess the quality and robustness of fused images, this
research separately selected two evaluation indexes: subjective
and quantitative analysis. Subjective analysis mainly depends
on visual comparison from spectrum, shape, and texture. Quan-
titative analysis is mainly represented by indicators based on
rigorous mathematical models. Three indicators were selected
for quantitative analysis: mean value indicator (AVG); standard
deviation (STD); and correlation coefficient (CORR) [44].

AVG is used to evaluate image intensity. It is the arithmetic
mean of grey values of all pixels in the image [seen in (6)]. If
AVG is too large or too small, the brightness of the image will
be affected

1 M N
AVG = =% > [ (i) (6)

i=1 j=1

where f (i, j) represents gray value of each pixel, M is number
of image pixel rows, and N is number of image pixel columns.

STD is an indicator for description of spatial information. If
STD value is too small, the image contrast is not obvious, which
means that some spatial details cannot be displayed. STD is
defined as

M N
1 L. 2

ST =\ T 2 2 U (09~ VG O

CORR reflects the correlation degree between images before

and after fusion. Larger CORR means that the fused image is
closer to original image, resulting in better spectral fidelity

CORR =
S SN [(Fius (.5)~AVGi) X (fori(i,1) ~AV G )]
VM S0 (s (6:0) AV G 2] X L SO0 [(foi(1:7)~ AV Gron)? |
(8)
where frs(, 7) is pixel value of fused image, fo:i(4, j) is pixel

value of original image, AV Gy is the mean pixel value of fused
image, and AVG,,; is mean value of original image.

C. Optimization of Multiresolution Segmentation for Land
Cover Classification

Multiresolution segmentation starts with a single pixel. It
merges adjacent pixels of the single pixel into polygon objects.
After that, adjacent objects are merged based on heterogeneity
least principle. Repeat this step until all pixels are fused into
the object. Eventually all pixels are converted into evenly dis-
tributed adjacent objects. In this process, the parameter settings
determine the final segmentation quality. The parameter value
is determined by not only the image characteristics, but also the
geographical environment of the area.

Segmentation parameters include scale factor, shape factor,
color factor, compactness factor, and smoothness factor (see
Fig. 4) [45]. Scale factor affects the size of segments. High scale
value leads to large objects. Lower scale value produces smaller
objects, even fragmented objects [46]. Shape factor optimizes
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segmentation
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Principle of parameter settings of multiresolution segmentation.

scale factor
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Fig. 4.

the spatial consistency of segments. It interacts with color factor.
Color factor is closely related to spectral distribution. Over
high weight of shape factor leads to the quality decrease of
segments. Compactness factor interacts with smoothness factor
to the optimization of object consistency. High weight of the
compactness factor is benefit to objects with regular shape and
complex structure.

D. Comparative Evaluation of Classification Based on the
Optimal Spatial-Spectral Information Fusion Strategy

To verify whether the fused images are effective for improving
the classification accuracy, we performed two popular machine-
learning classifiers (SVM and RF) in this research, and analyzed
the classification results. In addition, the confusion matrix was
used to further evaluate the classification results of different
classification methods, and to verify the effectiveness of the
fusion optimization strategy.

SVM classifier is a supervised classification method [47]. Its
principle is finding a hyperplane in a set of distributed decision
boundaries at the beginning. In this hyperplane, classification
error of the model is required very close to zero, especially
classification error of the unknown dataset should be reduced
as much as possible. Then objects are classified by finding the
decision boundary with the largest boundary. This method has
good robustness. Whether few samples or large redundant sam-
ples, it is always good at grasping key samples for training and
classification. Besides, this method avoids “dimension disaster”
to some degree [48].

RF classifier consists of many decision trees. The input data is
required to be entered into each decision tree for classification.
First, training samples are randomly selected using bootstrap
sampling method. Then, feature subsets are randomly selected
from all features. When each tree reaches its maximum, the
classification process is over. There is no need to prune the
decision tree during the process. This method is good at handling
data with many features. It has strong resistance to overfitting
[49].

In the classification process, both classifiers require a certain
proportion of training samples and validation samples for classi-
fication. Therefore, we selected 1500 random points as samples
based on the ground validation data. Ultimately, this article used
70% samples as training samples, and other 30% samples as
validation samples.

Besides, to quantitatively assess the classification effective-
ness of the optimal fusion result, accuracy evaluation is an
effective way. Before calculating the classification accuracy,
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Fig. 5. Flight experiment results. (a) High spatial resolution image.
(b) Ultrahyperspectral resolution image.

validation samples with sufficient proportion should be gener-
ated. The measurement of the classification effectiveness was
generated by the overall accuracy (OA), and the Kappa index
(KTA) based on the error matrix. OA is the ratio of the number
of correctly classified samples to the number of all samples. KIA
is calculated using the information of the entire error matrix. It
is an indicator of the consistency test

N .o
0A — 2= ©)
n
PP
KIA = T (10)
PO (EL Tji kY 9%)
= — )

where n is the total pixel numbers participating in the classifica-
tion; NN is the number of rows (or columns) of the error matrix;
1 is the row number of the error matrix; j is the column number
of the error matrix; and P is the value of OA.

IV. RESULTS

A. Acquisition Results of Ultrahyperspectral and High Spatial
Resolution Images

Fig. 5(a) shows the high spatial resolution image obtained by
Phase camera. It has 0.133 m spatial resolution and RGB bands.
The ultrahyperspectral resolution image obtained by AISAIBIS
sensor is shown in Fig. 5(b). It has 1004 bands with 0.11 nm
ultrahyperspectral resolution, and wavelength from 669.84 to
780.32 nm. Besides, both images complete the data preprocess-
ing of atmospheric correction and radiation correction before
the study.

The size of the high spatial resolution image is 9627 x 21968.
Its data volume is 806.75 MB. The ultrahyperspectral resolution
image has a larger data volume (5.69 GB), with the size of 1155
x 2634.
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Fig. 6. (a) Location of the detailed display area in the high spatial resolution
image. (b) Before image registration, (c) After image registration.

B. Selection of the Optimal Fusion Strategy for Maximum
Spatial-Spectral Information Preservation

1) Results of Spatial Registration and Ultrahyperspectral
Information Extraction: The results of the spatial geometry
registration experiment are shown in Fig. 6. In the process of
spatial geometry registration, the overall root mean square error
of 51 tie points was controlled bellow 0.50 [50]. The comparison
before image registration indicates that roads in two images do
not overlap [see Fig. 6(b)]. After spatial registration, obvious
geometric deviation of them was well eliminated [see Fig. 6(c)].
Roads in high spatial and ultrahyperspectral resolution images
match exactly.

In spectral transformation step, 1004 bands of ultrahyper-
spectral resolution image are turned into 1004 principal com-
ponents (PCs). All spectral information in the 1004 bands of
ultrahyperspectral resolution image is sorted by spectral feature
importance, which is included in each PC at different weights. To
highlight meaningful parts of the spectral transformation result,
we picked the eigenvalues of the first 10 PCs, which arranged in
descending order of total eigenvalues [see Table III].

To get the final feature extraction results, we extracted the
first 7 PCs of the transformation result of ultrahyperspectral
resolution image. Based on the screen plot test, the feature
extraction results include the inflection point (i.e., the indi-
cators of that PC change are basically unchanging), and its
previous points. From Table III, it can be clearly seen that the
changes of indicators of PC7 and subsequent PCs tend to be
stable.

2) Quality Analysis of Fusion Results Based on Optimal
Spatial-Spectral Information Fusion Strategy: Fig. 7 shows fu-
sion results of different methods based on high spatial and
ultrahyperspectral resolution information. From visual com-
parison, it is shown that the results of all fusion methods
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TABLE III
INDICATORS OF FEATURE EXTRACTION OF ULTRAHYPERSPECTRAL
RESOLUTION IMAGE
Eigenvalue
Principal
Components Total Variance Cumulative
(%) Variance (%)
PC1 24111850889.53 89.9501 89.950
PC2 2637147835.51 9.8380 99.788
PC3 46118163.93 0.1720 99.960
PC 4 4258166.07 0.0159 99.976
PC5 1857048.14 0.0069 99.983
PC6 451580.45 0.0017 99.984
PC7 360573.45 0.0013 99.986
PC8 217871.25 0.0012 99.987
PC9Y 76276.33 0.001 99.987
PC 10 55275.49 0.001 99.987
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Fig. 7. Results of spatial-spectral fusion experiments with three different
methods. (a) PS result. (b) NND result. (c) GS result.

(see Fig. 7) preserve the spatial shape information of the high
spatial resolution image. But in spectral brightness aspect, fused
images obtained by PS and GS methods have higher spectral
fidelity than fused image of NND method. Besides, in spatial
texture aspect, the result image obtained by GS method contains
more texture information than others. The result image produced
by NND method has a significant loss of texture information.
Further, we selected some detailed areas to clearly show the
fusion outcomes of different fusion strategies through visual
evaluation. They are shown in Fig. 8. As can be seen from

1607

109°26'2"E 109°26"2"E
z | z
3 &
2 &
9 =
2 2

109°26'2"E
> (

zZl z
S T
N K
en | o
on o
N N
— o

109°26'2"E

z M R: Band 1

Erl [ G: Band 2

;r;; M B: Band 3

N

—
0 20 40 m
[

Fig. 8. (a) Original high spatial resolution image. (b) Feature extraction result
of ultrahyperspectral resolution image, and the spatial-spectral fusion results.
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Fig. 8(a) and (b), the covering features of this scene are relatively
complex, including water body, vegetation, construction land,
and bare land. In high spatial resolution images, they have signif-
icant differences in spatial features. In the hyperspectral images
after feature extraction, their spectral differences are also clear.

After fusion, it is found that all fusion methods have different
levels of detail information loss. For the NND result, its infor-
mation is lost seriously. It is almost impossible to recognize
the above ground objects. In contrast, the PS and GS results
completely retain the spatial and spectral information of the
above kinds of ground objects. But the PS result is significantly
affected by light and shadow, such as, the area around the trees.
It leads to mixed spectral phenomena, which interferes with the
recognition of ground objects and inhibits the accuracy of land
cover classification. In summary, we think that the fusion result
obtained by GS method are optimal to land cover classification.

For quantitative analysis, this article selects three indicators
(see Table IV): AVG and STD based on the brightness value of
images before and after fusion, and CORR based on the spectral
information between ultrahyperspectral resolution image and
fusion results. In brightness information aspect, AVG change
trends of the result image of GS method is closer to that of
ultrahyperspectral resolution image. In spatial information as-
pect, STD value of result image of NND method is the highest.
It indicates that the result image of NND method contains more
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TABLE IV
QUANTITATIVE EVALUATION OF THE FUSED IMAGES

Image Type  Band AVG STD CORR
High spatial
resolution 1 97.458 48.990 /
image
1 110252.526 74239.607 1
2 613.866 64708.269 1
Ultra- 3 -296.111 8547.418 1
hyperspectral =, -208.400 2578.169 1
resolution
image 5 -57.519 1714.768 1
6 -9.082 846.836 1
7 -33.398 754.825 1
1 94003.881 93805.582 0.5464
2 19730.474 22864.041 0.2614
3 3222.884 5810.795 0.4983
PS 4 911.593 1513.503 0.3839
5 617.163 900.915 0.3290
6 330.195 579.606 0.3513
7 289.561 494.703 0.3196
1 51340.012 89209.418 0.4033
GS 2 -7085.499 35207.215 0.6387
3 -452.967 6582.975 0.7699
4 -228.932 1952.724 0.7199
5 -50.294 1323.500 0.9212
6 -2.940 534.642 0.3105
7 -35.113 533.552 0.5068
1 177880.714 143501175.172  0.0020
2 30891.463 40604772.880  0.0018
3 3321.998 3854176.735 0.0061
NND 4 1434.089 1932945.412 0.0017
5 1582.236 2162446.576 0.0044
6 621.081 725339.341 0.0031
7 301.435 408700.350 0.0001

spatial information than others. There may be an overfitting phe-
nomenon in this method. In spectral information aspect, CORR
value of GS and PS method are very close. While the correlation
between the result image of NND method and the original image
is weakest, which means that NND method causes serious spec-
tral information loss. Therefore, we considered the GS method
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Fig.9. (a)Original image and multiresolution segmentation results of the high
spatial resolution image. (b) Parameter setting (scale: 50, shape: 0.3, and com-
pactness: 0.5). (c) Parameter setting (scale: 100, shape: 0.3, and compactness:
0.5).(d) Parameter setting (scale: 300, shape: 0.3, and compactness: 0.5).

is superior to the PS method, and then superior to the NND
method.

C. Analysis of Segmentation Optimization and Classification
Results Based on the Optimal Fusion Result and Original
Images

1) Analysis of Segmentation Optimization Results: In mul-
tiresolution segmentation experiment, scale factors was given
50, 100, 300, 500, 800, 1000, 3000, and 5000 [35]. Shape and
compactness factors were given 0.1, 0.3, and 0.5, respectively.
For example, the segmentation results under different scale
factors (50, 100, and 300), the shape factor of 0.3 and the
compactness factor of 0.5 are shown in Fig. 9.

The construction land of the selected area in Fig. 9 has highly
complex spatial and spectral characteristics. There are arbor and
bamboo forests mixed in. It is obvious that in Fig. 9(b), it occurs
excessive segmentation. The segments are seriously broken and
the objects after segmentation are very incomplete. In Fig. 9(d),
the small arbor forests that hidden in the construction are not
divided. All these conditions will increase the risk of misclassi-
fication of ground objects and inhibit the classification accuracy.
In contrast, the segments in Fig. 9(c) obtained an excellent result.
Itis more suitable to the following land cover classification study.
The optimal settings of the shape and compactness factors were
also obtained at the same way.

Ultimately, the optimal parameter settings of every image
were given in Table V, including the parameters of the fusion
image, the original high spatial resolution image, and the original
ultrahyperspectral resolution image. It is found that compactness
setting of 0.5 is suitable to all images. While the optimal scale
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TABLE V
OPTIMAL PARAMETER COMBINATIONS OF MULTIRESOLUTION SEGMENTATION
OF IMAGES BEFORE AND AFTER FUSION

Parameter Sets

Dataset
scale shape  compactness
High spatial 100 0.3 0.5
resolution image
Ultra-hy.pers'pectral 300 03 05
resolution image
Fusion image 3000 0.1 0.5
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Fig. 10. Land cover classification results of SVM classifier. (a) High spatial

resolution image. (b) Ultrahyperspectral resolution image. (c¢) Fusion image.

and shape factors for different images vary greatly. Because over
high scale factor may lead to serious oversegmentation, resulting
in the same object divided into multiple segments. Over low
scale factor may lead to under-segmentation, which means two
or more objects are grouped into the same segment [51].

As givenin Table V, the optimum scale and shape combination
for high spatial resolution image is 100:0.3. From multireso-
lution segmentation optimization result under this parameter
setting in Fig. 9(c), it is observed that each class of different
land-cover types of the image is grouped into individual objects
without being too fragmented. For ultrahyperspectral resolution
image, the optimal scale and shape combination is 300:0.3. And
for the fusion image, segments can be satisfied only when the
optimal scale and shape combination is 3000:0.1.

2) Comparative Analysis of Classification Effectiveness Be-
tween the Optimal Fusion Result and Original Images: Classi-
fication results of the fused image and the original images are
presented in Figs. 9 and 10. For SVM classifier, its kernel type
was “linear,” and the C parameter (the coefficient that minimizes
the error function) was 2. For RF classifier, the tree number
setting of it was 50, and its max features were 16.
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TABLE VI
CLASSIFICATION ACCURACIES FOR SVM AND RF CLASSIFIERS OF IMAGES
BEFORE AND AFTER SPATIAL-SPECTRAL INFORMATION FUSION

SVM classifier RF classifier
Dataset
OA (%) KIA (%) OA (%) KIA (%)
High spatial
resolution 67.04 46.02 72.77 52.90
image
Ultra-
hyperspectral ¢ o¢ 60.98 80.92 63.74
resolution
image
Fusion 86.07 73.85 88.10 77.48
image

From Fig. 10(b) and (c) [or Fig. 11(b) and (¢)], it is known that
rich spectral features of the original ultrahyperspectral resolution
image and the fusion image enhanced the identification of each
class. In particular, the class of water body is well distinguished
in the two images. By contrast, classification results of high
spatial resolution image [see Figs. 10(a) and 11(a)] presented
more and serious misclassification than others. For example,
some arbor forest was classified into bamboo or wasteland. Many
construction objects were misclassified as wasteland, and some
other construction objects are mixed with water. The main reason
for this phenomenon is lack of spectral information. In addition,
there is a lot of impulse noise in classification results of the two
original images. Arbor class of classification results of the two
original images contains plenty of fragmented misclassified ob-
jects. This condition was well improved in fusion classification
result.

Besides, we obtained the accuracy evaluation for classifica-
tion results of images before and after fusion, which include
OA and KIA indicators (see Table VI). The accuracy evalua-
tion results indicate that SVM and RF classifiers get similar
classification results. On the one hand, fusion image produced
the best classification accuracy among all classified images.
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Fig. 12. Comparison of classification results from spectral perspective.
(a) High spatial resolution image. (b) Ultrahyperspectral resolution image.
(c) Fusion image.

It achieved 86.07% OA and 73.85% KIA with SVM classifier.
And in RF classification, it achieved 88.10% OA and 77.48%
KIA. The classification accuracy of fused image improved by
7.11%—-19.03% compared with the original images. On the other
hand, accuracy values of ultrahyperspectral resolution image are
better than that of high spatial resolution image. Specifically, its
OA was improved by 8.15%—11.92%.

Results in this article demonstrates that spatial-spectral infor-
mation fusion can effectively improve the classification accuracy
by combining advantage information of high spatial resolution
image and ultrahyperspectral resolution image that is beneficial
to classification.

V. DISCUSSION

To further analyze the effectiveness of the optimal fusion
strategy in this article, we compared the image classification
results before and after fusion from spectral perspective first.
Fig. 12 shows the areas of arbor class with typical difference in
different classification results. In the classification result of high
spatial resolution image of Fig. 12(a), many large arbor objects
were misclassified into bamboo and wasteland due to the lack
of spectral information. Furthermore, there are some shadow
areas at the time of the original image acquisition (see Fig. 5).
Therefore, spatial features are overused to identify this part as
bamboo forest during the classification process.

In contrast, the misclassification of arbor into other classes
was significantly improved in the hyperspectral classification
result of Fig. 12(b). It can be seen from the fusion image in
Fig. 12(c) that, it fulfils the spectral advantage in classification,
which not only improves the phenomenon of misclassification,
but also greatly weakens the influence of the shadow of the orig-
inal high spatial resolution image on the classification accuracy.
Most of the shaded arbor areas were identified. It is obvious
that the advantages of spectral features of that image are more
superior to spatial features in this classification scene.

Through further analysis, we found that the addition of mas-
sive spatial information in the process of object recognition can
more accurately distinguish the boundary of different objects. It
is liable to accurately distinguish the classes with significantly
different spatial feature. The spatial information used in this
article consists of two parts, spatial geometry information and
spatial texture information. Here we take the Y-shaped wasteland
in Fig. 13 as an example to analyze. The original high spatial
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Fig. 13. Comparison of classification results from spatial perspective.
(a) High spatial resolution image. (b) Ultrahyperspectral resolution image.
(c) Fusion image.
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Fig. 14.  Comparison of the road of construction land between classification
results from spatial perspective. (a) Ultrahyperspectral resolution image. (b)
Fusion image.

resolution image [see Fig. 13(a)] and the fused image [see
Fig. 13(c)] have richer spatial in-formation than the original
ultrahyperspectral resolution image [see Fig. 13(b)]. It can be
seen there are clear regular boundaries between their classifica-
tion results of wasteland and arbor.

Besides, we selected a road in the study area, which is shown
in Fig. 14. It is known that roads of construction land often
have typical spatial features in remote sensing images. Before
classification, it can be seen the road is surrounded by arbor
forests from the original image (see Fig. 5). Furthermore, the
image acquisition time is in the morning of local time. Trees
on both sides of the road are unavoidably shaded by lighting,
causing the acquired road data to be obscured by shadows.
Ultrahyperspectral image uses its finer spectral information to
identify this part of the shadow as wasteland. After analyzed, it
believes that this part produced a shadow spectral signal that is
close to the spectral information of road.

For fused image, it was classified using a combination of
spatial and spectral information. Because of the introduction
of finer spatial features, it extracted this section of the road in its
entirety. It showed the effect of clear boundary. This confirms
that the optimal fusion strategy proposed in this article preserved
the spatial advantage information of the original data, especially
the spatial detail information. It largely removed the interference
of redundant parts from massive spatial and spectral information.

VI. CONCLUSION

This article explores and validates the optimal fusion strategy
of high spatial and ultrahyperspectral resolution information,
and the spatial-spectral fusion to the improvement of the classi-
fication accuracy. It is concluded that the spatial-spectral fusion
strategy if our research can preserve the spatial and spectral
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information of the original images very well. Applying the
optimal fusion result to classification, it is considered that the
classification accuracy of the fused image can be greatly im-
prove. In summary, the ultrahyperspectral resolution image of
our research is worth of further studying in the application of fu-
sion, precise classification, and even tree species identification.
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