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Abstract. The two-orbital degenerate Hubbard model proves to be a powerful tool in the
investigation of several 3d and 4d transition metal oxides where orbital degeneracy is known
to play a crucial role. We present here a finite-size cluster study of this model where an exact
numerical diagonalization procedure is used, based on the implementation of the symmetries
generated by the spin, the pairing and the orbital pseudospin operators. The technique is then
applied to the solution of the model on a four-site ring, and an explicit comparison is presented
between the behavior of the spin, charge and orbital gaps as the on-site Coulomb repulsion is
varied.

1. Introduction
It is well known that in several 3d and 4d transition metal oxides [1], as well as in alkali-doped
fullerides [2], a consistent description of the experimental observations cannot be performed
within single-band correlated electron models, but rather requires the use of more realistic
models including orbital degrees of freedom. Well-known cases of this type concern the widely
studied systems V2O3 [3], whose properties are essentially determined by the electrons in a
doubly degenerate d-band, and LaTiO3 [4], which exhibits d-bands with triple degeneration.

In the case of two-orbital degeneracy, many theoretical approaches have so far been proposed
to describe the effect of the strong Coulomb interaction. Among them we quote variational
methods [5, 6, 7], slave-boson methods [8], and, in particular, the dynamical mean-field theory,
which has led to an increased understanding of the correlation effects associated with the Mott
metal-insulator transition [9, 10, 11, 12]. Indeed, due to the presence of orbital degrees of
freedom, the Mott physics contains in this case extra elements of unconventional character
associated, for instance, with the possibility of having some of the d orbitals displaying localized
spin and orbital degrees of freedom, and others providing itinerant electrons.

On a more general ground, the two-orbital Hubbard model is a typical correlated electron
model describing systems where the strength of the interactions between particles is at least
comparable with their kinetic energy. Due to the intrinsic non-perturbative nature of the
problem, extreme difficulties are encountered to devise theoretical tools allowing to deal with
these models in a reliable way. For this reason, a huge amount of work has been devoted in the
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last decades to their solution on clusters made of a relatively small number of sites, obtained
using exact diagonalization, Lanczos or quantum Monte Carlo methods [13].

These approaches also suffer of several limitations, such as the rapid increase of the
computational effort with the cluster size or the unavoidable presence of finite-size effects limiting
the possibility of extracting information on the low-energy scale behavior. Nonetheless, in many
cases they provide useful indications on the physics of the model and often represent the starting
point of powerful approximations where the infinite lattice problem is mapped into a finite-size
cluster self-consistently embedded in a suitably defined mean field [14, 15]. Guided by this
motivation, we present in this paper an exact diagonalization method which is based on the full
implementation of the symmetries generated by the spin, the pairing and the orbital pseudospin
operators. As an application, this technique is used here to determine in the case of a four-
site ring the exact eigenstates and eigenvalues of the model. The latter are then used to show
that the spin, charge and orbital gaps satisfy well defined order relations, in agreement with a
theorem recently demonstrated [16].

2. The model and its symmetries
We consider a lattice system with two equivalent orbitals on each site. The corresponding
Hamiltonian is

H = Hkin + Hel−el (1)

where Hkin is the kinetic term describing electron hopping between orbitals of the same type on
nearest-neighbor sites,

Hkin = t
∑

〈ij 〉, α, σ

d†iασdjασ + h.c. , (2)

d†jασ being the creation operator for an electron with spin σ at site i in the α orbital (α = 1, 2),
and Hel−el is the term describing electron-electron interaction [5, 9, 10, 12]:

Hel−el = (U + J)
∑

i, α

niα↑niα↓ + U
∑

i, σ

ni1 σni2σ̄

+(U − J)
∑

i, σ

ni1σni2σ + J
∑

i, σ

d†i1σd†i2σ̄di1σ̄di2 σ . (3)

We notice that Hel−el contains intra-site interactions only, distinguishing among the cases when
electrons belonging to different orbitals have the same spin or opposite spins (here σ̄ = −σ).
Moreover, with the above choice of the coupling constants the total Hamiltonian is rotationally
invariant with respect to the spin and the orbital degrees of freedom. The condition U > J is
also assumed (with U and J being both positive), in order to ensure that the total interorbital
interaction between electrons with the same spin is repulsive [17].

Let us now introduce the spin, pairing and pseudospin orbital operators, defined respectively
as

S =
1
2

∑

i, σ, σ′, α
d†iασ (σ)σσ′ diασ′ (4)

η =
1
2

∑

i, α, σ, σ′
D†

iασ (σ)σσ′ Diασ′ (5)

T =
1
2

∑

i, α, α′, σ
d†iασ (σ)αα′ diα′σ , (6)

where σ ≡ (σx, σy, σz) is the vector having the Pauli matrices as components, and Diα is a
two-component vector having elements Diα↑ = diα↑ and Diα↓ = d †iα↓.
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In Eq.5 η is the pairing operator introduced by Yang [18], extended to the case of two types
of electrons. The symmetry related to this operator is a kind of hidden symmetry in the particle-
hole space, for which the generators are obtained from the usual spin SU(2) ones through an
electron-hole transformation involving only one kind of spin. As the operator S is associated
with a symmetry involving spin degrees of freedom, similarly the symmetry generated by the
operator η is related to the charge degrees of freedom. This is evident from the fact that the
z component of η is equal to Ntot/2 − Ns, where Ntot is the total number operator and Ns

is the number of lattice sites. On the other hand, the orbital operator T defined in Eq.6 has
again properties analogous to those of the spin 1/2 operators. Indeed, on a given site T+ takes
an electron in orbital 2 and move it to orbital 1, T− produces the reverse process, and Tz has
eigenvalues +1/2 or −1/2 depending on whether an electron is in the orbital 1 or 2, respectively.
The operators S, η and T commute with the Hamiltonian (1) and thus correspond to symmetries
of the model which can be used to classify eigenstates and eigenvalues [19, 16].

3. The solution on a four-site ring and the excitation gaps
In our approach the numerical diagonalization of the Hamiltonian is performed in Fock subspaces
specified by the values of the third component of the operators S, η and T. The implementation
of these symmetries leads to a significant reduction of the size of the matrices to be diagonalized.
When we refer to a four-site ring, for instance, this size reaches its maximum value, equal to
1810×1810, in the case of half filling (eight electrons) for Sz = ηz = Tz = 0. On the other hand,
if the orbital symmetry is neglected, the largest size of the matrices that one has to diagonalize
is 4900×4900, implying that the simultaneous application of spin, charge and orbital symmetries
considerably reduces the dimension of the Fock space. The situation is summarized in Table 1
for a total number of electrons N going from 8 (half filling) to 4 (quarter filling), in the cases
Sz = ηz = 0 for even N , and Sz = ηz = 1/2 for odd N .

We point out that this diagonalization scheme cannot be applied to a slightly more general
fully invariant two-orbital degenerate Hamiltonian, differing from the one considered here by a
coupling constant between electrons in the same orbital equal to U + 2J , rather than U + J ,
and by the presence of a pair hopping term J

∑
i

[
d†i1↑d

†
i1↓di2↓di2↑ + h.c.

]
describing inter-orbital

transfer of electron pairs [6, 7, 20, 21]. Actually, the presence of the pair hopping term breaks
the Tz symmetry, and thus the splitting of the Fock space into subspaces specified by the value
of Tz turns out to be of no use in the diagonalization procedure.

Table 1. Dimensions of the Fock subspaces for a four-site cluster at fixed values of Tz, for an
electron number N going from 8 to 4. The values of Sz and ηz are the lowest possible ones
compatible with the value of N .

Tz Sz ηz N = 8 N = 6 N = 4 Tz Sz ηz N = 7 N = 5
0 0 0 1810 1184 328 ±1/2 1/2 1/2 1316 552
±1 0 0 1184 768 192 ±3/2 1/2 1/2 552 208
±2 0 0 328 192 36 ±5/2 1/2 1/2 88 24
±3 0 0 32 16 ±7/2 1/2 1/2 4
±4 0 0 1

generic 0 0 4900 3136 784 generic 1/2 1/2 3920 1568

Let us now introduce the spin, charge and orbital excitation gaps, defined respectively as

∆S = EG(S = 1, η = 0, T = 0)− EG(S = 0, η = 0, T = 0) (7)
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∆C = EG(S = 0, η = 1, T = 0)− EG(S = 0, η = 0, T = 0) (8)
∆T = EG(S = 0, η = 0, T = 1)− EG(S = 0, η = 0, T = 0) (9)

where EG(S, η, T ) is the lowest eigenvalue of the Hamiltonian in the subspace with quantum
numbers S, η, T .

As an application, we have evaluated the above introduced gaps at half filling (N = 8) and
presented their behavior in Fig.1 as functions of U , for a fixed value of J . We stress that these
results are in agreement with a theorem rigorously demonstrated in Ref. [16], according to which
at half-filling the charge gap is always larger than both the spin-excitation gap and orbital gap.
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Figure 1. Spin, charge and orbital
gaps as functions of U − J at half
filling, for J = 0.5 (bare units). The
inset shows the behavior of the spin
gap on a different scale.

A more detailed cluster investigation of the two-orbital degenerate Hubbard model, in
particular as concerns other ground-state properties such as the possible occurrence of high-
spin magnetic states, is under way and will be the subject of a forthcoming paper.
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