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ABSTRACT Accurately representing periodic behavior is a frequently encountered challenge in modeling
time series. This is especially true for observations where multiple, nested seasonalities are present, which
is often encountered in data that pertain to collective human activity. In this work, we propose a new
method that models seasonality through the multilinear representations that characterize low-rank tensor
decompositions. We show that the tensor formalism accurately describes multiple nested periodic patterns,
and well-known tensor decompositions can be used to parametrize cyclical patterns, leading to superior
generalization and parameter efficiency. Furthermore, we develop a Bayesian variant of our approach which
facilitates extraction of these seasonal patterns in an interpretable fashion from large-scale datasets, providing
insight into the underlying dynamics that create such emergent behavior.We lastly test our method in missing
data imputation, where the results show that our method couples interpretability with accuracy in time series
analysis.

INDEX TERMS Time series analysis, nonnegative tensor factorization, seasonality, tensor decomposition,
Bayesian model selection.

I. INTRODUCTION
Dealing with seasonality, or periodic behavior, is a com-
mon and challenging task in time series analysis [1],
[2] [3, Ch. 6]. This becomes even more challenging in con-
texts where multiple, nested seasonality patterns are present.
Given the rhythms that determine human behavior, this is
all too common in datasets that record aspects of collective
human activity. For example, electricity demand in a city
or total foot traffic in a university campus would involve
multiple seasonal patterns, ranging from hourly to yearly
cycles. In this work, we investigate a simple yet effective way
of modeling seasonality in time series with arbitrarily many
hierarchical seasonal components. Namely, we propose low-
rank hierarchical seasonality (LRHS) that prescribes casting
the problem as tensor decomposition, which allows us to
utilize the mature arsenal for such methods to be used directly
for this task. Moreover, to facilitate efficient extraction of
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interpretable seasonal patterns, we introduce a Bayesian ver-
sion of our method (BLRHS), that not only helps make sense
of very large data sets by distilling useful multi-seasonal
patterns, but also demonstrates high accuracy in missing
data imputation tasks. Our work complements and improves
upon previous work that utilizes matrix/tensor decomposi-
tions in time series research. As a preview of our results,
Figure 1 illustrates an analysis on NewYork City Yellow Taxi
dataset, where by examining our model’s latent factors we
discover how complex weekly travel patterns change with the
start of the Covid-19 pandemic.

Let yt ∈ R represent a uniformly sampled univariate time
series indexed by t ∈ N, such that y = (yt )Tt=1. Borrowing the
notation of the classical time series decomposition [4, Ch. 6],
one can model yt via the additive decomposition

yt = ℓt + st + εt ,

or a multiplicative decomposition yt = ℓt · st · εt ; where
ℓt is a trend-cycle component, st is the seasonal compo-
nent, and εt are residual terms. The seasonal component st
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FIGURE 1. Changing dynamics of New York City Yellow Taxi rides through the start of Covid-19. See Section V-B for more details. Figure a: Analysis of
the latent factors clearly show the transition around 11th week of 2020, just as pandemic measures came into place. The weeks before and after 11th
week load onto different latent factors according to our model. Figure b: Pre-Covid and Covid travel patterns as implied by our model’s latent factors
(lighter color implies busier). With the pandemic measures, travel patterns are strongly restricted to daytime activities, most dramatically observed
through the disappearance of late night, entertainment-related travel on weekends.

is modeled via a repeating fixed-length pattern, m ∈ RP,
where P ∈ N is the period of the data known a priori.
One then sets st = mt mod P, where mod denotes the modulo
operator. Estimation of the classical decomposition is simple.
In the additive case, this would involve first detrending the
data via ℓt , the suitably chosen moving average, and then
taking seasonal deviations mi, i ∈ {1, · · · ,P} as simple
averages of deviations for season i. Within this general frame-
work, STL and Holt-Winters methods can be thought of as
variations where the trend-cycle and seasonal component
estimates take different parametric forms and are updated
through time. We refer the reader to [4] for a review of these
methods.

Our focus here will be on the dimensionality of the sea-
sonal component m. In many common modeling tasks, the
time series or signal contains multiple nested periodic pat-
terns. For example, in data sampled at minutely frequency,
there could be hourly, daily, and weekly periodic behav-
ior all at once. Representing such seasonal patterns with
methods above requires dimensionality of m = [mi]Pi=1
to be 60 × 24 × 7 = 10080. To tackle this problem of
very long seasonal patterns with nested structure, so-called
multiple-seasonal heuristics have been proposed [5]. For
example, given a short period of P1 and a longer period
P1 × P2, one could write st = s(1)t s(2)t defining s(1)t =

m(1)
t mod P1

and s(2)t = m(2)
⌊t/P1⌋ mod P2

where m(1)
∈ RP1 and

m(2)
∈ RP2 . Concretely, if we are interested in hourly

sampled data with both daily and weekly patterns, our nota-
tion suggests setting P1 = 24 and P2 = 7. By view-
ing seasonality as the multiplication of an hour-of-day and
day-of-week patterns, this model assumption conveniently
reduces the dimensionality of seasonality parametersm from
24 × 7 to 24 + 7.

In this work, we extend such multiple seasonal patterns in
two directions. First, we introduce N -many nested period-
icities P1,P2, . . . ,PN . Second, we assume that an array of
individual multiseasonal patterns can be combined, e.g.,

st =

∑
r

s(1,r)t s(2,r)t , (1)

where s(1,r), s(2,r) are defined analogously to above and
r indexes a set of distinct seasonal patterns.
We demonstrate that such multilinear combinations of sea-

sonal patterns yield flexible and accurate representations of
many cyclical patterns that occur in real-world data. More-
over, we demonstrate that components s(n,r) can be recov-
ered easily by casting estimation as an instance of low-rank
tensor decomposition. The data representation implied by
our approach can be seen in Figure 2. Through various
experiments, we show that our method accurately and effi-
ciently captures hierarchical seasonality in time series. Before
moving on to describing related literature and our method,
we summarize our contributions:

• We propose a novel method for representing seasonal-
ity through low-rank multilinear decompositions, called
low-rank hierarchical seasonality (LRHS).

• Through experiments on various datasets we show that
our approach is both accurate and parameter-efficient
compared to other canonical methods.

• We propose a Bayesian variant of our method (BLRHS),
allowing interpretable and scaleable knowledge extrac-
tion from multivariate datasets, uniquely combining
probabilistic inference with nonnegative factorization in
the analysis of complex seasonality.

• We show that our method efficiently extracts useful
representations from large-scale time series data, e.g.
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FIGURE 2. Folding time series into a tensor. In (a), the time series is represented as a single vector. In (b), each hour of day is presented in a new mode.
In (c), each week is a slice as days of the week are folded into the third mode. Extension to lower or higher seasonality components is straightforward,
and explored in our numerical experiments.

12 years of hourly ridership history of a prominent rail
network, with over 1 billion trips spread among 2500 dif-
ferent routes.

• We show that our method does not sacrifice performance
to achieve interpretability, and demonstrate that BLRHS
is highly accurate in multivariate missing data imputa-
tion tasks.

II. RELATED WORK
Matrix/tensor based analysis of time series has been attracting
considerable interest from various fields. The scope of such
research ranges from theoretical and algorithmic develop-
ments [6], [7] to numerous applications, the latter including
energy management and load monitoring [8], [9], intelligent
traffic systems [12], [13], mobility and urban planning [14],
logistics [15], and structural monitoring [16]. These work
often represent time as one of the modes of a multiway data
representation. For example, Dunlavy et al. [17] factorize a
three-way tensor where one of the modes is time, and use
Holt-Winters method on the temporal factor matrix to extrap-
olate to new time points. Similarly, de Araujo et al. [18] apply
exponential smoothing to the temporal factor for forecast-
ing, within a coupled factorization framework. A Bayesian
approach to the same problem is studied by Xiong et al. [19].
Matsubara et al. [20] apply a multi-scale type autoregressive
model for extrapolating the temporal dimension.

In a line of work that pertains to epidemiology applications,
Matsubara et al. [21] introduce FUNNEL, a model for coe-
volving epidemics inspired by the well-known SIR model.
FUNNEL incorporates diseases, different locations, and time
into a data tensor while accounting for seasonal patterns by
including a sinusoidal seasonal component. Rogers et al. [22]
propose a multilinear extension of the well known linear
dynamical system. Yu et al. [23] propose a matrix factoriza-
tion approach where the autoregressive time series model
likelihood appears as a regularization term. An extension
of this idea into the spatio-temporal domain is proposed
by Takeuchi et al. [24], and Sun and Chen [25] provide
a Bayesian version of the same approach. More recently,
Kawabata et al. [26] propose an online inference scheme for

multivariate data where the model can detect the appearance
of a new seasonality regime.

Methods surveyed above use the tensor factorization for-
malism with only one mode of the tensor of interest rep-
resenting time, reserving other modes for different entities
(e.g., users, items, locations, etc.) An idea that follows imme-
diately is to let one of the modes represent seasonal behavior,
i.e., to ‘‘fold’’ the time series into a 2-way array, as in
Figure 2b. In a more general tensor factorization framework,
this means that each latent dimension has a representation in
the entity domains, as well as a certain seasonal pattern. This
idea appears early in the beginning of time series analysis
with factorizations, e.g. in an atmospheric science application
by Xie et al. [27]. Takahashi et al. [28]. apply this idea to var-
ious time series, with a specific focus on folding periods—or
cyclic(al) folding in their terms which we reuse here. Cyclical
folding also appears in Matsubara et al. [29], [30], which are
models of competing entities inspired by population model-
ing. Chen and Sun [31] augment the work of [23] by adding
another temporal dimension of seasonality for forecasting,
and Chen and Lei [32] extend this approach to missing data
imputation.

Though less common, some studies extend the cyclical
folding idea to higher temporal dimensions, modeling two
seasonalities simultaneously. Notably, Tan et al. [33] uses a
sliding temporal tensor construction to impute future values
for multivariate time series, and Chen and He [34] compare
the performance of having cyclical folding to obtain zero,
one, or two seasonality dimensions while utilizing a CP
(CANDECOMP/PARAFAC) decomposition for missing data
imputation. Given [34] provides the only quasi-systematic
exploration of multiple cyclical folding, we compare our
method to theirs, as well as some other baselines in
Section V-D to provide an informative test of our approach.
Also less common is the use of nonnegative matrix/

tensor factorization to model time series data, and
especially with consideration of hierarchical seasonality.
Espin-Noboa et al. [14] apply nonnegative tensor factoriza-
tion to decompose the NYC taxi dataset into coherent patterns
to test hypotheses about urban mobility. Wang et al. [35]
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apply nonnegative matrix factorization techniques for the
analysis of traffic patterns, and Figueiredo et al. [8] provide
an analysis of power consumption through nonnegative ten-
sor decompositions by including two temporal dimensions,
however neither studies exploit hierarchical patterns in sea-
sonality. The relative neglect of nonnegative methods is
especially important from a knowledge discovery point of
view. This is because nonnegative decompositions are known
to lead to interpretable, ‘‘by-parts’’ representations [36], [37],
which could help extract the simpler multi-seasonal compo-
nents that produce the emergent complex behavior of such
time series. To our knowledge, the Bayesian variant of our
approach is the first application of probabilistic nonnegative
tensor decomposition to the analysis of complex seasonality.

Our method is based on the hypothesis that low-rank mul-
tilinear representations can accurately and efficiently capture
nested, complex seasonalities. It directly targets to exploit the
low-rank decomposability of such intricate patterns, improv-
ing on the sporadic use of cyclical folding as a data represen-
tation heuristic for specific multivariate time series problems
in the literature. Our proposal’s generality allows us to apply
and test this idea with different decomposition methods (CP
vs. Tucker), in various tasks (prediction, imputation, knowl-
edge extraction), in different experimental settings (univariate
vs. multivariate), with arbitrary number of seasonal hierar-
chies (e.g. hourly, daily, weekly, yearly), and with previously
unexploredmodel capabilities (likelihood-basedmodel selec-
tion). As models and data get larger in modern machine learn-
ing, the need for such parsimonious representations increase.
As such, our results not only contribute to tensor-based time
series analysis, but also offers valuable insight for classical
and deep learning based approaches, given the transferability
of this inductive bias.

III. PRELIMINARIES
In the following, we use lowercase italics for scalars (a, γ ),
uppercase italics for integers (I , J ), lowercase bold letters for
vectors (a,b), uppercase bold letters for matrices (A,B), and
uppercase cursive letters for tensors of higher order (X ,A).
ai refers to the i’th element of a vector a, and Bi,j refers to
the i, j’th element of a matrix B. For convenience, we refer
to the elements of tensors using parantheses notation, such
that the element of X with the index i, j, k is denoted
with X (i, j, k). For any positive integer L, we let [L] :=

{1, . . . ,L}. We use i[L] := (i1, . . . , iL) to denote an L-tuple
of indices, which we can use to refer to tensor elements,
as in X (i[L]).

A. TENSOR DECOMPOSITIONS
Tensors are N -way arrays, where 1-way and 2-way ten-
sors are commonly known as vectors and matrices respec-
tively [38]. Tensor decompositions are approximations of
tensors as multilinear functions of factor matrices or tensors.
For the purposes of this text, we use tensor decomposition
and factorization interchangeably. A frequently used ten-
sor decomposition is the CP decomposition, also known as

CANDECOMP/PARAFAC or canonical polyadic [39], [40].
In CP, the original N -way tensor is expressed as the sum of
a finite number of rank-one N-way tensors, where a rank-
one N -way tensor is the outer product of N vectors. The CP
decomposition of a 3-way tensor would be:

X ≈ X̂ =

R∑
r=1

ar ◦ br ◦ cr ,

where X , X̂ ∈ RI×J×K , ar ∈ RI ,br ∈ RJ , cr ∈ RK for
r ∈ {1, . . . ,R}, and ◦ denotes outer product. Then, factor
matrices A,B, and C refer to the matrices constituted by
collecting these vectors as columns of separate matrices, as in
A ∈ RI×R

= [a1, . . . , aR]. It is also common to assume
factor matrices to have unit columns and to have an additional
weight vector w ∈ RR, such that X ≈ X̂ =

∑R
r=1 wr

(ar ◦ br ◦ cr ).
Another frequently used decomposition is the Tucker

decomposition [41], [42]. Tucker decomposition approxi-
mates the target N -way tensor with an N-way core tensor G
and N factor matrices. Specifically, in Tucker decomposition
the target tensor is approximated by the sum of rank-one
tensors weighted by the components of the core tensor. For
example, for X ∈ RI×J×K we would have:

X ≈ X̂ =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr (ap ◦ bq ◦ cr ),

where gpqr are the entries of the core tensor G ∈ RP×Q×R

and A ∈ RI×P,B ∈ RJ×Q, and C ∈ RK×R correspond to the
factor matrices constructed as above. A succinct notation for
Tucker decomposition is X ≈ G×1A×2B×3C [38], which
we will use below.

Computing a CP or Tucker decomposition involves learn-
ing the factors as part of an optimization scheme

argmin
A,B,C

D(X∥X̂ ),

with an appropriately chosen divergence function D. Most
popular choices include the Euclidean distance (∥X − X̂∥)
and Kullback-Leibler (KL) divergence. Commonly used
optimization algorithms for CP and Tucker decomposi-
tions include alternating least squares (ALS) [39], [40]
and higher-order orthogonal iteration (HOOI) [43], respec-
tively [38]. Tensor decompositions are utilized in a wide
variety of scientific disciplines ranging from signal pro-
cessing [44], [45], [46] to social science [47]. For other
kinds of decompositions, problems, and theoretical results
see [38], [48], [49], and [50].

1) NONNEGATIVE MATRIX/TENSOR FACTORIZATIONS
An important variant of matrix/tensor decompositions is
nonnegative matrix/tensor factorization (NMF/NTF), which
targets nonnegative data, and also constrains factor matrices
to have nonnegative entries [51], [52], [53]. Nonnegative
variants of the aforementioned CP and Tucker decomposi-
tions are two of the most prominent NTF methods [38], with
similar choices for D. Usually utilized optimization methods
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for NMF/NTF include projected gradient descent and mul-
tiplicative updates [37]. Research on NMF/NTF produced
numerous approaches throughout the years; see [37], [54],
and [55] for informative reviews.

2) PROBABILISTIC NTF METHODS
Probabilistic formulations of NMF and NTF propose a gener-
ative model for the observed tensorX , which allows posterior
inference regarding the model parameters, i.e. the latent fac-
tors [36]. These include point estimates such as maximum
likelihood and maximum a posteriori (MAP), as well as
full posterior inference through sampling-based or variational
procedures. The formulation of NTF as a probabilistic mod-
eling task allows the wide range of inference methods devel-
oped in Bayesian statistics to be used for NMF/NTF [56].
Such models prove to be capable of extracting information
from high-dimensional, sparse, relational data, combining
the representative power of nonnegative decompositions with
well-quantified uncertainties allowed by novel inference and
model scoring capabilities [57], [58], [59].

IV. METHOD
We now present our proposed approach for modeling hier-
archical seasonality, which we call low-rank hierarchical
seasonality (LRHS). Afterwards, we will present its proba-
bilistic variant.

A. LOW-RANK HIERARCHICAL SEASONALITY (LRHS)
Recall the definition of amultiple seasonal st , and how it was
defined as themultiplication of factors st = s(1)t s(2)t to account
for two ‘‘nested’’ periodic patterns, such as days-of-week
and hours-of-day. We now formally define our modeling
approach by generalizing this idea to N seasonalities and
multiple such nested patterns, and we will rely on tensor
formalism when doing so. This implies a particular represen-
tation of the data, where we ‘‘fold’’ an observed seasonality
vector s based on its seasonalities to create a tensor:
Definition 1 (Multiple Cyclical Folding; MCF): Let s ∈

RT denote a vector that contains observed values of the
seasonal component of a time series, and let P1, . . . ,PN ∈

Z+ be the periods for the N nested seasonalities observed
in the data. Assume the data includes K ∈ Z full cycles of
the longest seasonality, such that T = K ·

∏N
i=1 Pi. Multiple

cyclical folding creates the tensorM ∈ RP1×···×PN×K :

M
= MCF(s), such thatM(t mod P1,

⌊t/P̄1⌋ mod P2, . . . , ⌊t/P̄N−1⌋ mod PN , ⌊t/P̄N ⌋) := st ,

where P̄n =
∏n

i=1 Pi.
A visualization of this data representation is presented in

Figure 2. For example, if we were to model 10 weeks of
hourly data with daily and weekly seasonalities, this would
imply that T = 24 × 7 × 10 = 1680 and s ∈ R1680,
with P1 = 24,P2 = 7, and K = 10. After MCF we
would have M ∈ R24×7×10

= MCF(s). As defined above,
the last dimension of M indexes the full cycles of the data,

such that k = 1 for week 1, k = 2 for week 2 and so
forth. For brevity we will call this dimension cycle index.
With the exception of Definition 1 that uses 0-indexing for
convenience, we use 1-indexing convention in tensors for a
more natural exposition.

As we will see below, our modeling approach naturally
extends to multivariate time series. With multivariate data,
time series index becomes another dimension of the repre-
sentation (or dimensions, should there exist multiple non-
temporal indices). That is, if the example dataset above had
measurements from I = 100 stations, MCF would produce
M ∈ R100×24×7×10. Having described our data representa-
tion, we now introduce our modeling approach.
Definition 2 (Low-Rank Hierarchical Seasonality; LRHS):

LetM ∈ RP1×P2×···×PN×K be the multiple cyclical folding
of an observed seasonality s ∈ RT , such thatM = MCF(s).
Low-rank hierarchical seasonality (LRHS) proposes the fol-
lowing approximation for modeling seasonality:

M ≈ M̂ = G ×1 M(1) . . .M(N )
×N+1 K, (2)

whereG ∈ RR1×R2×···×RN×RK is the latent core tensor,M(n)
∈

RPn×Rn , ∀n ∈ [N ] and K ∈ KK×RK are the factor matrices
for the seasonal components and the cycle index respectively.
Factors can be found by minimizing D(M∥M̂) with a suit-
ably chosen divergence function D. A multivariate extension
is straightforward with an additional mode of cardinality I
and the corresponding factor matrix I ∈ RI×RI .

We follow our definition with some remarks. First, note
that the presence of the cycle index, and the correspond-
ing factor K enables LRHS to detect and model changing
multi-seasonal patterns through K full cycles. For example,
in Figure 1 LRHS captures the fact that although week-
day daytime taxi trips existed in the weeks before Covid
(k ≤ 10), their relative importance tangibly increased with
Covid (k > 10) as other seasonal patterns withered. We will
see more examples of LRHS capturing such dynamics in
Section V.
Another point to note is that for full generality, we intro-

duced LRHS with a Tucker decomposition in Definition 2,
where all factor matrices have their own latent factor with
different cardinalities R1, . . . ,RN ,RK , and core tensor G
determines how these latent factors interact. However, if we
set R = R1 = · · · = RN = RK and let G be superdiagonal,
this formulation would correspond to a CP decomposition.
Also importantly, other constraints on factors can also be
easily integrated to this framework: e.g. a nonnegative variant
would assume nonnegative observations and would constrain
all factors to be nonnegative.

The main hypothesis of this paper is that LRHS is an
accurate and efficient approach for modeling hierarchical
seasonality. LRHS is designed for contexts where the periods
of these seasonalities are known a priori: this is most impor-
tantly the case for datasets that characterize various aspects
of collective human behavior. For example, the number of
customers arriving at a restaurant can be driven by two dis-
tinct segments of customers, those who prefer lunches on
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weekdays, and others who come to Friday and Saturday din-
ners. Our results in Section V indeed confirm the abundance
of such compositions, in complex and meaningful inter-
actions with non-temporal (i.e. spatial) dimensions. LRHS
allows the rich arsenal of tensor decomposition methodology
to be used in the accurate and efficient recovery of such
patterns.

1) UTILIZING LEARNED LRHS COMPONENTS
LRHS allows the specification of a decomposition model and
an optimization scheme. Once we recover the component
factors based on our modeling assumptions, these learned
factors can be utilized for various inferential tasks. First, the
learned factors can directly be investigated to discover the
underlying dynamics that produce the temporal patterns in
question (as in [14]). Second, in the case of missing data,
given a set of non-missing indices � and a projector 5 :

RP1×···×PN×K
→ RP1×···×PN×K that sets cells with missing

observations to 0, learning could take place as

argmin
G,M(1),...M(N ),K

D (5(M)∥5 (G ×1 · · · ×N+1 K)) ,

after which the reconstructionM̂ = G×1M(1) . . .M(N )
×N+1

K can be used to fill in the missing data (as in [32]).
Lastly, for predicting future observations, imagine without

loss of generality that we have a forecast horizon of one full
cycle, i.e. 1 ·

∏N
i=1 Pi. Then, an appropriately chosen cycle

index row vector kK+1 ∈ R1×RK can be used to compute the
prediction for the new cycle:

M̂K+1 = G ×1 M(1) . . .M(N )
×N+1 kK+1,

where M̂K+1 hold the predictions for the forecast horizon.
kK+1 can be chosen in various ways, such as setting it equal
to the last cycle index of the model kK+1 := kK (as in [26]),
or computing it through the exponential smoothing of past
cycle indices: kK+1 := k̂K , where k̂κ = αkκ + (1 − α)̂kκ−1
and k̂0 = k1 by convention (as in [18]). If detrending was
conducted beforehand, both imputation and prediction would
require re-adding the trend component (or its extrapolation)
before finalizing inference.

B. BAYESIAN LOW-RANK HIERARCHICAL SEASONALITY
(BLRHS)
We now define a Bayesian variant of LRHS, for robust and
interpretable posterior inference and convenient model selec-
tion. Here, the fact that the time series data of interest usually
are nonnegative (e.g. counts of trips, occupancy of routes,
amount of energy consumption) presents a unique opportu-
nity to integrate NTF methods into our formulation. This
allows us to exploit the additive, sparse, by-parts representa-
tions NTF methods are known to produce [37] and combine
it with convenient inference and model selection methods
probabilistic models enable. As discussed above, probabilis-
tic NTF is a vibrant research area with various modeling
approaches adopting different choices for model structure

and conditional distributions [57], [58], [60]. Here, we emu-
late the choices by [58], whose modeling approach, called
Bayesian Allocation Model (BAM), allows expedited infer-
ence and model selection. We now introduce BLRHS with a
CP decomposition for brevity, and present its Tucker variant
in the supplementary material.
Definition 3 (Bayesian Low-Rank Hierarchical Season-

ality; BLRHS): Let M ∈ RP1×···×PN×K
≥0 be the multi-

ple cyclical folding of an observed seasonality. Let m(n)
r

(resp. kr ) be the r ′th column of the random factor matrix
M(n), (resp. K). Bayesian low-rank hierarchical seasonal-
ity (BLRHS) proposes the following generative model for
seasonality:

P(M|M̂) =

∏
i[N+1]

Poisson(M(i[N+1])|M̂(i[N+1])),

M̂ = λ

R∑
r=1

wr
(
m(1)
r ◦ · · · ◦ m(N )

r ◦ kr
)

,

λ ∼ Gamma(a, b),

w ∼ Dirichlet(1 · α(R)),

m(n)
r ∼ Dirichlet(1 · α(Pn · R)), ∀r ∈ [R], ∀n ∈ [N ]

kr ∼ Dirichlet(1 · α(K · R)), ∀r ∈ [R].

Here the Dirichlet distributions have flat priors with the
concentration parameter α(L) := a/L, and a, b are hyper-
parameters of the model. A multivariate extension of this
construction is straightforward with an additional mode
of cardinality I equal to the number of time series and
the corresponding factor matrix I = [i1, . . . , iR], with
ir ∼ Dirichlet(1 · α(I · R)).

See Figure 3 for graphical models implied by BLRHS, with
CP and Tucker decompositions. We now describe inference
with BLRHS, and then detail how the results can be used in
interpreting seasonality components.

1) INFERENCE WITH BLRHS
Two inferential tasks are important for utilizing the model
defined above. One is posterior inference, that is obtaining
or approximating the posterior of the model parameters:

P(λ,M(1), . . . ,M(N ),K,w|M,R, a, b), (3)

where R is the latent rank and a, b are the hyperparameters.
Posterior inference is the probabilistic counterpart of learning
the latent factors. Another important inferential task would be
computing the marginal likelihood of the dataM:

P(M|R, a, b), (4)

where the model parameters, λ,M(1), . . . ,M(N ),K,w, are
integrated out. Marginal likelihood is a crucial quantity, as it
can be used to score the overall model, thus be used for model
selection. However, it is a notoriously difficult quantity to
estimate in such latent variable models [61].

A frequently used inference algorithm for latent variable
models is mean-field variational inference (MFVI), which we
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FIGURE 3. BLRHS utilizing (a) CP and (b) Tucker decompositions,
modeling multivariate time series with temporal observations at I
different locations, and with P1 = 24, P2 = 7, for K weeks of data. Higher
or lower seasonality terms can be added if desired. Hyperparameters are
omitted for brevity.

utilize for inference with BLRHS. MFVI proposes to approx-
imate the model posterior (3) with a factorized variational
distribution, the parameters of which can be optimized to
minimize the KL-divergence between the actual and varia-
tional posteriors, DKL(Q∥P). Ignoring hyperparameters for
brevity, regarding the model proposed in Definition 3 MFVI
would define the following variational distribution:

P(λ,M(1), . . . ,M(N ),K,w|M)

≈ Q(λ,M(1), . . . ,M(N ),K,w)

= q(λ)q(M(1)) . . . q(M(N ))q(K)q(w).

MFVI allows each q to be updated in an alternating fash-
ion to minimize the DKL(Q∥P), in a procedure sometimes
called coordinate ascent variational inference (CAVI). In
BLRHS, with the use of an auxiliary latent tensor prescribed
by the BAM framework (as detailed in the supplement),
these updates remain tractable even for data with very large
dimensions.

A closer look at DKL(Q∥P) reveals another relation:

logP(M) = DKL(Q∥P) − EQ[logQ(ζ ) − logP(ζ,M)],

where we let ζ = (λ,M(1), . . . ) collect all parameters
for brevity. Since marginal log-likelihood logP(M) is con-
stant given the model, decreasing DKL implies increasing
−EQ[logQ(ζ )− logP(ζ,M)]. Since DKL is always nonneg-
ative, this also means that this latter term is a lower bound
to marginal log-likelihood. A well known quantity in prob-
abilistic inference, this term is called evidence lower bound
(ELBO) and it is frequently used for model selection as an
approximation of marginal (log-)likelihood [62].

Thus the MFVI procedure for BLRHS allows not only
expedient posterior inference, but also convenient model
selection. For example, after MFVI we can compute the

FIGURE 4. Synthetic example demonstrating that once BLRHS is trained
on a time series (shown in a), its estimated factors can be utilized to
explore the latent patterns captured by it (shown in b, lighter implies

busier). Remember that P̂(hour, day|r = i ) := m̂(1)
i ◦ m̂(2)

i , so the
heatmaps for i = {1, 2, 3, 4} correspond to four disparate weekly
patterns that are captured by BLRHS.

ELBO with BLRHS’s CP and Tucker variants with different
ranks, and select the highest-scoring model. The previous
work we reviewed in Section II rarely, if ever, provide a
method for principled model selection, which BLRHS allows
naturally, as seen in our results in Section V.

The exact form of the CAVI updates for BLRHS, as
well as a more in-depth discussion of inference with this
modeling approach can be found in the supplementary
material. Importantly, our particular implementation of this
procedure (https://github.com/mbarsbey/lrhs)
exploits the parallel processing capabilities of modern hard-
ware and computational frameworks, allowing us to conduct
inference on and make sense of very large temporal datasets.

2) INTERPRETABLE SEASONALITY WITH BLRHS
To demonstrate how BLRHS helps extract interpretable rep-
resentations from hierarchically seasonal data, let us start
with a toy univariate dataset, pertaining to the ridership counts
for a subway station. We model daily and weekly season-
alities (P1 = 24, P2 = 7), and observe this station for
K full cycles (weeks). Notice that the parameters of this
decomposition according to BLRHS would correspond to
conditional probability tables such that:

P(hour = j|r = i) := M (1)
j,i , or P(hour|r = i) := m(1)

i .

Although this is promising, by definition we do not have
direct access to these factors, as they are latent vari-
ables. However, we can use our estimates of these through
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MFVI, i.e. M̂(1)
= EQ(M(1)) to examine and utilize these

latent factors:

P̂(hour = j|r = i) := M̂ (1)
j,i , or P̂(hour|r = i) := m̂(1)

i .

This interpretability of parameters (or their estimates) as
probabilities enables various interesting queries to be made
through a trained BLRHS model. For example, we could
examine the joint daily-hourly seasonality patterns that are
captured by our latent factor:

P̂(hour, day|r = i) := m̂(1)
i ◦ m̂(2)

i .

We present idealized examples of such queries in Figure 4.
Conducting inference with BLRHS on the synthetic time
series seen in Figure 4a with R = 4 results in the factors
seen in Figure 4b. By examining P̂(hour, day|r = 1) :=

m̂(1)
1 ◦ m̂(2)

1 we can see that r = 1 has captured morn-
ing commute in this time series. We could also infer that
r = 2, 3, 4 correspond to evening commute, weekend night
entertainment, and day trips, respectively. We could also look
at P̂(r = i) := ŵi to see the strength of these patterns in
the overall dataset. We could track their strengths throughout
weeks, P̂(r|week), to explore the dynamics of these patterns
through time, as inweekend night taxi rides disappearingwith
Covid in Figure 1. In Section V, we investigate these complex
interactive patterns and examine how they interact with other
variables (e.g. location, yearly seasonality) on large real life
datasets. The public repository for this paper includes trained
models of BLRHS for the reader to query and explore these
spatiotemporal patterns as desired.

V. RESULTS
We now conduct various experiments to test whether
LRHS/BLRHS accurately captures seasonal patterns in
various datasets and problem contexts. Source code for repro-
ducing our experiments and experimenting with the pro-
posed modeling approach is provided in our public GitHub
repository.1

A. TESTING LOW-RANK HIERARCHICAL SEASONALITY in
UNIVARIATE TIME SERIES
As the first test of our idea, we conduct numerical experi-
ments on a range of time series prediction tasks on univariate
data, comparing LRHS with canonical methods for handling
seasonality from signal processing and time series analysis.

1) DATASETS
We use the Bay Area Rapid Transport (BART) ridership
data provided by its administration,2 Hourly Energy Con-
sumption3 dataset from Kaggle, and Electricity and Traffic
datasets from GluonTS [63]. Electricity and Traffic datasets
include 321 and 862 individual time series, and a total of
125 and 83 weeks of hourly data respectively. Given LRHS

1https://github.com/mbarsbey/lrhs
2https://www.bart.gov/about/reports/ridership
3https://www.kaggle.com/robikscube/hourly-energy

-consumption

is developed for modeling seasonality, series that do not
have pronounced seasonal components are of little interest
in evaluating LRHS. So, we take time series in which the
seasonal component accounts for 75 percent of the variance
(R2 > 0.75) after subtracting the trend-cycle component.
To make sure that our conclusions are not based on a specific
choice of cut-off point, we also repeat this procedure with a
threshold of 85 percent. This gives us two different versions
of these datasets, which we denote by adding -75 and -85 as
suffixes to their names. The resulting number of time series
are 236 and 146 for Electricity-75 and Electricity-85, and
508 and 133 for Traffic-75 and Traffic-85 respectively. Kag-
gle Energy and BART datasets provide a different challenge
as they have much longer histories. From Kaggle Energy
dataset we take the 6 series that have more than 12 years of
data, and from BART dataset we use the 10 mostly occupied
routes between 2011-2019.4

For all datasets, we take P1 = 24,P2 = 7 and use the last
10 cycles of the data (1680 hours) as the held out set, i.e.,
the forecast horizon. Additionally, since Energy and BART
datasets are considerably longer than the others, we use this
as an opportunity to create an additional experiment setting:
we set P1 = 24,P2 = 7,P3 = 52 and keep the final
year of each time series as the held out sample (8736 hours).
These variants are denoted Energy-1Y and BART-1Y, respec-
tively. Notice that this representation results in four temporal
dimensions (hour, day, week, year), speaking to the ability of
LRHS to take modeling hierarchical seasonality to previously
unexplored extents.

2) EXPERIMENTAL SETTING, BASELINES, METRICS
We first compute and subtract the trend-cycle component lt
via a simple moving average of twice the cycle length
(i.e. 2 × P̄N ), assuming an additive decomposition. We then
attempt to forecast seasonality for the held out periods
via eight methods. The baselines include discrete cosine
(DCT) and Fourier transforms (DFT), Fourier basis regres-
sion (FB) (described fully in the supplemental material),
and Holt-Winters method (HW) [64]. We use LRHS with
CP and Tucker decompositions, denoted LRHS-CP and
LRHS-T, respectively. We also utilize a variant of either
where we conduct smoothing of the temporal factor as
described in Section IV-A1. Therefore, an additional -S suffix
for LRHS methods denotes the version where smoothing
adjustment is applied.

We compare themethods usingmean absolute error (MAE)
and root mean squared error (RMSE). Given a ground truth
vector and an estimator thereof, y, ŷ ∈ RT , these metrics are
defined as:

MAE(y, ŷ) =
1
T

∑T
t=1 |yt − ŷt |

RMSE(y, ŷ) =

(
1
T

∑T
t=1(yt − ŷt )2

) 1
2

4For BART experiments, we limit ourselves to pre-Covid era due to
dramatic trend changes in Spring 2020. However, see Section V-C for a full,
multivariate analysis of the BART data.
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TABLE 1. Mean absolute errors (MAE) and root mean squared errors (RMSE) of forecasts for held out time series. The two best performing algorithms are
presented in bold.

FIGURE 5. Comparison of errors vs. the number of parameters required for each model in the Electricity-75 dataset. The vertical dashed line denotes the
number of parameters required by Holt-Winters and other classical decompositions. Both axes are logarithmic for ease of presentation.

For this task, we use Tensorly [65] for tensor decompo-
sitions and SciPy [66] for discrete transforms with Python
programming language, without any explicit regularization.

3) EXPERIMENT RESULTS
For all baselines and LRHS variants, we run each algorithm
for a variety of parameter dimensionality settings, and
report the best generalization performance in Table 1. Our
approaches generally yield favorable results, often matching
and outperforming the Holt-Winters approach which appears
to be the best performer among baselines. While short-term
forecasting results on BART and Energy datasets are compa-
rable to other methods, LRHS clearly outperforms baselines
in one year forecasts. The latter result is especially important
since these experiment settings include the longest forecast
horizon (a year), and three hierarchical seasonality patterns
(daily, weekly, yearly), implying that LRHS becomes more
useful as seasonal patterns get more intricate.

In Figure 5, we plot the performance of different algo-
rithms with varying number of parameters, corresponding
to the number of components in discrete transform and FB
methods, and varying tensor rank in our methods. We present
results for the Electricity-75 dataset, where we can observe
that tensor-based methods not only outperform baselines out
of sample, but also do so with lower number of parame-
ters, speaking to the appropriateness of tensor formalism
in compressing/representing hierarchical seasonality. Similar
figures for all seven other datasets can be found in the sup-
plementary material.

It is especially significant that these favorable results are
obtained in a univariate setting, without exploiting the advan-
tage of LRHS being easily generalizable to multivariate data.

Accordingly, we now move on to multivariate experiments,
where we first focus on LRHS/BLRHS’s ability to extract
meaningful patterns from largemultivariate datasets, and then
compare its accuracy in imputation tasks to its alternatives.

B. EXPERIMENTS WITH NEW YORK CITY YELLOW TAXI
DATA
We now use BLRHS to analyze New York City Yellow Taxi
dataset,5 which is a record of the yellow taxi rides within
New York City, including start and end locations (265 each),
as well as time of the trip. We use the first six months
(or 25 weeks) of data from 2020 and create a 5-mode count
tensor of dimensions 265 × 265 × 24 × 7 × 25 where the
dimensions correspond to start and end locations, hour of the
day, day of the week, and week of the year, respectively.

We model this dataset using BLRHS with a Tucker
decomposition.6 We conduct model selection among dif-
ferent ranks and hyperparameters using the evidence lower
bound (ELBO). Our procedure selects the model with latent
ranks R = (4, 4, 5, 2, 2), with each rank corresponding to the
dimensions in the order enumerated above. In this section and
the next, we do not explicitly detrend the data and allow the
cycle index dimension account for the long term changes in
the dataset. Further details on our model selection procedure
can be found in the supplementary material. All multivariate
experiments have been implementedwith the JAX framework
in Python programming language [67].

5https://www1.nyc.gov/site/tlc/about/tlc-trip-
record-data.page

6See supplementarymaterial for experiments that conduct model selection
across decomposition models, CP vs. Tucker.
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FIGURE 6. BLRHS breaks down the seasonalities that underlie observed patterns. Top figure includes total
hourly pre-Covid rides in the NYC YT system and BLRHS’s approximation. The four bottom figures plot the
top weekly patterns that contribute to the overall number of rides. y-axes are not in scale for improved
visualization.

1) EXTRACTED SEASONAL PATTERNS
Our results reveal a good reason for our model selection to
have selected Rweek = 2: this latent factor is used to char-
acterize pre- and post-Covid patterns as shown in Figure 1.
More specifically we see that

P̂(rweek = 1|week) ≫ P̂(rweek = 2|week),

∀week ∈ {1, . . . , 10},

while this trend dramatically reverses after week 10. Note
that the model also picks up on the slight, relative return to
normal in Summer 2020, as P̂(rweek = 2|week) starts to fall
back down towards the end of our time window, week 25.
Having established that rweek = 1 and 2 roughly charac-
terizes pre- and post-Covid patterns, we further investigate
P̂(hour, day|rweek). This reveals the pre- and post-pandemic
travel patterns as seen in Figure 1b, and discussed previously.
Our results are in perfect alignment with those obtained
by [26], who also infer Spring 2020 to be a landmark for
seasonality regime change in NYC-YT data. That we can cor-
roborate their results with a likelihood-based model selection
and posterior inference further confirms the usefulness of our
approach.7

We now further challenge BLRHS to break down the over-
all observed temporal dynamics to simpler multi-seasonal
interaction patterns. For this, we first investigate the latent
factor space, and find out the most dominant patterns by
examining P̂(rhour = i, rday = j) for i ∈ [Rhour], j ∈ [Rday].
We then extract the daily-weekly patterns these latent dynam-

7BLRHS can ideally utilize an online procedure like [26], which we leave
as an exciting future direction.

ics correspond to by observing P̂(hour, day|rhour, rday).
In Figure 6, we plot the four most dominant patterns extracted
by BLRHS against total taxi ridership pre-Covid (week <

10). BLRHS detects that overall ridership patterns are most
strongly contributed by weekday afternoon rides (Pattern 1),
weekday night rides (Pattern 2), morning commute rides
(Pattern 3), and weekend day trips (Pattern 4) in order. Our
results shows the various ways in which BLRHS can be used
to make sense of large-scale temporal observations.

C. EXPERIMENTS WITH BART RIDERSHIP DATA
We now move on to an experiment that shows BLRHS can
extract useful information from even larger datasets. For this
experiment we use the full BART ridership dataset, which
records the hourly number of passengers in the San Francisco
Bay Area rail transportation system since 2011, in 2500 dif-
ferent pairwise routes among 50 stations. We model the data
between 2011-2022 corresponding to 12 years, and we ignore
the data from 2023 as it is incomplete at the time of writing of
this article. Given the length of data, we add another season-
ality component (yearly), thanks to the flexibility of BLRHS.
The resulting tensor is of size 50 × 50 × 24 × 7 × 53 × 12,
and contains a total∼ 1.18 billion rides. Even more challeng-
ing from a computational perspective, it is not sparse, with
only ∼ 60% of its cells empty (as opposed to NYC YT
data’s ∼ 98.6%).

1) EXTRACTED SEASONAL PATTERNS
We again start with likelihood-based model selection among
models with different ranks, and select a model with
R = (4, 4, 4, 2, 4, 2). Examining the results of inference
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FIGURE 7. BLRHS extracts the daily-weekly latent patterns that contribute
most to overall BART ridership. The four strongest are evening commute,
morning commute, weekend day travel, and weekend night/entertainment
travel. These constitute 0.31, 0.29, 0.16, and 0.11 of all travel respectively
in expectation, computed through P̂(rhour, rday). For all remaining
patterns this ratio is <0.1, lighter implies busier.

with this model exposes a number of interesting phenom-
ena. We repeat our analysis about dominant daily-weekly
patterns and present them in Figure 7, visualizing
P̂(hour, day|rhour, rday) alongwith their strengths P̂(rhour, rday).
The patterns are similar to those in NYC-YT, however take
place slightly earlier in the day, given that these are records of
mass transportation rides as opposed to private commercial
trips. See the supplementary material for more details on
model selection.

More interestingly, now that we have extracted them,
BLRHS allows us to examine these latent patterns’ evolution
through time. In Figure 8, we do exactly this, and see that
with Covid-19 the relative prevalence of these different travel
tendencies drastically change (while total ridership falls over-
all). Weekend night travel almost goes extinct by Spring and
Summer 2020, not only in absolute terms but also in relation
to other types of travel. In relative terms, the reduction of
weekend night travel is not counteracted by the increase of
weekday commute, but by increased weekend daytime travel.
This somewhat counterintuitive pattern is possibly due to
essential workers and travels by residents to parks within the
city, while work-from-home measures keep weekday com-
mute at bay. Notice that this is an examination of the latent
multi-seasonal interactions and is thus not easily accessible
through marginal statistics of the data.

Being able to map out these high level interactions further
demonstrates the usefulness of BLRHS for making sense of
very large temporal data, making full use of the inductive bias
that lies at the heart of our approach. One last example of this
is presented in Figure 9, which relates these latent patterns to
multiple spatial components.

D. MISSING DATA IMPUTATION in MULTIVARIATE TIME
SERIES USING BLRHS
We have seen that BLRHS allows scalable and interpretable
inference as well as convenient model selection. In this
section, we investigate whether it eschews accuracy for inter-
pretability. Our results show that it does not: BLRHS either
surpasses or performs on par with other models that target
multiple seasonality. As described in Section II, one of the
most relevant preceding work is by [34], who experiment
with one seasonality vs. two nested seasonalities in a given
spatiotemporal model, using Bayesian CP decomposition.
Using their setting, we compare BLRHS with their results,
as well as a more recent method by [68] who utilize a similar
approach yet add a sparse tensor term for modeling outliers.
See the supplementary material for the details of the varia-
tional procedure and how missing data are handled within it.

1) DATASET
The dataset used is the Guangzhou Traffic Data [69]: a
multivariate time series dataset that includes two months of
observations of traffic speeds at 214 different road segments
in Guangzhou, China, measured with a frequency of 10 min-
utes, with data dimensions 214 × 144 × 61. We follow the
authors’ methodology by testing the imputation performance
of our method when 10%, 20%, 30%, 40%, and 50% of the
data are missing. The entries can be missing either randomly
or in a time-correlated fashion (i.e. missing for a day at a
time). The dataset has ∼ 1.87 million entries, and the 1.29%
of the entries are missing in the original dataset.

2) EXPERIMENTAL SETTING, METRICS, MODEL SELECTION
We compare our results with Bayesian Gaussian CP (BGCP)
from [34] and with Bayesian Robust CP (BRCP) from [68].
Moreover, since we use the exact experimental setting of [34]
including randomization,8 we compare our results with base-
line model performances included therein as well, using
numerical results reported by the authors. We do this because
these baselines can surpass BGCP and BRCP, albeit rarely.
These alternative baselines include high accuracy low-rank
tensor completion (HaLRTC) [70], SVD-combined tensor
decomposition (STD) [71], and two simpler baselines daily
average (DA; filling in missing data with daily averages over
all observations), and a kNN algorithm (using the average
of k nearest roads for the missing values). As performance
metrics, we use MAPE and RMSE to be able to compare our
approach with previous work. RMSE is as defined above, and
MAPE is defined as:

MAPE(y, ŷ) =
1
T

T∑
t=1

|yt − ŷt |
yt

We use a BLRHS model with CP decomposition. Both [34]
and [68] provide their models’ results across different
hyperparameter settings and/or different data representations.

8https://github.com/mcgill-smart-transport/bgcp_
imputation
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FIGURE 8. Total ridership dramatically decreases overall due to the Covid-19 pandemic (top). The relative
prevalence of major leading patterns extracted in Figure 7 can be tracked through the years (bottom).
In relative terms, our results show that during Covid the disappearing weekend night travel is replaced by
weekend daytime trips, and not weekday commute.

TABLE 2. The comparison of BLRHS with other methods for missing data imputation. Best results in each column are in boldface. BLRHS is ours; BRCP is
from [68], the rest is from [34].

FIGURE 9. Examining how latent temporal patterns extracted by BLRHS
can be related to spatial dimensions: A number of urban and commercial
hubs (e.g. 6: Civic Center, 23: Powell Street) witness a large influx from
more residential and suburban areas (e.g. 29: Balboa Park, 33: Walnut
Creek), and the trend reverses at evening commute time. Lighter implies
busier. Station names for all indices can be found in the supplementary
material.

To provide a more rigorous challenge to our method, we use
1% of the data (selected from the uncensored cells) as

validation set for model selection, and we compare our
selected model with the best-in-hindsight versions of the
results by [34] and [68].9

During model selection we search among R = {5, 25,
50, 150, 300, 450}, corresponding to a range of 1000-fold to
10-fold parameter decrease in the representation of the data.
Since this is not a dataset of counts or frequencies but traffic
speeds, the observed entries are almost always larger than 0.
Thus, we apply a simple detrending scheme where we sub-
tract the minimum of each time series from all observations
before conducting inference with BLRHS, and add this to
BLRHS’s reconstructed output after inference. We present
our results using a 3-order tensor data representation, dis-
cussion of BLRHS experiments up to 4 temporal dimensions

9Given that we use MAPE and RMSE for comparison, ELBO is of less
utility here for model selection, given that it assumes a Poisson observation
likelihood.
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(5-order tensor), as well as further details on model selection
can be found in the supplementary material.

3) EXPERIMENT RESULTS
We present our results in Table 2. For randomly missing
observations the results are almost unanimous: save for a few
exceptions our approach outperforms the best-in-hindsight
alternative methods. This is very encouraging, and implies
that BLRHS not only provides an interpretable analysis of
seasonal patterns, but also an accurate one.

For correlated missing data, the results are more equivocal,
in that the three methods, BLRHS, BGCP, and BRCP almost
equally share the first place in different tasks. An important
point to note is that since the metrics in question are RMSE
and MAPE, the Gaussian likelihood used by [34] and [68]
is arguably advantageous compared to BLRHS’s Poisson
likelihood. Given this point, and given that BLRHS is losing
a portion of the data for model selection instead of providing
results for all hyperparameters, we also take these results to
be an encouraging sign, and consider improving accuracy of
BLRHS in MAPE and RMSE further as an exciting future
direction.

VI. CONCLUSION
We present a general framework for representing multiple
periodic patterns in time series as an additive combination of
underlying patterns.We connect our approach to the powerful
formalism of low-rank tensor decompositions, which allows
us to propose generally applicable tensor decomposition
algorithms for estimating parsimonious representations of
cyclical patterns in time series data. Moreover, our approach
naturally extends to multivariate time series, and with the
probabilistic version of our model we facilitate knowledge
discovery not only through scaleable and accurate posterior
inference, but also through likelihood-based model scoring.
Although we have examined various applications of our
work, these only represent a small selection of potential
avenues that our approach can be extended to.

Exciting future directions include utilizing other observa-
tion likelihoods like Gaussian [34], using other models and/or
inference methods for BLRHS [47], [58], more closely inte-
grating the modeling of trend to our framework [72], using an
additive sparse tensor term for outliers [68], involving ordinal
dimensions [59], and capacity for handling seasonalities of
statistically different nature such as those with heavy-tailed
distributions [73]. Systematic application of our approach in
fields such as energy management, logistics, and demand
forecasting is another important future direction [8], [10],
[11], [15]. As expressed before, our results have implica-
tions not only for matrix/tensor based methods, but also
for methods based on classical time series decompositions,
which are still widely used [74], [75], as well as deep learn-
ing based methods [76], [77]. Therefore, the integration of
LRHS within such work constitutes another important future
research direction. As our models and data get increasingly
larger, the need for such parsimonious representations are

only likely to increase. We hope that our work encourages
further research in these exciting avenues.

ACKNOWLEDGMENT
The authors would like to thank A. Caner Türkmen for his
generous contributions to the conceptualization, methodol-
ogy, and writing of this article.

REFERENCES
[1] E. Ghysels and D. R. Osborn, The Econometric Analysis of Seasonal Time

Series. Cambridge, U.K.: Cambridge Univ. Press, 2001.
[2] P. H. Franses and R. Paap, Periodic Time Series Models. Oxford, U.K.:

Oxford Univ. Press, 2004.
[3] J. D. Hamilton, Time Series Analysis. Princeton, NJ, USA: Princeton Univ.

Press, 1994.
[4] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Prac-

tice. Melbourne, VIC, Australia: OTexts, 2018.
[5] P. G. Gould, A. B. Koehler, J. K. Ord, R. D. Snyder, R. J. Hyndman,

and F. Vahid-Araghi, ‘‘Forecasting time series with multiple seasonal pat-
terns,’’ Eur. J. Oper. Res., vol. 191, no. 1, pp. 207–222, Nov. 2008.

[6] X. Bi, X. Tang, Y. Yuan, Y. Zhang, and A. Qu, ‘‘Tensors in statistics,’’
Annu. Rev. Statist. Appl., vol. 8, no. 1, pp. 345–368, 2021.

[7] J. Chang, J. He, L. Yang, and Q. Yao, ‘‘Modelling matrix time series via
a tensor CP-decomposition,’’ J. Roy. Stat. Soc. Ser. B, Stat. Methodol.,
vol. 85, no. 1, pp. 127–148, Feb. 2023.

[8] M. Figueiredo, B. Ribeiro, and A. D. Almeida, ‘‘Analysis of trends in sea-
sonal electrical energy consumption via non-negative tensor factorization,’’
Neurocomputing, vol. 170, pp. 318–327, Dec. 2015.

[9] T. Ji, Y. Jiang, M. Li, and Q. Wu, ‘‘Ultra-short-term wind speed and wind
power forecast via selective Hankelization and low-rank tensor learning-
based predictor,’’ Int. J. Electr. Power Energy Syst., vol. 140, Sep. 2022,
Art. no. 107994.

[10] M. Seeger, S. Rangapuram, Y. Wang, D. Salinas, J. Gasthaus,
T. Januschowski, and V. Flunkert, ‘‘Approximate Bayesian inference
in linear state space models for intermittent demand forecasting at scale,’’
2017, arXiv:1709.07638.

[11] S. Nejad, ‘‘Data-driven analysis of time of day pricing for residential
consumers,’’ M.S. thesis, Massachusetts Inst. Technol., Cambridge, MA,
USA, May 2022.

[12] X. Chen, C. Zhang, X.-L. Zhao, N. Saunier, and L. Sun, ‘‘Nonstationary
temporal matrix factorization for sparse traffic time series forecasting,’’
2022, arXiv:2203.10651.

[13] R. K. C. Chan, J. M. Lim, and R. Parthiban, ‘‘Missing traffic data
imputation for artificial intelligence in intelligent transportation systems:
Review of methods, limitations, and challenges,’’ IEEE Access, vol. 11,
pp. 34080–34093, 2023.

[14] L. Espín Noboa, F. Lemmerich, P. Singer, and M. Strohmaier, ‘‘Discov-
ering and characterizing mobility patterns in urban spaces: A study of
Manhattan taxi data,’’ in Proc. 25th Int. Conf. CompanionWorldWideWeb,
2016, pp. 537–542.

[15] Y. Gao, L. T. Yang, J. Yang, D. Zheng, and Y. Zhao, ‘‘Jointly low-rank
tensor completion for estimating missing spatiotemporal values in logistics
systems,’’ IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1814–1822,
Feb. 2023.

[16] P. Zhang, P. Ren, Y. Liu, and H. Sun, ‘‘Autoregressive matrix factor-
ization for imputation and forecasting of spatiotemporal structural mon-
itoring time series,’’ Mech. Syst. Signal Process., vol. 169, Apr. 2022,
Art. no. 108718.

[17] D. M. Dunlavy, T. G. Kolda, and E. Acar, ‘‘Temporal link prediction using
matrix and tensor factorizations,’’ ACM Trans. Knowl. Discovery Data
(TKDD), vol. 5, no. 2, pp. 1–27, Feb. 2011.

[18] M. R. D. Araujo, P. M. P. Ribeiro, and C. Faloutsos, ‘‘TensorCast: Fore-
casting with context using coupled tensors,’’ in Proc. IEEE Int. Conf. Data
Mining (ICDM), Nov. 2017, pp. 71–80.

[19] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell,
‘‘Temporal collaborative filtering with Bayesian probabilistic tensor
factorization,’’ in Proc. SIAM Int. Conf. Data Mining. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2010,
pp. 211–222.

85782 VOLUME 11, 2023



M. Barsbey, A. T. Cemgil: Modeling Hierarchical Seasonality Through Low-Rank Tensor Decompositions

[20] Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M. Yoshikawa, ‘‘Fast
mining and forecasting of complex time-stamped events,’’ in Proc. 18th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2012,
pp. 271–279.

[21] Y.Matsubara, Y. Sakurai,W.G. van Panhuis, and C. Faloutsos, ‘‘FUNNEL:
Automatic mining of spatially coevolving epidemics,’’ in Proc. 20th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2014,
pp. 105–114.

[22] M. Rogers, L. Li, and S. J. Russell, ‘‘Multilinear dynamical systems
for tensor time series,’’ in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2634–2642.

[23] H.-F. Yu, N. Rao, and I. S. Dhillon, ‘‘Temporal regularized matrix factor-
ization for high-dimensional time series prediction,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 847–855.

[24] K. Takeuchi, H. Kashima, and N. Ueda, ‘‘Autoregressive tensor factoriza-
tion for spatio-temporal predictions,’’ inProc. IEEE Int. Conf. DataMining
(ICDM), Nov. 2017, pp. 1105–1110.

[25] X. Chen and L. Sun, ‘‘Bayesian temporal factorization for multidimen-
sional time series prediction,’’ 2019, arXiv:1910.06366.

[26] K. Kawabata, S. Bhatia, R. Liu, M. Wadhwa, and B. Hooi, ‘‘SSMF:
Shifting Seasonal Matrix Factorization,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 34. Red Hook, NY, USA: Curran Associates, 2021,
pp. 3863–3873.

[27] Y.-L. Xie, P. K. Hopke, P. Paatero, L. A. Barrie, and S.-M. Li, ‘‘Iden-
tification of source nature and seasonal variations of Arctic aerosol by
positive matrix factorization,’’ J. Atmos. Sci., vol. 56, no. 2, pp. 249–260,
Jan. 1999.

[28] T. Takahashi, B. Hooi, and C. Faloutsos, ‘‘AutoCyclone: Automatic mining
of cyclic online activities with robust tensor factorization,’’ in Proc. 26th
Int. Conf. World Wide Web, Apr. 2017, pp. 213–221.

[29] Y. Matsubara, Y. Sakurai, and C. Faloutsos, ‘‘The web as a jungle: Non-
linear dynamical systems for co-evolving online activities,’’ in Proc. 24th
Int. Conf. World Wide Web, May 2015, pp. 721–731.

[30] Y. Matsubara, Y. Sakurai, and C. Faloutsos, ‘‘Non-linear mining of com-
peting local activities,’’ inProc. 25th Int. Conf. WorldWideWeb, Apr. 2016,
pp. 737–747.

[31] X. Chen and L. Sun, ‘‘Low-rank autoregressive tensor completion for
multivariate time series forecasting,’’ 2020, arXiv:2006.10436.

[32] X. Chen, M. Lei, N. Saunier, and L. Sun, ‘‘Low-rank autoregressive tensor
completion for spatiotemporal traffic data imputation,’’ IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 8, pp. 12301–12310, Aug. 2022.

[33] H. Tan, Y.Wu, B. Shen, P. J. Jin, and B. Ran, ‘‘Short-term traffic prediction
based on dynamic tensor completion,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 8, pp. 2123–2133, Aug. 2016.

[34] X. Chen, Z. He, and L. Sun, ‘‘A Bayesian tensor decomposition approach
for spatiotemporal traffic data imputation,’’ Transp. Res. C, Emerg. Tech-
nol., vol. 98, pp. 73–84, Jan. 2019.

[35] Y. Wang, Y. Zhang, L. Wang, Y. Hu, and B. Yin, ‘‘Urban traffic pat-
tern analysis and applications based on spatio-temporal non-negative
matrix factorization,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8,
pp. 12752–12765, Aug. 2022.

[36] A. Mnih and R. R. Salakhutdinov, ‘‘Probabilistic matrix factorization,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 20. Red Hook, NY, USA: Curran
Associates, 2007, pp. 1–8.

[37] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative Matrix
and Tensor Factorizations: Applications to Exploratory Multi-way Data
Analysis and Blind Source Separation, 1st ed. Chichester, U.K: Wiley,
2009.

[38] T. G. Kolda and B. W. Bader, ‘‘Tensor decompositions and applications,’’
SIAM Rev., vol. 51, no. 3, pp. 455–500, Aug. 2009. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/07070111X

[39] R. A. Harshman, ‘‘Foundations of the parafac procedure: Models and
conditions for an ’exploratory’multimodal factor analysis,’’ inProc. UCLA
Work. Papers Phonetics, Jan. 1970, pp. 1–84.

[40] J. D. Carroll and J.-J. Chang, ‘‘Analysis of individual differences
in multidimensional scaling via an N -way generalization of ‘Eckart–
Young’ decomposition,’’ Psychometrika, vol. 35, no. 3, pp. 283–319,
1970.

[41] L. R. Tucker, ‘‘The extension of factor analysis to three-dimensional
matrices,’’ in Contributions to Mathematical Psychology, N. Frederiksen
and H. Gulliksen, Eds. New York, NY, USA: Holt, Rinehart and Winston,
1964, pp. 110–127.

[42] L. R. Tucker, ‘‘Some mathematical notes on three-mode factor analysis,’’
Psychometrika, vol. 31, no. 3, pp. 279–311, Sep. 1966.

[43] L. De Lathauwer, B. De Moor, and J. Vandewalle, ‘‘On the best
rank-1 and rank-(R1R2 . . . ,RN ) approximation of higher-order ten-
sors,’’ SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1324–1342,
2000.

[44] J. Cohen, R. C. Farias, and P. Comon, ‘‘Fast decomposition of large non-
negative tensors,’’ IEEE Signal Process. Lett., vol. 22, no. 7, pp. 862–866,
Jul. 2015.

[45] D. Nion and N. D. Sidiropoulos, ‘‘Tensor algebra and multidimensional
harmonic retrieval in signal processing for MIMO radar,’’ IEEE Trans.
Signal Process., vol. 58, no. 11, pp. 5693–5705, Nov. 2010.

[46] M. Haardt, F. Roemer, and G. Del Galdo, ‘‘Higher-order SVD-based
subspace estimation to improve the parameter estimation accuracy in mul-
tidimensional harmonic retrieval problems,’’ IEEE Trans. Signal Process.,
vol. 56, no. 7, pp. 3198–3213, Jul. 2008.

[47] A. Schein, J. Paisley, D. M. Blei, and H. Wallach, ‘‘Bayesian Poisson
tensor factorization for inferring multilateral relations from sparse dyadic
event counts,’’ in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2015, pp. 1045–1054, doi:
10.1145/2783258.2783414.

[48] S. Rabanser, O. Shchur, and S. Günnemann, ‘‘Introduction to ten-
sor decompositions and their applications in machine learning,’’ 2017,
arXiv:1711.10781.

[49] M. Ashraphijuo and X. Wang, ‘‘Fundamental conditions for low-CP-
rank tensor completion,’’ J. Mach. Learn. Res., vol. 18, no. 63, pp. 1–29,
Jan. 2017.

[50] M. Ashraphijuo, V. Aggarwal, and X. Wang, ‘‘Deterministic and
probabilistic conditions for finite completability of low-Tucker-rank
tensor,’’ IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5380–5400,
Sep. 2019.

[51] J. E. Cohen andU.G. Rothblum, ‘‘Nonnegative ranks, decompositions, and
factorizations of nonnegative matrices,’’ Linear Algebra Appl., vol. 190,
pp. 149–168, Sep. 1993.

[52] P. Paatero and U. Tapper, ‘‘Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,’’
Environmetrics, vol. 5, no. 2, pp. 111–126, Jun. 1994.

[53] D. D. Lee and H. S. Seung, ‘‘Algorithms for non-negative matrix
factorization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2001,
pp. 556–562.

[54] Y.-X. Wang and Y.-J. Zhang, ‘‘Nonnegative matrix factorization: A com-
prehensive review,’’ IEEE Trans. Knowl. Data Eng., vol. 25, no. 6,
pp. 1336–1353, Jun. 2013.

[55] W.-S. Chen, Q. Zeng, and B. Pan, ‘‘A survey of deep nonneg-
ative matrix factorization,’’ Neurocomputing, vol. 491, pp. 305–320,
Jun. 2022.

[56] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and
D. B. Rubin, Bayesian Data Analysis, 3rd ed. Boca Raton, FL, USA: CRC
Press, Nov. 2013.

[57] A. Schein, M. Zhou, D. M. Blei, and H. Wallach, ‘‘Bayesian Poisson
Tucker decomposition for learning the structure of international relations,’’
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1–10.

[58] S. Yildirim, M. B. Kurutmaz, M. Barsbey, U. Simsekli, and A. T. Cemgil,
‘‘Bayesian allocation model: Marginal likelihood-based model selection
for count tensors,’’ IEEE J. Sel. Topics Signal Process., vol. 15, no. 3,
pp. 560–573, Apr. 2021.

[59] N. Stoehr, B. J. Radford, R. Cotterell, and A. Schein, ‘‘The OrderedMatrix
Dirichlet for modeling ordinal dynamics,’’ in Proc. 26th Int. Conf. Artif.
Intell. Statist., Dec. 2022, pp. 1–16.

[60] C. Hu, P. Rai, C. Chen, M. Harding, and L. Carin, ‘‘Scalable Bayesian
non-negative tensor factorization for massive count data,’’ in Proc.
Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases, Aug. 2015,
pp. 53–70.

[61] M. J. Beal and Z. Ghahramani, ‘‘Variational Bayesian learning of directed
graphical models with hidden variables,’’ Bayesian Anal., vol. 1, no. 1,
pp. 1–4, Dec. 2006.

[62] M. J. Wainwright and M. I. Jordan, ‘‘Graphical models, exponential
families, and variational inference,’’ Found. Trends Mach. Learn., vol. 1,
nos. 1–2, pp. 1–305, 2008.

[63] A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus,
T. Januschowski, D. C. Maddix, S. Rangapuram, D. Salinas, J. Schulz,
L. Stella, A. Caner Türkmen, and Y. Wang, ‘‘GluonTS: Probabilistic time
series models in Python,’’ 2019, arXiv:1906.05264.

VOLUME 11, 2023 85783

http://dx.doi.org/10.1145/2783258.2783414


M. Barsbey, A. T. Cemgil: Modeling Hierarchical Seasonality Through Low-Rank Tensor Decompositions

[64] P. R. Winters, ‘‘Forecasting sales by exponentially weighted moving aver-
ages,’’Manage. Sci., vol. 6, no. 3, pp. 324–342, Apr. 1960.

[65] J. Kossaifi, Y. Panagakis, A. Anandkumar, andM. Pantic, ‘‘TensorLy: Ten-
sor learning in Python,’’ J. Mach. Learn. Res., vol. 20, no. 1, pp. 925–930,
2019.

[66] P. Virtanen et al., ‘‘SciPy 1.0: Fundamental algorithms for scientific
computing in Python,’’ Nature Methods, vol. 17, no. 3, pp. 261–272,
2020.

[67] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang.
(2018). JAX: Composable transformations of Python+NumPy programs.
[Online]. Available: http://github.com/google/jax

[68] Y. Zhu, W. Wang, G. Yu, J. Wang, and L. Tang, ‘‘A Bayesian
robust CP decomposition approach for missing traffic data impu-
tation,’’ Multimedia Tools Appl., vol. 81, no. 23, pp. 33171–33184,
Sep. 2022.

[69] X. Chen, Y. Chen, and Z. He, ‘‘Urban traffic speed dataset of
Guangzhou, China,’’ 2018. Accessed: Jul. 25, 2023. [Online]. Available:
https://zenodo.org/record/1205229

[70] J. Liu, P.Musialski, P.Wonka, and J. Ye, ‘‘Tensor completion for estimating
missing values in visual data,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 208–220, Jan. 2013.

[71] X. Chen, Z. He, and J. Wang, ‘‘Spatial–temporal traffic speed pat-
terns discovery and incomplete data recovery via SVD-combined tensor
decomposition,’’ Transp. Res. C, Emerg. Technol., vol. 86, pp. 59–77,
Jan. 2018.

[72] C. Gong and Y. Zhang, ‘‘Urban traffic data imputation with detrending and
tensor decomposition,’’ IEEE Access, vol. 8, pp. 11124–11137, 2020.

[73] U. Simsekli, A. Liutkus, and A. T. Cemgil, ‘‘Alpha-stable matrix fac-
torization,’’ IEEE Signal Process. Lett., vol. 22, no. 12, pp. 2289–2293,
Dec. 2015.

[74] S. J. Taylor and B. Letham, ‘‘Forecasting at scale,’’ PeerJ, Corte Madera,
CA, USA, Tech. Rep. e3190v2, Sep. 2017.

[75] K. Bandara, R. Hyndman, and C. Bergmeir, ‘‘MSTL: A seasonal-trend
decomposition algorithm for time series with multiple seasonal patterns,’’
2021, arXiv:2107.13462.

[76] R. Sen, H.-F. Yu, and I. S. Dhillon, ‘‘Think globally, act locally:
A deep neural network approach to high-dimensional time series fore-
casting,’’ in Proc. 33rd Conf. Neural Inf. Process. Syst. (NeurIPS), 2019,
pp. 1–10.

[77] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister, ‘‘Temporal Fusion Transform-
ers for interpretable multi-horizon time series forecasting,’’ Int. J. Fore-
casting, vol. 37, no. 4, pp. 1748–1764, Oct. 2021.

85784 VOLUME 11, 2023


