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Abstract
Relative humidity (RH) is a fundamental quantity used in many fields of engineering and
science, and in particular in meteorology and climate research. Relative fugacity (RF) and,
equivalently, relative activity of water vapour in humid air have recently been proposed as a
physically well-founded, unambiguous common metrological reference quantity for several
conventional but mutually inconsistent definitions of RH. The RF definition is valid is valid
under real-gas conditions and above boiling and sublimation temperatures. While differences
between RH and RF mostly remain within uncertainties of typical present-day RH
measurements, such systematic discrepancies are expected to be of substantial climatological
relevance. Consequently, interdisciplinary harmonisation of RH definitions is overdue within
the SI framework. Dew-point and frost-point temperatures are preferred measurands in
humidity metrology using, for example, chilled-mirror hygrometers. Here, relations are
presented for estimating RF from those temperatures, based on equations of state of the 2011
IUGG6 standard TEOS-10, the ‘international thermodynamic equation of seawater—2010’.
Recommendations are given for numerically computing RF using the open-source TEOS-10
SIA library6. The asymptotic limiting laws of RF for nearly saturated humid air exhibit the
familiar form of Clausius–Clapeyron-like equations, despite departing from ideal-gas
assumptions. Under various practical conditions, these simple equations may cover the full
humidity range with only minor residuals compared to the full numerical TEOS-10 solution
for RF.

Keywords: humid air, metrology, hygrometry, dewpoint, relative humidity, fugacity,
TEOS-10

(Some figures may appear in colour only in the online journal)

1. Introduction

Relative humidity (RH) is an important thermodynamic quan-
tity in various branches of science and technology, such

∗ Author to whom any correspondence should be addressed.
5 IUGG: International Union of Geodesy and Geophysics, https://iugg.org/.
6 SIA Library: Sea-Ice-Air Library of TEOS-10, http://teos-10.org

as meteorology, climatology, air-conditioning, wood drying
and ceramics industries, that is subject to advancing metrol-
ogy [1–8]. However, conventional RH is not uniformly
defined, and the definitions available typically do not cover
the full range of potential applicability [9, 10]. In its latest
strategy document, the Consultative Committee for Thermom-
etry of the CIPM [11]: pp 2–17 has described the unsatis-
factory present metrological situation by declaring that ‘the
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expression of RH is not yet standardised’ and its engagement to
‘continue development of relative fugacity (RF) as a real-gas
alternative for the conventional RH definition, together with
options for realization within the SI’. Related work is ongo-
ing in cooperation between the BIPM7 and IAPWS8 under the
umbrellas of the CCT9 and JCS10.

For these reasons, a new, physically rigorous definition of
RH has been developed [12] in the form of RF, or equivalently,
of relative activity of water vapour in humid air, which covers
the entire subcritical temperature-pressure range of pure water
(see figure 10 and table 2). RF allows for deviations from ideal-
gas approximations and can be computed from highly accurate
equations which form the international thermodynamic stan-
dard TEOS-10 for seawater, ice and humid air [13–18]. For
example, estimates for the effects of RH changes on the global
climatic energy balance indicate that real-gas effects or differ-
ences between different current RH definitions are of similar
magnitude as the observed global warming [19, 20]. Typically,
practical atmospheric RH measurements possess uncertain-
ties that prevent resolving such differences, and more accurate
measurement methods are highly desirable [21]. A definition
of RF in the framework of the SI may serve as a uniform com-
mon reference quantity for the several RH definitions currently
in widespread practical use in various fields of science and
technology.

The advantages of RF over the several conventional RH def-
initions result mainly from the fact that the partial pressure of
water vapour, which appears in ideal-gas approximations of
humidity equations, for non-ideal gases needs to be substituted
by the fugacity of water vapour, or equivalently, by its activity
or chemical potential, as explained in detail in the part 1 com-
panion paper [12]. In particular, the RF definition reflects the
physics of thermodynamic equilibrium—that for each compo-
sition species, at equilibrium its chemical potential (and hence
the fugacity or activity) is equal across phases. The difference
in the chemical potentials of water vapour (and equivalently,
the ratio of the fugacities) across phases is the driver to equilib-
rium. This is not true of the partial pressure or any of the other
humidity quantities mentioned in equation (1) below, since it
does not make sense to say that there is an equality of these
quantities across phases at thermodynamic equilibrium.

For the measurement of RF, osmotic methods are theoret-
ically possible, which require only pressure and temperature
measurements, both traceable to the SI [22]. A metrological
standard method for practical RH measurement is the deter-
mination of dew-point and frost-point temperatures; in this
paper equations are presented that permit the calculation of RF
from those measurements. Conventionally, a suitable equation
of state of humid air is requisite for this purpose, such as for
the evaluation of conventional RH measures [23], but is, by

7 BIPM: Bureau International des Poids et Mesures, http://bipm.org.
8 IAPWS: International Association for the Properties of Water and Steam,
http://iapws.org.
9 CCT: Consultative Committee for Thermometry, https://bipm.org/en/
committees/cc/cct.
10 JCS: IAPSO/SCOR/IAPWS Joint Committee on the Properties of Seawater,
http://teos-10.org.

contrast, not necessary for the osmotic method of measuring
RF [22].

In this paper it is assumed that by metrological devices such
as chilled-mirror hygrometers [10], a given sample of humid
air is isobarically cooled down to the condensation point at
which liquid water or ice precipitates from the moist gas; this
process may happen under atmospheric conditions but is to
be distinguished from condensation during adiabatic expan-
sion such as in cloud formation by forced and free convection.
This paper addresses explicitly also the so-called ‘extended
pressure range’ in which the pressure of humid air at a given
temperature is below the vapour pressure of liquid water or the
sublimation pressure of ambient hexagonal ice (ice Ih). Such
conditions, under which condensed water phases do not stably
exist, are mainly of metrological and technical interest but are
not typically encountered in meteorology, except perhaps in
the vicinity of geothermal vents, volcanic eruptions, impacts
of meteorites, or lightning.

In section 2, equations are derived for the computation of
RF from dew-point or frost-point temperatures, as convention-
ally measured by chilled-mirror hygrometers. In addition to
thermodynamically rigorous expressions in terms of proper-
ties such as chemical potentials available from TEOS-10, also
simplified, Clausius–Clapeyron-type formulas are derived for
the limiting case of weakly subsaturated humid air, the water-
vapour content of which is only slightly below its saturation
value. The use of similar approximations is widespread in the
humidity literature; for example, the driving force for evap-
oration is often estimated by a linearisation of the proper
water activity term, − ln (RF) ≈ (1 − RH), which is valid suf-
ficiently close to saturation [21, 24].

Section 3 is a summary of the new equations suggested
in this paper. Appendix A, for easy reference, repeats briefly
the original definition of RF, appendix B provides details on
the derivation of approximate equations for RF in the limit
of weak subsaturation, appendix C reports selected math-
ematical relations describing saturation properties, that is,
equilibria between humid air and either liquid water or ice
Ih, which are relevant for this paper, appendix D explains
corrections for the case that the solubility of air in liq-
uid water is to be included, appendix E suggests a collec-
tion of helpful calls to the TEOS-10 source code library
for computing RF, and appendix F provides a source-code
example for computing RF in the context of the open-
source TEOS-10 SIA Library. Finally, a list of symbols
used in this paper is collected in appendix G. This article
refrains from comprehensively reporting uncertainty esti-
mates; this task is intended to be the key topic of a subsequent
companion paper on the RF.

In the fundamental mathematical functions of TEOS-10,
various thermodynamic properties are given as specific quan-
tities, expressed per unit of mass, while humidity calculations
are otherwise usually done with molar quantities. Accordingly,
while the amount of substance (informally, the mole fraction)
of water vapour, x, the specific humidity, q, or the humidity
(or mass-mixing) ratio, r = q/ (1 − q), are conventionally
used in humidity calculations as composition variables, TEOS-
10 functions are mostly expressed in terms of the dry air mass
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fraction, A = 1 − q, of humid air. The reason for this deci-
sion was that water in its different phases is present in the
hydrosphere, atmosphere and cryosphere, admixed with sea
salt in the ocean or with dry air in the atmosphere, both being
described similarly by the solute mass fractions of the latter
ones, either of dissolved salt (‘absolute salinity’), S, or of dry
air, A, and water as the solvent of the fluid mixtures. Given
here for convenience, the humidity concentration variables A,
q, r and x convert mutually by the molar masses of dry air and
water, MA and MW, respectively, via the equation

(
1
A
− 1

)−1

=
1
q
− 1 =

1
r
=

MA

MW

(
1
x
− 1

)
. (1)

In TEOS-10, temperatures are exclusively expressed on the
International Temperature Scale of 1990, ITS-90 [25]. In this
text and figures, numerical values of RH, including RF, are
expressed in the unit %rh, so that saturation corresponds to an
RF of 100 %rh = 1.

2. Relative fugacity from dew-point or frost-point
temperature

A homogeneous sample of humid air can be characterised by
three independent thermodynamic variables, namely tempera-
ture, T, pressure, p, and a humidity concentration variable such
as the mole faction of water vapour, x, the mass fraction of dry
air, A, or the specific humidity, q = 1 − A (see equation (1)).
Pressure p is occasionally regarded here as the total pressure
in contrast to the partial pressure, xp = f(T,p)e(T), of water
vapour in humid air. Here, e(T) is the water-vapour saturation
(or sublimation) pressure which is a function of T, and f (T,p)
is the water vapour enhancement factor which is afunction of
T and p. A humid-air sample is represented by a point in a
3D thermodynamic state space spanned by the three variables
(x, T, p) or (A, T, p) (see figure 1).

Humid air in thermodynamic equilibrium with either liq-
uid water or ice Ih beyond a planar interface is termed satu-
rated. Although, in theory, relative fugacity could encompass
pressures above the critical pressure and frost points could be
determined corresponding to the adjacent phases, ice phases
other than Ih are beyond the scope of this paper. The satura-
tion state of a sample of humid air is uniquely defined by a
function, x = xsat (T, p), or equivalently, A = Asat (T, p), and is
represented by a related 2D surface in the 3D state space. Upon
isobaric (p = const.) and iso-compositional (x = const.) cool-
ing, the thermodynamic state point characterising an unsatu-
rated air sample at (T,p) is displaced along a straight 1D tra-
jectory, (x, p) = const., until it intersects the saturation surface
x = xsat (T, p) at the condensation temperature T = Tcp (x, p),
so that the identities

T ≡ Tcp

(
xsat (T, p) , p

)
(2)

and
x ≡ xsat

(
Tcp (x, p) , p

)
(3)

hold. The special case of a saturated humid air sam-
ple consisting of pure water vapour, x = xsat (T, p) = 1 (or

Figure 1. 3D phase diagram (A, T , p) of humid air. As separately
shown in figures 2 and 10, the T –p plane in the back at A = 0 is the
phase diagram of pure water with the solid (S) phase of ‘ice Ih’
above the 1D ‘sublimation’ curve, the liquid (L) phase of ‘water’
above the 1D ‘saturation’ curve, and the gas (G) phase of ‘vapour’
below those two curves. Starting at the triple point of water (TP), the
1D melting curve (not shown) separates ‘ice Ih’ from ‘liquid water’
in the plane A = 0. Presence of dry air, A > 0, extrudes the 1D
‘sublimation’ and ‘saturation’ curves to form 2D surfaces of frost
points and dew points, respectively, along which humid air is
saturated, A = Asat (T , p). Those surfaces are spanned here by the
curves denoted as ‘Frost Point’ and ‘Dew Point’, together with the
1D ‘Triple Line’ along which they intersect each other at the melting
temperature of ice Ih. Stable humid air exists below those 2D
surfaces; states above are supersaturated and metastable or unstable.
The reference pressure of the vertical axis is P0 = 101 325 Pa; ‘lg’
denotes the decadic logarithm. The pressure of ‘5 MPa’ indicated at
the top plane is the upper validity limit of the TEOS-10 formulation
of humid air [14, 15, 26, 27]. The vertical plane A = 1 in front
belongs to pure ‘dry air’. Reprinted from [27], Copyright (2012),
with permission from Elsevier.

equivalently, A = 0), defines the 1D water-vapour saturation
(or sublimation) pressure curve given by p = e (T) as a func-
tion of temperature in the 2D T –p diagram of water:

xsat (T, e (T)) ≡ 1. (4)

On this background, the RF of an unsaturated humid-air
sample with the temperature T and the total pressure p is
defined separately in four different T –p regions projected onto
the phase diagram of pure water, as defined in the part 1 com-
panion paper [12] and repeated briefly here for convenience
in appendix A. The reason for this multiple definition is that
RF, depending on its particular given T –p condition, needs to
be referenced to an appropriate condensed phase of water at T
which varies discontinuously with changing conditions as laid
out by the phase diagram.

In this paper, for a given T, we define the standard pressure
range as that range where p � e (T), and define the extended
pressure range as that range where p < e (T) and no condensed
water phase stably exists.

3
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Figure 2. Temperature-pressure phase diagram of pure water,
annotated with horizontal arrows indicating isobaric cooling
processes of humid air samples. Arrows begin at (T , p) of the given
sample and end at the saturated chilled-mirror state, either at the
dew point, (Tdp, p), or at the frost point, (T fp, p). Here, original
arrows embedded at A > 0 in the 3D phase space displayed in
figure 1 are shown as projections onto the boundary plane A = 0.
The upper three cases, (L–L) to (L–S), belong to samples in the
standard pressure range of RH, the lower four cases, (GL –L) to
(GS –S), to the extended pressure range, starting in the gas-phase
region (G). In the original 3D space, figure 1, all those arrows start
in the gaseous region below the saturation surface and end where
they intersect that surface. Cases (L–L) and (GL –L) lead to
dew-point temperatures in the liquid region (L), the remaining ones
to frost points in the solid region (S). GS and GL, respectively,
denote the vapour-phase regions of (G) below and above the triple
point temperature. Reprinted from [28].

A given sample of humid air with the properties (x, T, p) or
(A, T, p) is represented in one of those regions by a point of
known values of T and p, but with RF yet to be determined.
To measure the humidity, quantitatively expressed by x, A or
RF, the sample is cooled down isobarically to the dew point
or frost point, that is, to a temperature at which condensation
occurs, as either dew or frost respectively.

In the 2D phase diagram of pure water, figure 2, the satura-
tion and sublimation curves, respectively, represent the loci of
dew points and frost points of air-free water vapour. By con-
trast, rather than referring to pure water vapour, the arrows
shown in the diagram refer to isobaric cooling of samples of
unsaturated humid air with the same (T, p) values. Upon iso-
baric cooling, those samples have their dew points and frost
points where the related arrows end.

Depending on the possibly different stable water phases at
the sample’s initial and final T –p conditions, this ‘chilling’
process may proceed in several qualitatively different ways,
cases (L–L) to (GS–S), as indicated by horizontal arrows
in the phase diagram of figure 2. Arrows begin at (T, p)
of the given sample, characterised by its initial-state triple
(A, T, p) with unknown A, and end at the chilled-mirror state,

Figure 3. Schematic of isobaric cooling in the extended pressure
range. RF of the initial sample at (T , p) is defined relative to
saturated pure water vapour at the same temperature (T , e(T )). Upon
isobaric cooling, condensation is thermodynamically impossible
before crossing the saturation or sublimation curve, i.e., before
entering the standard-pressure region at (T sp(p), p). The temperature
difference between this entry point and the actual condensation
point of the humid-air sample, T sp − Tcp, determines the partial
subsaturation at the entry point (T sp, p) in addition to the remaining
partial subsaturation resulting from the initial pressure insufficiency,
e(T ) − p.

characterised by the final-state triple at the condensation point
(subscript ‘cp’),

(
A, Tcp, p

)
, either at the dew point (subscript

‘dp’), (Tdp, p), or at the frost point (subscript ‘fp’), (T fp, p).
The arrows displayed in the 2D space of figure 2 actually
constitute projections onto the p–T plane A = 0 of the hori-
zontal isobaric and iso-compositional cooling trajectory, A =
const., p = const., in the 3D space of figure 1 from a point at
(A, T, p) below the saturation surface to the intersection point(
A, Tcp, p

)
with the saturation surface, A = Asat

(
Tcp, p

)
. Sim-

ple equations, consistent with TEOS-10, for evaluating the
saturation-, sublimation- and melting-pressure curves of the
pure-water phases involved are provided in appendix A.

If the initial sample is under (T, p) conditions of the
extended pressure range, the isobaric cooling process down
to condensation must first cross the saturation or sublima-
tion curve of pure water vapour to enter the standard-pressure
range, subscript ‘sp’, at

(
Tsp, p

)
, a curve being defined by con-

densation of pure vapour at the given pressure, e
(
Tsp

)
= p,

see figure 3, which is independent of the humidity of the initial
sample. Further cooling, then depending on that initial humid-
ity, results in condensation of humid air at the condensation-
point temperature, subscript ‘cp’,

(
Tcp, p

)
within the standard

pressure range. With regard to an approximation formula of
RF for weakly subsaturated samples, mathematics similar to
that of the standard pressure range can be applied to the
second cooling step, while the first step requires alternative
considerations.

4
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Next, the seven different possible routes to condensation,
as indicated in figure 2, are analysed in turn. The qualitatively
different cases are symbolically indicated by ‘(X–Y)’, where X
is placeholder for the pure water phase, either ‘L’, ‘S’, or ‘G’,
at the initial T –p conditions before chilling, and Y is that at the
final condensation point after chilling,

(
Tcp, p

)
. The gas phase

‘G’ of X is additionally separated in ‘GS’ below the triple-
point temperature and ‘GL’ above it, while Y may only take the
actual values ‘L’ or ‘S’. For each of those cases, a full analyti-
cal expression for RF is given as well as a simplified formula as
an approximation in the limit of weak subsaturation. The full
formulas depend only on the phase space regions of the initial
and the final state of the cooling process, while the approxi-
mations depend also on different conditions possibly passed
in between and require detailed mathematical manipulations
as carried out in appendix B.

2.1. Case (L–L): standard range with respect to water,
dew-point condensation

In the standard pressure range and with respect to liquid water,
RF,ψf , in the region (L) is defined by equations (A.4) and (A.5)
of appendix A, namely by

RWT ln ψf = μAV
V (A, T, p) − gW (T, p) . (5)

Here, RW is the specific gas constant of water, μAV
V is the

chemical potential of water vapour (subscript ‘V’) in humid
air (superscript ‘AV’) and gW is the chemical potential of pure
liquid water (superscript ‘W’), which equals its specific Gibbs
energy. In equation (5), the dry-air fraction A of the initial
sample is still the same as its saturation value after chilling,

A = Asat
(
Tdp, p

)
, (6)

associated with the dew-point temperature Tdp at the same
pressure, which obeys the equilibrium condition between the
two chemical potentials,

μAV
V

(
Asat

(
Tdp, p

)
, Tdp, p

)
= gW

(
Tdp, p

)
. (7)

Similarly, the saturation value Asat (T, p) at any tempera-
ture T associated with the initial sample conditions can be
computed from the equilibrium equation

μAV
V

(
Asat (T, p) , T, p

)
= gW (T, p) . (8)

A physically reasonable such solution can be assumed to
exist because the T –p conditions belong to the region (L). As
an aside, it may be noted that the ratio

ψq =
1 − Asat

(
Tdp, p

)
1 − Asat (T, p)

(9)

is the RH ψq of the given sample in the conventional climato-
logical RH definition [10, 21].

From equations (5) and (8), the sample’s RF can be com-
puted from the measured dew-point temperature by

RWT ln ψf = μAV
V

(
Asat

(
Tdp, p

)
, T, p

)
− μAV

V

(
Asat (T, p) , T, p

)
. (10)

The chemical potential μAV
V of water vapour in humid air is

numerically available from the TEOS-10 Gibbs function, gAV,
of humid air, by the thermodynamic relation [15, 29]

μAV
V = gAV − A

(
∂gAV

∂A

)
T,p

. (11)

As an alternative to the numerical implementation of the
thermodynamically rigorous equation (10), this formula also
permits a derivation of an approximate, simplified mathemat-
ical expression by power series expansion about T, including
exactly all linear terms in δT,

RWT ln ψf = μAV
V

(
Asat (T − δT, p) , T, p

)
− μAV

V

(
Asat (T, p) , T, p

)
, (12)

for the case that the subsaturation expressed by the temperature
depression, δT ≡ T − Tdp, of the given sample of humid air is
only weak, i.e.,

|δT/T| � 1. (13)

The result of this calculation, as outlined in detail in
appendix B.1, is a limiting formula for the RF, equation (B.7),
similar to the Clausius–Clapeyron approximation for ideal
gases,

ψf = exp

{
LL

(
Tdp, p

)
RW

(
1
T
− 1

Tdp

)}
+ O

(∣∣∣∣δT
T

∣∣∣∣
2
)
. (14)

Note that the specific enthalpy, LL
(
Tdp, p

)
, of evapora-

tion of water vapour from liquid water to humid air is well-
defined only along the 2D phase boundary in the 3D state
space spanned by (A, T, p), figure 1, namely on the saturation
surface, A = Asat (T, p), and depends on only two independent
variables such as, say, LL (T, p). This applies similarly also to
the sublimation enthalpy, LS (T, p), considered later. Both, LS

and LL, denote the latent heats released by condensation of
water vapour from humid air to either the solid (subscript ‘S’)
or the liquid condensed phase (subscript ‘L’), respectively.

In figure 4, the deviation of equation (14) from (10) is
evaluated numerically for some typical meteorological situa-
tions. Down to below 75%rh, the residuals remain well within
0.1%rh.

Computed from TEOS-10, as a numerical example com-
paring equations (10) and (14), at given p = 101 325 Pa,
T = 300 K and RH of x/xsat(T, p) = 80%rh, the sample’s
water-vapour mole fraction is x = 2.804 746%, the dew point
is at Tdp = 296.259 246 K, RF from equation (10) is 80.053
534%rh and RF from equation (14) is 80.023 785%rh, cal-
culated with the evaporation enthalpy value of LL

(
Tdp, p

)
=

2443 589.2 J kg−1. Note that the Clausius–Clapeyron approx-
imation, equation (14), of RF is slightly closer to conventional
RH than to the exact RF, equation (10). In appendix F, further
check values for RF are given.

2.2. Case (S–S): standard range with respect to ice,
frost-point condensation

In the standard pressure range and with respect to ice Ih, RF
in the region (S) is defined in appendix A by equations (A.4)
and (A.5) as

5
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Figure 4. Cases (L–L) and (L–S). Deviation in %rh of the linear
weak-subsaturation approximation of RF (14) from the full
numerical result (10) at atmospheric pressure and initial
temperatures between 10 ◦C and 90 ◦C as indicated near the curves.
Abscissa value is the RF of the initial sample before chilling;
weakly subsaturated samples take values near 100%rh. To the left of
the pronounced minimum, condensation appears at the frost point
(case L–S) rather than at the dew point (case L–L), and the
responsible approximation equation becomes (26) instead of (14).
For the typical marine troposphere about 80%rh, the approximation
error remains below 0.1%rh, significantly less than the typical
uncertainty of routine meteorological hygrometers of 1–5%rh
[30, 31]. Note that the abscissa covers the full range from dry air (at
0% rh) to saturation (at 100%rh) of RF, which is possible only in the
standard pressure range.

RWT ln ψf = μAV
V (A, T, p) − gIh (T, p) . (15)

The calculations of section 2.1 can be repeated here quite
similarly for ice rather than liquid water. Then, equation (10)
turns into the rigorous equation for RF in terms of the frost-
point temperature, Tfp,

RWT ln ψf = μAV
V

(
Asat

(
Tfp, p

)
, T, p

)
− μAV

V

(
Asat (T, p) , T, p

)
, (16)

and its approximation at weak subsaturation, equation (14), as
derived in appendix B.2, consequently becomes

ψf = exp

{
LS

(
Tfp, p

)
RW

(
1
T
− 1

Tfp

)}
+ O

(∣∣∣∣δT
T

∣∣∣∣
2
)
. (17)

Here, LS

(
Tfp, p

)
is the specific sublimation enthalpy of ice

Ih in humid air at the frost-point temperature, defining the
saturation state A = Asat

(
Tfp, p

)
. As an illustration, the devi-

ation of this equation (17) from the rigorous formula (16) is
displayed in figure 5 for some meteorological conditions.

2.3. Case (L–S): standard range with respect to water,
frost-point condensation

In the standard pressure range and with respect to liquid water,
RF in the region (L) is defined by equations (A.4) and (A.5) as

Figure 5. Case (S–S). Deviation in %rh of the linear
weak-subsaturation approximation of RF (17) with respect to ice Ih
from the full numerical result (16) at atmospheric pressure and
initial temperatures between 0 ◦C and −40 ◦C as indicated near the
curves. Abscissa value is the RF of the initial sample before chilling;
weakly subsaturated samples take values near 100%rh. The
approximation error remains well below 0.1%rh even for strongly
subsaturated air, significantly less than the typical uncertainty of
routine meteorological hygrometers of 1–5%rh [30, 31].

RWT ln ψf = μAV
V (A, T, p) − gW (T, p) (18)

The dry-air fraction A of the given sample is available as
the saturation value from the frost-point temperature T fp at the
same pressure,

A = Asat
(
Tfp, p

)
, (19)

which obeys the equilibrium condition

μAV
V

(
Asat

(
Tfp, p

)
, Tfp, p

)
= gIh

(
Tfp, p

)
. (20)

Similarly, the reference saturation value Asat (T, p) asso-
ciated with the given initial sample conditions can be com-
puted from the equilibrium equation at the related dew point,
T = Tdp,

μAV
V

(
Asat (T, p) , T, p

)
= gW (T, p) . (21)

The rigorous formula for RF then is equivalent to
equation (16):

RWT ln ψf = μAV
V

(
Asat

(
Tfp, p

)
, T, p

)
− μAV

V

(
Asat (T, p) , T, p

)
. (22)

In this case (L–S), the melting point, Tmp (p), of ice Ih
is located between the initial and final temperatures of the
chilling process,

Tfp (A, p) < Tmp (p) < T. (23)

At this melting point, the derivative
(
∂Asat/∂T

)
p

of the 2D

saturation surface Asat (T, p) in figure 1, as derived analytically
in appendix C, exhibits a discontinuity,

6



Metrologia 59 (2022) 045013 R Feistel et al

Asat (T, p)

(
∂2gAV

∂A2

)
T,p

(
∂Asat

∂T

)
p

=

⎧⎪⎨
⎪⎩
−LL (T, p) /T if T � Tmp (p)

−LS (T, p) /T if T � Tmp (p)
, (24)

with the difference

LS
(
Tmp (p) , p

)
− LL

(
Tmp (p) , p

)
= LM (p) (25)

being the melting enthalpy of ice. Note that in the 3D state
space spanned by (A, T, p), the functions LS and LL are defined
on the 2D saturation surfaces of humid air with respect to ice
and liquid water, respectively, and carry two independent argu-
ments, while LM is defined on the 1D melting curve of ice,
independent of air, and depends on one independent variable
only.

For an approximation formula of equation (22) valid at
weak subsaturation, the series expansion with respect to the
temperature lowering, δT ≡ T − Tfp, is carried out in appendix
B.3. The resulting final approximation formula for RF in the
case (L–S) is, equation (B.23),

ψf ≈ exp

{
LL

(
Tmp, p

)
RW

(
1
T
− 1

Tmp

)

+
LS

(
Tmp, p

)
RW

(
1

Tmp
− 1

Tfp

)}
, (26)

or, equivalently,

ψf = exp

{
LS

(
Tmp, p

)
RW

(
1
T
− 1

Tfp

)

− LM (p)
RW

(
1
T
− 1

Tmp

)}
+ O

(∣∣∣∣δT
T

∣∣∣∣
2
)
. (27)

In the limit Tfp → Tmp, equation (26) is consistent with
equation (14) of case (L–L), and similarly with equation (17)
of case (S–S) in the limit T → Tmp. As an illustration, the
deviation of equation (26) from the rigorous formula (22) is
displayed in figure 4 under some selected conditions.

2.4. Case (GL –L): extended range with respect to water,
dew-point condensation

According to equations (A.4) and (A.5), in the region GL of
figure 2 the RF is defined as

RWT ln ψf = μAV
V (A, T, p) − gV

(
T, eW (T)

)
= μAV

V (A, T, p) − μAV
V

(
0, T, eW (T)

)
. (28)

The air fraction A is obtained from saturation at the dew
point, Tdp,

A = Asat
(
Tdp, p

)
, (29)

so that

RWT ln ψf = μAV
V

(
Asat

(
Tdp, p

)
, T, p

)
− μAV

V

(
0, T, eW (T)

)
.

(30)

Figure 6. Case (GL –L). Deviation of approximate RF,
equation (32), from full RF, equation (31), in the extended pressure
range at 100 kPa as a function of specific humidity q = 1 − A
expressed as a percentage, at several initial sample temperatures as
indicated near the curves. The residual visible at q = 100% results
from the ideal-gas approximation used for deriving the pre-factor
p/eW (T) in equation (32). Note that the abscissa covers the full
range from dry air (at 0%) to pure water vapour (at 100%) of specific
humidity, which is possible only in the extended pressure range.

Making use of TEOS-10 library functions, the calculation
of the RF ψf (A, T, p) of the given sample requires (i) eval-
uation of the saturation pressure of liquid water, eW (T), (ii)
evaluation of the saturation dry-air fraction Asat

(
Tdp, p

)
at the

measured dew point, and finally (iii) computing

ψf = exp

{
μAV

V

(
Asat

(
Tdp, p

)
, T, p

)
− gV

(
T, eW (T)

)
RWT

}
.

(31)
During the chilling process, the sample passes from the

extended pressure range to the standard pressure range (sub-
script ‘sp’) at the point

(
Tsp, p

)
, where Tsp is the boiling

temperature of pure water at the pressure p, as shown in
figure 3.

For weakly subsaturated humid air, the formula (31) may be
approximated by a simpler expression, as derived in appendix
B.4. The linear approximation of equation (31) for the RF, in
the case of weak subsaturation, is consistent with the Clau-
sius–Clapeyron-like formula,

ψf ≈
p

eW (T)
exp

{
LL (p)

RW

(
1

Tsp
− 1

Tdp

)}
. (32)

The residual of the approximation equation (32) in com-
parison to the full numerical expression (31) is displayed in
figure 6 for some typical cases, remaining well below 1%rh.

2.5. Case (GL–L–S): extended range with respect to water,
frost-point condensation

Similar to section 2.4, according to equations (A.4) and (A.5),
in the region GL of figure 2 the RF is defined as

7
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RWT ln ψf = μAV
V (A, T, p) − gV

(
T, eW (T)

)
= μAV

V (A, T, p) − μAV
V

(
0, T, eW (T)

)
. (33)

The air fraction A is obtained from saturation at the frost
point,

A = Asat
(
Tfp, p

)
, (34)

so that

RWT ln ψf = μAV
V

(
Asat

(
Tfp, p

)
, T, p

)
− μAV

V

(
0, T, eW (T)

)
.

(35)
Making use of TEOS-10 library functions, the calculation

of the RF ψf (A, T, p) of the given sample requires (i) eval-
uation of the saturation pressure of liquid water, eW (T), (ii)
evaluation of the saturation dry-air fraction Asat

(
Tfp, p

)
at the

measured frost point, and finally (iii) computing

ψf = exp

{
μAV

V

(
Asat

(
Tfp, p

)
, T, p

)
− gV

(
T, eW (T)

)
RWT

}
.

(36)
For weakly subsaturated humid air, this formula may be

approximated by a simpler expression which requires consid-
ering the details of the cooling path rather than just its end-
points at T and Tfp. In contrast to section 2.4, after entering
the standard pressure range, see figure 3, the cooling pro-
cess additionally crosses the melting temperature Tmp before
condensation occurs at the frost point, see figure 2.

The associated linearisation is explicitly carried out
in appendix B.5, with the result rearranged in Clau-
sius–Clapeyron form

ψf ≈
p

eW (T)
exp

{
LL

(
Tmp, p

)
RW

(
1

Tsp
− 1

Tmp

)

+
LS

(
Tmp, p

)
RW

(
1

Tmp
− 1

Tfp

)}
. (37)

This is the intended linear approximation formula for the
RF at weak subsaturation in the case (GL–L–S). The residual
of the approximation equation (37) in comparison to the full
numerical expression (36) is displayed in figure 7 for some
typical cases, remaining well below 0.2%rh.

2.6. Case (GL –S): extended range with respect to water,
frost-point condensation

This case (GL–S) can be treated similarly to the case (GL–L) in
section 2.4 by formally substituting the dew point by the frost
point. According to equations (A.4) and (A.5), in the region
GL of figure 2 the RF is defined as

RWT ln ψf = μAV
V (A, T, p) − gV

(
T, eW (T)

)
= μAV

V (A, T, p) − μAV
V

(
0, T, eW (T)

)
. (38)

The air fraction A is obtained from saturation at the frost
point,

A = Asat
(
Tfp, p

)
, (39)

Figure 7. Cases (GL –L) and (GL –L–S). Deviation of approximate
RF, equations (37) and (32), from full RF, equations (36) and (31),
respectively, in the extended pressure range at 10 kPa as a function
of specific humidity q = 1 − A expressed as a percentage, at several
initial sample temperatures as indicated near the curves. On the left
of the minimum, condensation happens at the dew point in region
(L), equation (e2.52) relative to (31), while at lower humidities
condensation occurs at lower temperatures in the ice region (S),
equation (e2.67) relative to (36). The residual visible at q = 100%
results from the ideal-gas approximation used for deriving the
pre-factor p/eW (T) in equation (37).

so that

RWT ln ψf = μAV
V

(
Asat

(
Tfp, p

)
, T, p

)
− μAV

V

(
0, T, eW (T)

)
.

(40)
Making use of TEOS-10 library functions, the calculation

of the RF ψf (A, T, p) of the given sample requires (i) eval-
uation of the saturation pressure of liquid water, eW (T), (ii)
evaluation of the saturation dry-air fraction Asat

(
Tfp, p

)
at the

measured frost point, and finally (iii) computing

ψf = exp

{
μAV

V

(
Asat

(
Tfp, p

)
, T, p

)
− gV

(
T, eW (T)

)
RWT

}
.

(41)
For weakly subsaturated humid air, this formula may be

approximated by a simpler expression, as derived in appendix
B.6. The resulting linear approximation of equation (41) for
the RF in the case of weak subsaturation is therefore, up to
quadratic terms in the perturbation series, the simple Clau-
sius–Clapyron-like formula

ψf ≈
p

eW (T)
exp

{
LS (p)

RW

(
1

Tsp
− 1

Tfp

)}
. (42)

Here, Tsp (p) is the sublimation temperature of ice with
respect to pure water vapour, at which the isobaric cooling pro-
cess enters the standard pressure range, and LS (p) is the sub-
limation enthalpy of ice Ih with respect to pure water vapour
at this point. The residual of the approximation equation (42)
in comparison to the full numerical expression (41) is dis-
played in figure 8 for some typical cases, remaining well below
0.001%rh.

8
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Figure 8. Case (GL –S). Deviation of approximate RF,
equation (42), from full RF, equation (41), in the extended pressure
range at 10 Pa as a function of specific humidity q = 1 − A
expressed as a percentage, at several initial sample temperatures as
indicated near the curves. The residual visible at q = 100% results
from the ideal-gas approximation used for deriving the pre-factor
p/eW (T) in equation (42).

2.7. Case (GS–S): extended range with respect to ice,
frost-point condensation

This case (GS–S) can be treated similarly to the case (GL–S)
in section 2.6 by formally substituting the saturation pres-
sure eW (T) by the sublimation pressure eIh (T). According to
equations (A.4) and (A.5), in the region GS of figure 2 the RF
is defined as

RWT ln ψf = μAV
V (A, T, p) − gV

(
T, eIh (T)

)
= μAV

V (A, T, p) − μAV
V

(
0, T, eIh (T)

)
. (43)

The air fraction A is obtained from saturation at the frost
point,

A = Asat
(
Tfp, p

)
, (44)

so that

RWT ln ψf = μAV
V

(
Asat

(
Tfp, p

)
, T, p

)
− μAV

V

(
0, T, eIh (T)

)
.

(45)
Making use of TEOS-10 library functions, the calculation

of the RF ψf (A, T, p) of the given sample requires (i) evalua-
tion of the sublimation pressure of ice, eIh (T), (ii) evaluation
of the saturation dry-air fraction Asat

(
Tfp, p

)
at the measured

frost point, and finally (iii) computing

ψf = exp

{
μAV

V

(
Asat

(
Tfp, p

)
, T, p

)
− gV

(
T, eIh (T)

)
RWT

}
.

(46)
For weakly subsaturated humid air, this formula may be

approximated by a simpler expression, as outlined in appendix
B.7. The linear approximation of equation (46) for the RF

Figure 9. Case (GS–S). Deviation of approximate RF,
equation (47), from full RF, equation (46), in the extended pressure
range at 10 Pa as a function of specific humidity q = 1 − A
expressed as a percentage, at several initial sample temperatures as
indicated near the curves. The residual visible at q = 100% results
from the ideal-gas approximation used for deriving the pre-factor
p/eIh (T) in equation (47).

in cases of weak subsaturation is therefore, up to quadratic
correction terms, the simple Clausius–Clapeyron-like formula

ψf ≈
p

eIh (T)
exp

{
LS (p)

RW

(
1

Tsp
− 1

Tfp

)}
. (47)

Here, Tsp (p) is the sublimation temperature of ice with
respect to pure water vapour, at which the isobaric cooling pro-
cess enters the standard pressure range, and LS (p) is the sub-
limation enthalpy of ice Ih with respect to pure water vapour
at this point. The residual of the approximation equation (47)
in comparison to the full numerical expression (46) is dis-
played in figure 9 for some typical cases, remaining well below
0.01%rh.

3. Summary

For a variety of mutually inconsistent versions of RH cur-
rently in practical use, as a thermodynamically well-founded,
unambiguous reference quantity, RF has been suggested [15]:
equation (10.10) [10], and rigorously defined mathematically
[12] in the context of TEOS-10. In this paper, equations are
provided for the calculation of RF from measurands well-
established in RH metrology and meteorology.

In table 1, equations for the computation of RF from mea-
sured dew-point and frost-point temperatures are summarised
as derived in this paper. The rigorous thermodynamic expres-
sions are given as differences of chemical potentials which are
numerically available from TEOS-10 equations as provided in
the open source code SIA library by function calls explained in
appendix E. If TEOS-10 equations are unavailable, alternative
estimates are given in table 1 as approximations in the limit
of weak subsaturation, possibly being evaluated by means of
other empirical equations required only for latent heats and
vapour pressures.

9
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Table 1. Summary of equations for the calculation of RF, ψf (A, T , p), from dew-point and frost-point temperatures. Formula symbols are
summarised in appendix G.

Case ln ψf (A, T , p) = Equation Range

(L–L)

μAV
V

(
Asat

(
Tdp,p

)
,T,p

)
−μAV

V (Asat(T,p),T,p)
RWT (10)

Standard pressure range p � e (T)

≈
(

1
T − 1

Tdp

) LL

(
Tdp,p

)

RW
(14)

(S–S)

μAV
V

(
Asat

(
Tfp,p

)
,T,p

)
−μAV

V (Asat(T,p),T,p)
RWT (16)

≈
(

1
T − 1

Tfp

) LS

(
Tfp,p

)

RW
(17)

(L–S)

μAV
V

(
Asat

(
Tfp,p

)
,T,p

)
−μAV

V (Asat(T,p),T,p)
RWT (22)

≈
(

1
T − 1

Tmp

)
LL(Tmp,p)

RW
+

(
1

Tmp
− 1

Tfp

)
LS(Tmp,p)

RW
(26)

(GL –L)

μAV
V

(
Asat

(
Tdp,p

)
,T,p

)
−gV

(
T,eW(T)

)

RWT (31) Extended pressure range p < e (T)

≈
(

1
Tsp

− 1
Tdp

)
LL(p)
RW

+ ln p
eW(T)

(32)

(GL –L–S)

μAV
V

(
Asat

(
Tfp,p

)
,T,p

)
−gV

(
T,eW(T)

)

RWT (36)

≈
(

1
Tsp

− 1
Tmp

)
LL(Tmp,p)

RW
+

(
1

Tmp
− 1

Tfp

)
LS(Tmp,p)

RW
+ ln p

eW(T)
(37)

(GL –S)

μAV
V

(
Asat

(
Tfp,p

)
,T,p

)
−gV

(
T,eW(T)

)

RWT (41)

≈
(

1
Tsp

− 1
Tfp

)
LS(p)
RW

+ ln p
eW(T)

(42)

(GS –S)

μAV
V

(
Asat

(
Tfp,p

)
,T,p

)
−gV

(
T,eIh(T)

)

RWT (46)

≈
(

1
Tsp

− 1
Tfp

)
LS(p)
RW

+ ln p
eIh(T)

(47)
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Appendix A. Brief definition of relative
fugacity/relative activity

For convenience, in this appendix the definition of RF and,
equivalently, relative activity of water in humid air, as provided
in detail in the part 1 companion paper [12], is repeated in a
brief, compact form.

Above the freezing point, at pressures p exceeding the
vapour pressure of liquid water, eW, or, at a temperature T

below the freezing point, with p exceeding the sublimation
pressure of ambient hexagonal ice Ih, eIh, the RF is defined
by

ψf =
fV (x, T, p)

fV (xsat, T, p)
. (A.1)

Here, x is the water-vapour mole fraction, and xsat is its
value at saturation, either with respect to liquid water or to ice.
At lower pressures, in the so-called ‘extended range’, p < e,
where stable condensed states are thermodynamically impos-
sible, RF is defined relative to pure water vapour at saturation
pressure, e,

ψf =
fV (x, T, p)
fV (1, T, e)

. (A.2)

Here, e = eIh below the triple-point temperature and
e = eW otherwise. The regions of the four separate RF defi-
nitions, ψIh

f ,ψAW
f ,ψV,Ih

f ,ψV,W
f , are specified in figure 10 and in

table 2.
RF is defined at temperatures below the critical tempera-

ture, T < Tc = 647.096 K, and pressures below the critical
pressure, p < pc = 22.064 MPa, of water. It is understood that
these definitions apply only to gaseous humid air; liquid air
may form below T liq = 132.6 K [32]. In TEOS-10, the dissolu-
tion of air in liquid water is neglected; this will also apply here.
Rather than the mole fraction x of water vapour, TEOS-10 uses

10
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Figure 10. Regions of definition of RF in the temperature-pressure diagram of water from [18]. The curves indicate phase transitions
between stable gaseous (G), liquid (L) and solid (S) states of air-free water; pmelt indicates the melting line of ambient hexagonal ice Ih, psubl
its sublimation line (sublimation pressure denoted by eIh in this article), and ps the saturation line (saturation pressure denoted by eW in this
article), or boiling line. In terms of water-vapour fugacity, f V, the RF, ψf , is defined differently in four regions of the phase space, as
indicated by the arrows, see equations (A.4) and (A.5). Reproduced from [18]. © 2018 BIPM & IOP Publishing Ltd. All rights reserved.

Table 2. RF of humid air, ψf , has been defined in four separate but
continuous and mutually consistent ways [12], depending on
temperature, T , and pressure, p, as displayed in figure 10. Here, f V
and x, respectively, are the fugacity and the mole fraction of water
vapour in humid air, xsat is the mole fraction at saturation, and e is
the sublimation pressure of ice Ih, e = eIh (T), or the saturation
vapour pressure of pure liquid water, e = eW (T).

RF with respect to Ice Ih Liquid water

Normal range p � e (T) ψIh
f = fV(x,T,p)

fV(xsat,T,p) ψAW
f = fV(x,T,p)

fV(xsat,T,p)
Extended range p � e (T) ψV,Ih

f = fV(x,T,p)
fV(1,T,eIh) ψV,W

f = fV(x,T,p)
fV(1,T,eW)

the mass fraction A of dry air, equation (1),

A =

{
1 +

xMW

(1 − x) MA

}−1

(A.3)

In TEOS-10, the molar masses of water and dry air, respec-
tively, take the values of MW = 0.0180 152 68 kg mol−1 and
MA = 0.028 965 46 kg mol−1.

Fugacity is defined relative to the ideal-gas state of the given
substance, in our case, of water. However, ideal-gas formulas
are theoretical expressions which are not explicitly provided
by routines of the TEOS-10 code. Therefore, it is more conve-
nient to implement the activity definition of RF as specified in
equations (49) and (50) of the part 1 companion paper, in terms
of the chemical potential, μAV

V , of water vapour in humid air:

RWT ln ψf = μAV
V (A, T, p) − μ0 (T, p) (A.4)

Here, RW = 461.518 05 J kg−1 K−1 is the specific gas con-
stant of water as specified in TEOS-10. The reference function
μ0 (T, p) of the chemical potential is defined separately in each

of the four different regions of figure 10:

μ0(T, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

gW(T, p) in region (L) at p < pc

gIh(T, p) in region (S) at p < pc

gV(T, eIh(T)) in region (GS) at Tliq < T � Tt

gV(T, eW(T))in region (GL) at Tt < T < Tc

undefined otherwise
(A.5)

Here, (S), (L) and (G), respectively, indicate the stable solid,
liquid and gas phases of pure liquid water (see figure 10). At
the triple-point temperature, T t = 273.16 K, the gas region (G)
is divided in two parts in which RF is separately defined with
respect to either the solid (GS) or the liquid (GL) condensed
phase. The specific Gibbs energies of liquid water, ice Ih and
water vapour are gW, gIh and gV, respectively. Compared to
the original definition [12], equation (A.4) is simplified due to
neglecting the dissolution of air in the liquid phase. Note that
for RF evaluated from equations (A.4) and (A.5), the determi-
nation of saturation states is not required, in contrast to what
equation (A.1) and table 2 may virtually be suggesting.

When a measurement of the dew- or frost point is carried
out, a sample of humid air at given temperature T and pressure
p is cooled down isobarically to the respective condensation
point, Tcp and p. Here, ‘condensation point’ (cp) may suit-
ably refer to either the dew point (dp) or the frost point (fp).
From figure 10, the initial state (T, p) may be located any-
where below the critical ITS-90 temperature, Tc = 647.096 K,
and the critical pressure, pc = 22.064 MPa. The target state
(Tcp, p) needs to be at conditions where a condensed state may
emerge; that is, in either the region (L) or the region (S) of
figure 10. Because of the different definitions of RF in the dif-
ferent regions of the phase space, in section 2 the normal range
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Table 3. Coefficients ai and exponents bi of the saturation-pressure
equation, equation (A.6).

i ai bi

1 −0.785 951 783 × 101 1
2 0.184 408 259 × 101 1.5
3 −0.117 866 497 × 102 3
4 0.226 807 411 × 102 3.5
5 −0.159 618 719 × 102 4
6 0.180 122 502 × 101 7.5

Table 4. Coefficients ai and exponents bi of the
sublimation-pressure equation, equation (A.7).

i ai bi

1 −0.212 144 006 × 102 0.333 333 333 × 10−2

2 0.273 203 819 × 102 0.120 666 667 × 101

3 −0.610 598 130 × 101 0.170 333 333 × 101

with (T, p) in either (L) or (S) will be considered separately
from the extended range with (T, p) in (G). For simplicity, the
dissolution of air in liquid water is neglected there and treated
as a small subsequent correction in appendix D.

In order to practically decide to which region of (A.5)
a measured point (T, p) belongs, convenient equations, con-
sistent with TEOS-10, are available for eW (T), eIh (T) and
for the melting pressure pmelt (T) of the pure-water phases
[28, 33–35]. In the environment of the TEOS-10 SIA library,
this decision can be made by simply calling the routine
aux_water_phase(T, p) given in appendix F.

The IAPWS equation of the saturation pressure is [33]

eW (T) = pc exp

{
Tc

T

6∑
i=1

ai

(
1 − T

Tc

)bi
}

, (A.6)

with Tc = 647.096 K and pc = 22.064 MPa. The other
coefficients are given in table 3.

The IAPWS equation of the sublimation pressure is [28]

eIh (T) = pt exp

{
3∑

i=1

ai

(
T
Tt

)bi−1
}

, (A.7)

with T t = 273.16 K and pt = 611.657 Pa. The other coefficients
are given in table 4.

The IAPWS equation of the melting pressure is [28]

pmelt (T) = pt

{
1 +

3∑
i=1

ai

[
1 −

(
T
Tt

)bi
]}

(A.8)

with T t = 273.16 K and pt = 611.657 Pa. The other coefficients
are given in table 5.

Table 5. Coefficients ai and exponents bi of the melting-pressure
equation, equation (A.8).

i ai bi

1 0.119 539 337 × 107 0.300 000 × 101

2 0.808 183 159 × 105 0.257 500 × 102

3 0.333 826 860 × 104 0.103 750 × 103

Appendix B. Derivation of approximation
equations for RF at weak subsaturation

B.1. Case (L–L): standard range with respect to water,
dew-point condensation

As an alternative to the numerical implementation of the ther-
modynamically rigorous equation (10), this formula also per-
mits a derivation of an approximate, simplified mathematical
expression by power-series expansion about T,

RWT ln ψf = μAV
V

(
Asat (T − δT, p) , T, p

)
− μAV

V

(
Asat (T, p) , T, p

)
, (B.1)

for the case that the subsaturation, δT ≡ T − Tdp � 0, of the
given sample of humid air is only weak, i.e.,

δA = Asat (T − δT, p) − Asat (T, p)

= −
(
∂Asat

∂T

)
p

δT + O

(∣∣∣∣δT
T

∣∣∣∣
2
)

� 1. (B.2)

Expanding equation (12) up to linear terms with respect to
a small chilling depression δT reads

RWT ln ψf = −
(
∂μAV

V

∂A

)
T,p

(
∂Asat

∂T

)
p

δT + O

(∣∣∣∣δT
T

∣∣∣∣
2
)
.

(B.3)
In terms of the specific Gibbs energy of humid air, gAV, the

derivative of the chemical potential of water vapour in humid
air, equation (11), is(

∂μAV
V

∂A

)
T,p

= −A

(
∂2gAV

∂A2

)
T,p

. (B.4)

At the saturation conditions of A = Asat (T, p), the spe-
cific evaporation enthalpy, LL

(
Tdp, p

)
, of liquid water at the

dew point, T = Tdp, into humid air can be expressed by the
thermodynamic relation

LL(T, p)
T

= −Asat(T, p)(
∂2gAV

∂A2
)T,p(

∂Asat

∂T
)p (B.5)

(see equation (C.6) of appendix C, and [15]). Combin-
ing equations (B.3)–(B.5), at weak subsaturation a suitable
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approximation formula for RF in the region (L) in terms of
the dew-point temperature is obtained as

RWT ln ψf ≈ −LL (T, p)
δT
T

≈ LL (T, p)

(
1 − T

Tdp

)

≈ LL
(
Tdp, p

)(
1 − T

Tdp

)
. (B.6)

All these expressions, by virtue of equation (13), are equiv-
alent estimates as they deviate from one another only by terms
O
(
δT2

)
. Here, the third option of equation (B.6),

ψf ≈ exp

{
LL

(
Tdp, p

)
RW

(
1
T
− 1

Tdp

)}
, (B.7)

is preferred for its similarity to the common Clausius–
Clapeyron formula for the saturation pressure of pure water
vapour in the ideal-gas approximation. In contrast to that,
equation (B.7) for RF holds for weakly subsaturated real gases
regardless of ideal-gas assumptions.

B.2. Case (S–S): standard range with respect to ice,
frost-point condensation

The calculation steps of appendix B.1 apply similarly to the
case (S–S) if the properties of liquid water are replaced by
those of ice Ih, and accordingly, dew point by frost point, and
saturation by sublimation.

At the saturation conditions of A = Asat (T, p) with respect
to ice Ih, the specific sublimation enthalpy, LS, in humid air
can be expressed by the thermodynamic identity

LS (T, p)
T

= −Asat (T, p)

(
∂2gAV

∂A2

)
T,p

(
∂Asat

∂T

)
p

. (B.8)

(see equation (C.6) of appendix C, and [15]). Here,
LS

(
Tfp, p

)
is the specific sublimation enthalpy from ice Ih to

humid air at the frost point. At weak subsaturation, an appro-
priate approximation formula for RF in the region (S) in terms
of the frost-point temperature is

RWT ln ψf ≈ −LS (T, p)
δT
T

≈ LS (T, p)

(
1 − T

Tfp

)

≈ LS
(
Tfp, p

)(
1 − T

Tfp

)
. (B.9)

All these expressions are mutually equivalent estimates, by
virtue of equation (13), as they deviate from one another only
by terms O

(
δT2

)
. Here, the last option of equation (B.9),

ψf ≈ exp

{
LS

(
Tfp, p

)
RW

(
1
T
− 1

Tfp

)}
, (B.10)

is favourable for its similarity to the familiar Clau-
sius–Clapeyron approximation for the sublimation pressure of
pure water vapour in the ideal-gas approximation. By contrast,
equation (B.10) for RF holds for weakly subsaturated real
gases without ideal-gas assumptions.

B.3. Case (L–S): standard range with respect to water,
frost-point condensation

For an approximation formula of equation (22) valid at weak
subsaturation, the series expansion with respect to the temper-
ature lowering, δT ≡ T − Tfp, needs to be split at the melting
point in two intervals,

RWT ln ψf = Δμfp +Δμmp. (B.11)

The two contributions are

Δμfp ≡ μAV
V

(
Asat

(
Tfp, p

)
, T, p

)
− μAV

V

(
Asat

(
Tmp, p

)
, T, p

)
(B.12)

and

Δμmp ≡ μAV
V

(
Asat

(
Tmp, p

)
, T, p

)
− μAV

V

(
Asat (T, p) , T, p

)
,

(B.13)
specified by T = Tmp + δTL and Tfp = Tmp − δTS, corre-
sponding to the two partial lengths of the arrow of isobaric
cooling within the phase regions (L) and (S), respectively:

Δμfp = μAV
V

(
Asat

(
Tmp − δTS, p

)
, T, p

)
− μAV

V

(
Asat

(
Tmp, p

)
, T, p

)
, (B.14)

Δμmp = μAV
V

(
Asat

(
Tmp, p

)
, T, p

)
− μAV

V

(
Asat

(
Tmp + δTL, p

)
, T, p

)
. (B.15)

Expanding Asat with respect to those temperature differ-
ences gives

Δμfp ≈ μAV
V

(
Asat

(
Tmp, p

)
− δAS, T, p

)
− μAV

V

(
Asat

(
Tmp, p

)
, T, p

)
, (B.16)

Δμmp ≈ μAV
V

(
Asat

(
Tmp, p

)
, T, p

)
− μAV

V

(
Asat

(
Tmp, p

)
+ δAL, T, p

)
, (B.17)

where

δAS = lim
ε→0

(
∂Asat

(
Tmp − ε, p

)
∂T

)
p

δTS = − LS

(
Tmp, p

)
δTS

TmpAsat
(
Tmp, p

) (
∂2gAV

∂A2

)
T,p

(B.18)

and

δAL = lim
ε→0

(
∂Asat(Tmp + ε, p)

∂T
)p

δTL = − LL(Tmp, p)δTL

TmpAsat(Tmp, p)
(

∂2gAV

∂A2

)
T,p

.
(B.19)

Expanding in turn equation (B.10) with respect to δAS and
δAL results in

RWT ln ψf = −
(
∂μAV

V

(
Asat

(
Tmp, p

)
, T, p

)
∂A

)
T,p

(δAS + δAL) .

(B.20)
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Up to terms O
(
δT2

)
, this may be rewritten as

RW ln ψf ≈ −
(
∂μAV

V

(
Asat

(
Tmp, p

)
, Tmp, p

)
∂A

)
T,p

×
(
δAS

Tfp
+

δAL

T

)
. (B.21)

Next, exploiting equations (B.4), (B.18) and (B.19) yields

RW ln ψf =
LS

(
Tmp, p

)
TmpTfp

(
Tfp − Tmp

)

− LL
(
Tmp, p

)
TmpT

(
T − Tmp

)
+ O

(∣∣∣∣δT
T

∣∣∣∣
2
)
.

(B.22)

The resulting final approximation formula for RF in the case
(L–S) is

ψf = exp

{
LS

(
Tmp, p

)
RW

(
1

Tmp
− 1

Tfp

)

+
LL

(
Tmp, p

)
RW

(
1
T
− 1

Tmp

)}
+ O

(∣∣∣∣δT
T

∣∣∣∣
2
)
.

(B.23)

In the limit Tfp → Tmp, equation (B.23) is consistent with
equation (14) of case (L–L), and similarly with equation (17)
of case (S–S) in the limit T → Tmp. Exploiting equation (25),
an alternative form of equation (B.23) is

ψf = exp

{
LS

(
Tmp, p

)
RW

(
1
T
− 1

Tfp

)

− LM (p)
RW

(
1
T
− 1

Tmp

)}
+ O

(∣∣∣∣δT
T

∣∣∣∣
2
)

,

(B.24)

where LM (p) = LS
(
Tmp, p

)
− LL

(
Tmp, p

)
is the specific melt-

ing enthalpy of ice Ih.

B.4. Case (GL–L): extended range with respect to water,
dew-point condensation

For weakly subsaturated humid air, the formula (31) may be
approximated by a simpler expression. For this purpose, the
entry point

(
Tsp, p

)
from the extended pressure range to the

standard pressure range (subscript ‘sp’, see figure 3) can be
introduced to formally split equation (30) in two different
contributions:

RWT ln ψf = Δμdp +Δμsp. (B.25)

where the first term,

Δμdp ≡ μAV
V

(
Asat

(
Tdp, p

)
, T, p

)
− μAV

V

(
Asat

(
Tsp, p

)
, T, p

)
,

(B.26)

describes the chilling within the standard pressure range from
the entry point to the dew point, and the second term,

Δμsp ≡ μAV
V

(
Asat

(
Tsp, p

)
, T, p

)
− μAV

V

(
0, T, eW (T)

)
,

(B.27)
covers the cooling process across the extended pressure range.
Note that the second term of equation (B.26) and the first
term of equation (B.27) cancel one another in the sum (B.25);
these identical terms are chosen quite arbitrarily in a way
that renders Δμsp a function of pure-water properties alone,
independent of the humidity of the chilled sample.

With respect to a small temperature lowering,
δT ≡

(
T − Tdp

)
, the first difference may be linearised about

the entry point,

Δμdp ≈
(
∂μAV

V

(
Asat

(
Tsp, p

)
, T, p

)
∂A

)
T,p

×
(
∂Asat

(
Tsp, p

)
∂T

)
p

(
Tdp − Tsp

)
. (B.28)

Up to terms O
(
δT2

)
, this is the same as

Δμdp ≈
(
∂μAV

V

(
Asat

(
Tsp, p

)
, Tsp, p

)
∂A

)
T,p

×
(
∂Asat

(
Tsp, p

)
∂T

)
p

(
Tdp − Tsp

)

=

(
Tdp

Tsp
− 1

)
LL (p) (B.29)

Here, equations (B.4) and (B.5) have been applied, and
LL (p) is the evaporation enthalpy of pure water vapour at
the boiling point,

(
Tsp (p) , p

)
. At this point, accordingly, the

property
Asat

(
Tsp, p

)
= 0 (B.30)

defines implicitly the boiling temperature Tsp (p), so that the
latent heat LL (p) depends on a single parameter only.

The second difference in equation (B.25) occurs only with
respect to the pressure:

Δμsp = μAV
V (0, T, p) − μAV

V

(
0, T, eW (T)

)
= gV (T, p) − gV

(
T, eW (T)

)
. (B.31)

This difference is independent of the measured condensa-
tion point and of the sample’s humidity. It may be calculated
from the vapour density equation

gV (T, p) − gV
(
T, eW (T)

)
=

∫ p

eW

1
ρV (T, p ′)

dp′. (B.32)

At low pressure in the extended range, an ideal-gas approx-
imation of the water-vapour density, ρV, may be assumed as a
sufficiently accurate estimate for the pressure dependence, so
that

Δμsp ≈ RWT ln
p

eW (T)
. (B.33)
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If required for higher accuracy, the density formula of
(B.32) may still be improved using virial corrections available
from TEOS-10 [16, 20, 36].

The linear approximation of equation (31) for the RF in the
case of weak subsaturation is therefore the simple formula

ψf = exp

{
Δμdp +Δμsp

RWT

}

≈ p
eW (T)

exp

{
LL (p)
RWT

(
Tdp

Tsp
− 1

)}
. (B.34)

To within the linear perturbation order, by virtue
of equation (13), this may be converted into a
Clausius–Clapeyron-like form,

ψf ≈
p

eW (T)
exp

{
LL (p)

RW

(
1

Tsp
− 1

Tdp

)}
. (B.35)

B.5. Case (GL–L–S): extended range with respect to water,
frost-point condensation

For weakly subsaturated humid air, this formula may be
approximated by a simpler expression which requires consid-
ering the details of the cooling path rather than just its end-
points at T and Tfp. In contrast to section 2.4, after entering
the standard pressure range (see figure 3), the cooling process
additionally passes the melting temperature Tmp before con-
densation occurs at the frost point, see figure 2. The difference
(35) is formally split in three related parts:

RWT ln ψf = Δμfp +Δμmp +Δμsp. (B.36)

Here,

Δμfp ≡ μAV
V

(
Asat

(
Tfp, p

)
, T, p

)
− μAV

V

(
Asat

(
Tmp, p

)
, T, p

)
(B.37)

covers the process between frost point, Tfp, and melting point,
Tmp, in the region (S),

Δμmp ≡ μAV
V

(
Asat

(
Tmp, p

)
, T, p

)
− μAV

V

(
Asat

(
Tsp, p

)
, T, p

)
(B.38)

is the contribution to RF from crossing the liquid region (L),
entering the standard-pressure range at Tsp, and finally,

Δμsp ≡ μAV
V

(
Asat

(
Tsp, p

)
, T, p

)
− μAV

V

(
0, T, eW (T)

)
(B.39)

describes the cooling process within the extended pressure
range (G) up to the exit at Tsp. Note that the second term of
(B.38) and the first term of (B.39) are specified arbitrarily in a
useful manner and cancel mutually in the sum (B.36).

Only the part Δμfp depends on the measured frost point,
the remaining two follow from (T, p) of the given sam-
ple and general thermodynamic properties. Linearisation of
equation (B.37) about Tmp yields

Δμfp ≈
(
∂μAV

V

(
Asat

(
Tmp, p

)
, T, p

)
∂A

)
T,p

×
(
∂Asat

(
Tmp, p

)
∂T

)
p

(
Tfp − Tmp

)

≈
(

Tfp

Tmp
− 1

)
LS

(
Tmp, p

)
. (B.40)

Here, equations (B.4) and (B.5) have been applied,
LS

(
Tmp, p

)
is the specific sublimation enthalpy at the melting

temperature, and the chemical potential estimate applied,

μAV
V

(
Asat

(
Tmp, p

)
, T, p

)
≈ μAV

V

(
Asat

(
Tmp, p

)
, Tmp, p

)
,

(B.41)

neglects the deviation involved as a quadratic term in subsatu-
ration. Similarly to (B.40),

Δμmp ≈
(
∂μAV

V

(
Asat

(
Tmp, p

)
, T, p

)
∂A

)
T,p

×
(
∂Asat

(
Tmp, p

)
∂T

)
p

(
Tmp − Tsp

)

≈
(

1 − Tsp

Tmp

)
LL

(
Tmp, p

)
, (B.42)

with LL
(
Tmp, p

)
being the specific evaporation enthalpy of

humid air at the melting temperature Tmp (p) of ice Ih. Third, as
in equation (B.31), the difference between the Gibbs energies
of pure water vapour

Δμsp = μAV
V (0, T, p) − μAV

V

(
0, T, eW (T)

)
= gV (T, p) − gV

(
T, eW (T)

)
, (B.43)

is expressed in ideal-gas approximation,

Δμsp ≈ RWT ln
p

eW (T)
. (B.44)

If required for higher accuracy, the difference of gV in
equation (B.43) may still be improved using virial corrections
available from TEOS-10 [16, 20, 36].

The sum (B.36) of the above three terms,

ψf = exp

{
Δμfp +Δμmp +Δμsp

RWT

}

≈ p
eW (T)

exp

{
LS

(
Tmp, p

)
RWT

(
Tfp

Tmp
− 1

)

+
LL

(
Tmp, p

)
RWT

(
1 − Tsp

Tmp

)}
, (B.45)

is the intended linear approximation formula for the RF at
weak subsaturation. Up to quadratic terms in the temperature
lowering, by virtue of equation (13),
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1
T

(
Tfp

Tmp
− 1

)
=

1
Tfp

(
Tfp

Tmp
− 1

)
+ O

(
|T − Tfp|2

)
(B.46)

and

1
T

(
1 − Tsp

Tmp

)
=

1
Tsp

(
1 − Tsp

Tmp

)
+ O

(
|T − Tfp|2

)
,

(B.47)
the expression (B.45) may also be rewritten in simpler Clau-
sius–Clapeyron form,

ψf ≈
p

eW (T)
exp

{
LS

(
Tmp, p

)
RW

(
1

Tmp
− 1

Tfp

)

+
LL

(
Tmp, p

)
RW

(
1

Tsp
− 1

Tmp

)}
. (B.48)

B.6. Case (GL–S): extended range with respect to water,
frost-point condensation

For weakly subsaturated humid air, formula (41) may be
approximated by a simpler expression. For this purpose, the
entry point

(
Tsp, p

)
to the standard pressure range, as shown

in figure 3, can be introduced formally in equation (30):

RWT ln ψf = Δμfp +Δμsp, (B.49)

where the first term is

Δμfp ≡ μAV
V

(
Asat

(
Tfp, p

)
, T, p

)
− μAV

V

(
Asat

(
Tsp, p

)
, T, p

)
(B.50)

and the second one is

Δμsp ≡ μAV
V

(
Asat

(
Tsp, p

)
, T, p

)
− μAV

V

(
0, T, eW (T)

)
.

(B.51)
Here, Tsp equals the sublimation temperature of ice at the

pressure p. Note that the second term of (B.50) and the first
term of (B.51) are specified arbitrarily in a useful manner and
cancel mutually in the sum (B.49). With respect to a small
temperature lowering,

(
Tfp − Tsp

)
, the first difference may be

linearised about that sublimation point,

Δμfp ≈
(
∂μAV

V

(
Asat

(
Tsp, p

)
, T, p

)
∂A

)
T,p

×
(
∂Asat

(
Tsp, p

)
∂T

)
p

(
Tfp − Tsp

)

≈
(

Tfp

Tsp
− 1

)
LS (p) . (B.52)

Here, equations (B.4) and (B.5) have been applied, and
LS (p) is the specific sublimation enthalpy of ice to pure water
vapour at the point,

(
Tsp, p

)
, at which, accordingly,

Asat
(
Tsp, p

)
= 0. (B.53)

The second difference in equation (B.49) occurs only with
respect to the pressure:

Δμsp = μAV
V (0, T, p) − μAV

V

(
0, T, eW (T)

)
= gV (T, p)

− gV
(
T, eW (T)

)
. (B.54)

This difference is independent of the measured condensa-
tion point and of the sample’s humidity. It may be calculated
from the vapour density equation

gV (T, p) − gV
(
T, eW (T)

)
=

∫ p

eW

1
ρV (T, p ′)

dp′. (B.55)

At low pressure in the extended range, an ideal-gas approx-
imation of the water-vapour density may be assumed as a suf-
ficiently accurate estimate for the pressure dependence, so that

Δμsp ≈ RWT ln
p

eW (T)
. (B.56)

If required for higher accuracy, the density formula of
(B.55) may still be improved using virial corrections available
from TEOS-10 [16, 20, 36].

The resulting linear approximation of equation (41) for the
RF in case of weak subsaturation is, therefore, the simple
formula

ψf = exp

{
Δμfp +Δμsp

RWT

}

≈ p
eW (T)

exp

{
LS (p)
RWT

(
Tfp

Tsp
− 1

)}
. (B.57)

Up to quadratic terms in the perturbation series, by virtue
of equation (13), this formula equals the simpler Clausius–
Clapyron expression

ψf ≈
p

eW (T)
exp

{
LS (p)

RW

(
1

Tsp
− 1

Tfp

)}
. (B.58)

B.7. Case (GS –S): extended range with respect to ice,
frost-point condensation

For weakly subsaturated humid air, formula (46) may be
approximated by a simpler expression. For this purpose, the
standard-pressure entry point

(
Tsp, p

)
, as shown in figure 3,

can be introduced into equation (30):

RWT ln ψf = Δμfp +Δμsp. (B.59)

Here, the standard-pressure range contributes to RF by

Δμfp ≡ μAV
V

(
Asat

(
Tfp, p

)
, T, p

)
− μAV

V

(
Asat

(
Tsp, p

)
, T, p

)
(B.60)

and the extended-pressure range by

Δμsp ≡ μAV
V

(
Asat

(
Tsp, p

)
, T, p

)
− μAV

V

(
0, T, eIh (T)

)
.

(B.61)
Here, Tsp equals the sublimation temperature of ice at the

pressure p. The second term of (B.60) and the first term of
(B.61) are specified arbitrarily and cancel mutually in the
sum (B.59). With respect to a small temperature lowering,
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Tfp − Tsp

)
, the first difference may be linearised about the

saturation point,

Δμfp ≈
(
∂μAV

V

(
Asat

(
Tsp, p

)
, T, p

)
∂A

)
T,p

×
(
∂Asat

(
Tsp, p

)
∂T

)
p

(
Tfp − Tsp

)

≈
(

Tfp

Tsp
− 1

)
LS (p) . (B.62)

Here, equations (B.4) and (B.5) have been applied, and
LS

(
Tsp, p

)
is the specific sublimation enthalpy of ice at the

point,
(
Tsp, p

)
, at which, accordingly,

Asat
(
Tsp, p

)
= 0. (B.63)

The second difference in equation (B.49) is for pure water
vapour and exists only with respect to the pressure:

Δμsp = μAV
V (0, T, p) − μAV

V

(
0, T, eIh (T)

)
= gV (T, p)

− gV
(
T, eIh (T)

)
. (B.64)

At low pressure, an ideal-gas approximation of the water-
vapour density may be assumed as a sufficiently accurate
estimate, so that

Δμsp ≈ RWT ln
p

eIh (T)
. (B.65)

If required for higher accuracy, the difference of gV in
equation (B.64) may still be improved using virial corrections
available from TEOS-10 [16, 20, 36].

The linear approximation of equation (41) for the RF in case
of weak subsaturation is therefore the simple formula

ψf = exp

{
Δμfp +Δμsp

RWT

}

≈ p
eIh (T)

exp

{
LS (p)
RWT

(
Tfp

Tsp
− 1

)}
. (B.66)

Up to quadratic correction terms, by virtue of equation (13),
this is equivalent to the Clausius–Clapeyron form

ψf ≈
p

eIh (T)
exp

{
LS (p)

RW

(
1

Tsp
− 1

Tfp

)}
. (B.67)

Appendix C. Thermodynamic relations of
humid-air equilibria with liquid water or ice Ih

In this appendix, selected thermodynamic relations are briefly
summarised from [15], and are valid for ‘wet air’ and ‘ice
air’, that is, for two-phase composites at equilibrium between
humid air and either liquid water or ice Ih, respectively.

The equilibrium between humid air and liquid water
requires equality of the chemical potentials of water in humid
air, equation (11) (see also [29]: equation (5.10.6) therein),

μAV
V ≡ gAV − A

(
∂gAV

∂A

)
T,p

, (C.1)

with that of water, μW ≡ gW, i.e.,

Δμ ≡ gAV
(
Asat, T, p

)
− Asat

(
∂gAV

∂A

)
T,p

− gW (T, p) = 0.

(C.2)
If the temperature is changing at constant pressure, main-

taining the equilibrium implies thatΔμ remains zero by appro-
priately adjusting Asat

(
∂

∂T

)
p

Δμ = 0 =

(
∂gAV

∂T

)
A,p

− Asat

(
∂2gAV

∂A2

)
T,p

(
∂Asat

∂T

)
p

− Asat

(
∂2gAV

∂A∂T

)
T,p

−
(
∂gW

∂T

)
p

(C.3)

Introducing entropy s = −
(
∂g/∂T

)
p

for each phase, sAV and

sW, leads to

sAV − Asat

(
∂sAV

∂A

)
A,p

− sW = −Asat

(
∂2gAV

∂A2

)
T,p

(
∂Asat

∂T

)
p

.

(C.4)
Up to a factor of T, the left-hand side of this equation is just

the isobaric evaporation enthalpy (see equation (C.13)),

LL ≡ T

[
sAV − Asat

(
∂sAV

∂A

)
A,p

− sW

]
, (C.5)

of liquid water in contact with humid air, so that there exists
the thermodynamically rigorous relation

LL

T
= −Asat

(
∂2gAV

∂A2

)
T,p

(
∂Asat

∂T

)
p

. (C.6)

After replacing the Gibbs function of liquid water, gW, by
that of ice Ih, gIh, a similar calculation may be repeated and
will result in a similar expression for the isobaric sublimation
enthalpy, LS, of ice in contact with humid air

LS

T
= −Asat

(
∂2gAV

∂A2

)
T,p

(
∂Asat

∂T

)
p

. (C.7)

At the melting temperature of ice, i.e., along the ‘triple line’
in figure 1, LS and LL differ by the melting enthalpy of ice
Ih, LM; therefore the derivative

(
∂Asat/∂T

)
p

of humid air is
discontinuous at this temperature. Geometrically, in figure 1,
this means that the slopes of the sublimation and saturation
surfaces differ across their mutual intersection curve.

For completeness, we briefly report here also the thermo-
dynamic expressions for the latent heats of phase transitions,
as derived in more detail by [14, 15].

Let an equilibrium two-phase composite contain the masses
mW, mV and mA, respectively, of liquid water, water vapour
and dry air. By definition, the equilibrium fraction of dry air in
humid air is

Asat =
mA

mA + mV
. (C.8)
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Table 6. Procedures of the TEOS-10 SIA Library to be used for evaluating reference values that appear in the approximation formulas for
RF at weak subsaturation.

Quantity Evaluated from SIA procedure Appearing in equations

Tdp liq_air_dewpoint_si(a, p) (14) and (32)

Tfp ice_air_frostpoint_si(a,
p)

(17), (26), (27), (37),
(42) and (47)

Tmp
ice_liq_meltingtemperature_si(p)

(26), (27) and (37)

Tsp
liq_vap_boilingtemperature_si(p)

(32) and (37)

Tsp

ice_vap_sublimationtemp_si(p) (42) and (47)

LL (p) liq_vap_enthalpy_evap_si
() after having executed

set_liq_vap_eq_at_p(p)

(32)

LL (T , p) liq_air_enthalpy_evap_si
() after having executed

set_liq_air_eq_at_t_p(t,
p)

(14) and (26) and (37)

LS (p) ice_vap_enthalpy_subl_si
() after having executed

set_ice_vap_eq_at_p(p)

(42) and (47)

LS (T , p) ice_air_enthalpy_subl_si
() after having executed

set_ice_air_eq_at_t_p(t,
p)

(17) and (26) and (27),
(37)

LM (p) ice_liq_enthalpy_melt_si
after having executed

set_ice_liq_eq_at_p(p)

(27)

eW (T)

liq_vap_vapourpressure_si(t)

(32) and (37) and (42)

eIh (T)
ice_vap_sublimationpressure_si(t)

(47)

The sample’s total enthalpy is the mass-weighted sum,

HW+AV (T, p) = mWhW +
(
mA + mV

)
hAV, (C.9)

of the specific enthalpies of liquid water and humid air, hW

and hAV, respectively. At constant masses of dry air, mA =
const., and of total water, mH2O ≡ mW + mV = const., the
change of this enthalpy with temperature defines the spe-
cific isobaric evaporation enthalpy, LL, as the coefficient of
the water-mass evaporation rate, ∂mV/∂T = −∂mW/∂T, of an
associated excess term expected to additionally appear in the
mass-weighted sum,

(
∂HW+AV

∂T

)
p,mA,mH2O

= mWcW
p +

(
mA + mV

)
cAV

p +
∂mV

∂T
LL,

(C.10)

of the specific isobaric heat capacities cW
p =

(
∂hW/∂T

)
p

and

cAV
p =

(
∂hAV/∂T

)
A,p

of liquid water and humid air, respec-
tively. Equation (C.10) describes the warming up of a sys-
tem consisting of liquid water and humid air at equilibrium.
Some heat is required to warm up the water phase (first term),
some to warm up the moist air (second term), and finally some
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heat is absorbed for the transfer process of water from the liq-
uid to the gas phase (last term), known as ‘latent heat’ [15]:
equation (7.16) therein. Taking the temperature derivative of
equation (C.9) at constant masses of dry air and of total water,
leads to an equation of the form (C.10), namely to(
∂HW+AV

∂T

)
p,mA,mH2O

= mW

(
∂hW

∂T

)
p

+
∂mW

∂T
hW

+
(
mA + mV

) [(∂hAV

∂T

)
A,p

+

(
∂hAV

∂A

)
T ,p

(
∂Asat

∂T

)
p

]
+
∂mV

∂T
hAV.

(C.11)

Exploiting the derivative of (C.8),(
∂Asat

∂T

)
p,mA

= − mA(
mA + mV

)2

∂mV

∂T
=

Asat(
mA + mV

) ∂mW

∂T
,

(C.12)
and comparing (C.10) with (C.11), the final result for the latent
heat of evaporation is ([15]: equation (7.22) therein)

LL = hAV − Asat

(
∂hAV

∂A

)
T,p

− hW. (C.13)

Applying the enthalpy definition h = g + Ts to each phase
and considering the equilibrium condition (C.2),

0 = gAV − Asat

(
∂gAV

∂A

)
T,p

− gW, (C.14)

the equation (C.5) for the evaporation entropy is readily
obtained from (C.13).

If in the former derivation the properties of liquid water are
substituted by those of ice Ih, the latent heat of sublimation is
obtained in a similar way as

LS = hAV − Asat

(
∂hAV

∂A

)
T,p

− hIh. (C.15)

From the TEOS-10 SIA library [37], the phase transition
enthalpies LL and LS, respectively, are numerically available
from the function callsliq_air_enthalpy_evap_si()
and ice_air_enthalpy_subl_si(), see also table 6.

Appendix D. Dissolution of air in water

D.1. General correction for dissolved air

In the region (L) of figure 10, RF ψAW
f is defined with respect

to the equilibrium state between humid air and liquid water,
at which air is saturated with water vapour and the liquid is
saturated with dissolved air ([12]: equation (49) therein),

RT ln ψAW
f = μ̂AV

V (x, T, p) − μ̂AW
W (xW, T, p) . (D.1)

Figure 11. Solubility of air in liquid water at ambient pressure of
101 325 Pa [39], equation (D.4), given as the mass fraction, A, of
dissolved air in parts per million (ppm). Note that composition and
mean molar mass of dissolved air deviate from those of the ambient
gas phase.

Here, μ̂AW
W is the molar chemical potential of water in air-

saturated liquid water, and xW is the molar fraction of that
solvent. The concentration of dissolved air is small and the
chemical potential of water can be approximated by the Lewis
fugacity rule [12, 38]: equation (19) therein:

μ̂AW
W (xW, T, p) ≈ μ̂W (T, p) + RT ln xW. (D.2)

Comparison of equation (D.1) with (A.4) results in the
simple correction formula of the RF for dissolved air,

ψAW
f =

ψf

xW
. (D.3)

Dissolved air is mostly neglected in TEOS-10 and its func-
tion libraries, so that xW needs to be estimated from external
sources. [39]: equation (108) therein provide for the saturated
mole fraction xA (T, p) = (1 − xW) of dissolved air in liquid
water at p = p0 = 101 325 Pa the formula

ln xA (T, p0) = −104.208+ 137.296

(
100 K

T

)

+ 58.7394 ln

(
T

100 K

)
− 5.766 9

(
T

100 K

)

(D.4)

between 0 and 100 ◦C, see figure 11, with an estimated uncer-
tainty of 0.24% in xA. The underlying experimental data were
originally published in 1901. No conversion of the obsolete
temperature scale is reported by those authors.

According to Henry’s law, the solubility at other pressures
can be calculated by correction with the Poynting factor of liq-
uid water [38], in the form of the Krichevsky–Kasarnovsky
equation [40]

ln xA (T, p) = ln xA (T, p0) +
1

RT

∫ p

p0

vA
(
T, p′

)
dp′. (D.5)
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Here, vA is the molar volume of dissolved air with a differ-
ent chemical composition than in the gas phase, and depending
on temperature and pressure [41].

D.2. Dew-point-temperature correction for dissolved air

Equation (D.1) considers a correction of the RF for the effect
of dissolved air for xW < 1,

RT ln ψAW
f = μ̂AV

W (x, T, p) − μ̂AW
W (xW, T, p) , (D.6)

if the sample composition x is known from some measurement
unaffected by or corrected for dissolved air. If, however, x is
determined from a measured dew point, Tdp, as an estimate xW

by exploiting equations that ignore the effects of dissolved air,
the final estimate for the RF is given by equation (A.4),

RT ln ψW
f = μ̂AV

W

(
xW, T, p

)
− μ̂W (T, p) . (D.7)

The result xW of this pure-water determination needs also
to be corrected, xW = x +Δx, from the estimate equation (5)
for xW,

μ̂AV
W

(
xW, Tdp, p

)
− μ̂W

(
Tdp, p

)
= 0, (D.8)

and the correct equation for x,

μ̂AV
W

(
x, Tdp, p

)
− μ̂AW

W

(
xW, Tdp, p

)
= 0. (D.9)

The difference between these two equations gives, after
linearisation in Δx,

Δx ≈ −RTdp ln xW
(
Tdp

)
∂μ̂AV

W

(
Tdp

)
/∂x

(D.10)

Also linearised in Δx, the uncorrected estimate (D.7) for
the RF is

RT ln ψW
f ≈ μ̂AV

W (x, T, p) +
∂μ̂AV

W (T)
∂x

Δx − μ̂W (T, p) .

(D.11)
Comparison with equation (D.6) by virtue of (D.2) and

(D.10) provides the correction factor

ln
ψAW

f

ψW
f

=
∂μ̂AV

W (T) /∂x
∂μ̂AV

W

(
Tdp

)
/∂x

Tdp

T
ln xW

(
Tdp

)
− ln xW (T) .

(D.12)
This small second-order correction to the already small

correction for dissolved air may be neglected under most
circumstances, so that

ψAW
f ≈ ψW

f (D.13)

holds for the correction of dew-point-determined RF with
respect to dissolved air. In other words, equations (10) and
(22) remain valid in the presence of dissolved air without
any explicit allowance for it, obtained from the uncorrected
TEOS-10 equations.

Appendix E. TEOS-10 functions for relative
fugacity

On its website (www.teos-10.org), TEOS-10 provides open
source code of two libraries, the Seawater-Ice-Air (SIA)

library and the Gibbs-Seawater (GSW) library. While GSW
is tailored for application in ocean models, SIA is a general
library for thermodynamic properties of liquid water, water
vapour, ice, seawater and humid air, including their mutual
phase equilibria. No such library is available yet, unfortu-
nately, designed specifically for atmospheric applications. In
particular, no code has been developed explicitly for the com-
putation of water fugacity or water activity in humid air. The
official SIA code is written in two languages, in VBA (for use
in Excel) and in Fortran-90 (for inclusion in user code), both
versions with identical names of routines and parameters. In
this appendix, selected SIA routines available for evaluating
fugacity and RF are reviewed.

A complete list of SIA modules with the related TEOS-10
routines and their parameters is reported in the paper of [37]
and its digital supplement. The equations implemented in those
routines are explained by [14]. Thermodynamic derivations
of those equations are presented in [13] and [15]. Through-
out the SIA library, the suffix . . ._si on function or variable
names indicates that the quantity carries the basic SI unit at
output or input, such as t_si for T in K, p_si for p in Pa, or
a_si for A in kg kg−1. All numerical non-integer values are
implemented as 64-bit floating-point numbers.

E.1. Rigorous numerical TEOS-10 routines

With respect to the definition (A.4) and (A.5), the TEOS-
10 SIA library provides, scattered over some modules, all
necessary functions for the computation of RF. These are

(a) The chemical potential of water vapour in
humid air, μAV

V (A, T, p), is available from calling
air_g_chempot_vap_si(a_si, t_si, p_si)
of the module Air_3b,

(b) The Gibbs function of liquid water, gW (T, p), is avail-
able from calling liq_gibbs_energy_si (t_si,
p_si) of the module Flu_3b,

(c) The Gibbs function of ice Ih, gIh (T, p), is available
from calling ice_chempot_si (t_si, p_si) of
the module Ice_2,

(d) The Gibbs function of water vapour, gV (T, p), is avail-
able from calling vap_gibbs_energy_si (t_si,
p_si) of the module Flu_3b,

(e) The sublimation pressure, eIh (T), is available from
calling ice_vap_sublimationpressure_si
(t_si) of the module Ice_Vap_4,

(f ) The saturation pressure, eW (T), is available from call-
ing liq_vap_vapourpressure_si (t_si) of
the module Liq_Vap_4.

A new explicit code example for computing RF from these
functions is given in appendix F as the additional function
air_relative_fugacity_vap_si(a_si, t_si,
p_si).

From the SIA Library, various other proper-
ties are available for equilibria between humid
air and ice Ih or liquid water, in particular also
the saturation mass fraction of dry air, Asat (T, p),
from calling ice_air_massfraction_air_si
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(t_si, p_si) of the module Ice_Air_4a and
liq_air_massfraction_air_si (t_si, p_si)
of Liq_Air_4a, respectively. The mass fraction Asat can
easily be converted to the mole fraction xsat of water vapour
by calling air_molfraction_vap_si (a_si) of
the module Convert_0. From xsat, in turn, the enhance-
ment factor is available in combination with the evaluation
of the saturation or sublimation pressure, either from
liq_vap_vapourpressure_si (t_si) or from
ice_vap_sublimationpressure_si (t_si),
respectively.

E.2. Approximations for weak subsaturation

The simple limiting laws approximating RF asymptotically in
cases of weak subsaturation require the knowledge of certain
familiar thermodynamic properties of liquid water and ice, as
well as of their equilibria with humid air. Various empirical
equations for these properties are available in the humidity
literature, being more or less consistent with TEOS-10. In
order to check this consistency and to estimate errors possi-
bly involved, table 6 reports for convenience the necessary
functions implemented in the TEOS-10 SIA library [14, 37]
which return the requisite numerical values. For example, at
atmospheric pressure, p = 101 325 Pa, the TEOS-10 value for
the boiling temperature is Tsp = 373.124 296 K, the evapora-
tion enthalpy is LL = 2256 471.59 J kg−1, the (air-free) melt-
ing point is Tmp = 273.152 519 K, and the melting enthalpy is
LM = 333 426.517 J kg−1.

Appendix F. Source-code extension of the
TEOS-10 SIA library

The Sea-Ice-Air (SIA) library is available on the web at www.
teos-10.org as freely accessible open source code equivalently
in either Fortran 90 or in VBA for spreadsheet calculations.
The numerous thermodynamic properties available for com-
putation from SIA are documented in the companion papers of
[14] and [37]. However, SIA does not provide explicit routines
for computing the RF of water vapour in humid air. Required
VBA code is newly provided in this appendix and can directly
be executed within the SIA environment. The code consists of
three routines:

(a) RF, ψf (A, T, p), as defined in appendix A, is
implemented here as the procedure air_relative_
fugacity_vap_si(a_si, t_si, p_si).

(b) RF, ψf
(
T, p, Tcp

)
, as defined in equations (10), (16),

(22), (30) and (35) is implemented here as the procedure
air_rf_from_cond_temp_si(t_si, p_si,
tcp_si).

(c) As an auxiliary function, the procedure
aux_water_phase(t_si, p_si) returns the
phase of pure water as ‘S’, ‘L’ or ‘G’ of the position of
the point (T, p) in the phase diagram, figure 2.

Note that throughout the SIA library, as well as here, the
suffix _si of variable names indicates that the unit in which
the quantity value is expressed is exclusively the associated
basic SI unit, such as K, Pa, kg kg−1 etc.
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Appendix G. List of symbols

Symbol Explanation Reference Equation

A Mass fraction of dry air in humid air (1)
Asat Mass fraction of dry air at saturation
cAV

p Specific isobaric heat capacity of humid air (C.10)
cW

p Specific isobaric heat capacity of liquid water (C.10)
e Vapour pressure of liquid water or ice Ih (4)
eIh Vapour pressure of ice Ih (43)
eW Vapour pressure of liquid water (28)
fV Fugacity of water vapour in humid air (A.1)
gAV Specific Gibbs energy of humid air (11)
gIh Specific Gibbs energy of ice Ih (15)
gV Specific Gibbs energy of water vapour (28)
gW Specific Gibbs energy of liquid water (5)
hAV Specific enthalpy of humid air (C.9)
hIh Specific enthalpy of ice Ih (C.15)
hW Specific enthalpy of liquid water (C.9)
HW+AV Enthalpy of liquid water plus humid air (C.9)
LL Specific evaporation enthalpy of liquid water (14)
LM Specific melting enthalpy of ice Ih (25)
LS Specific evaporation enthalpy of ice Ih (17)
MA Molar mass of dry air, 28.965 46 g mol−1 [26] (1)
mA Mass of dry air (C.8)
mH2O Mass of liquid water plus water vapour (C.10)
mV Mass of water vapour (C.8)
mW Mass of liquid water (C.9)
MW Molar mass of water, 18.015 268 g mol−1 [26] (1)
p Pressure (2)
P0,p0 Atmospheric pressure, 101 325 Pa
pc Critical pressure, 22.064 MPa [42] (A.5)
pmelt Melting pressure of ice Ih (A.8)
pt Triple-point pressure, 611.657 Pa [42]
q Specific humidity (1)
r Humidity ratio (1)
R Molar gas constant, 8.314 4626 . . . J mol−1 K−1 [43] (D.1)
RW Specific gas constant of water, 461.518 05 J kg−1 K−1 [42] (5)
sAV Specific entropy of humid air (C.4)
sW Specific entropy of liquid water (C.4)
T Absolute temperature (ITS-90) (2)
Tc Critical temperature, 647.096 K [42] (A.5)
Tcp Condensation-point temperature (2)
Tdp Dew-point temperature (6)
Tfp Frost-point temperature (16)
T liq Maxcondentherm temperature of air, 132.6 K [32]
Tmp Melting temperature of ice Ih (23)
Tsp Sublimation or boiling temperature
Tt Triple-point temperature, 273.16 K [42] (A.5)
vA Molar volume of air dissolved in water (D.5)
x Mole fraction of water vapour in humid air (1)
xA Mole fraction of air dissolved in water (D.4)
xsat Saturation mole fraction of water vapour (2)
xW Mole fraction of water in air-saturated liquid water (D.1)
δT Temperature depression (12)
μ0 Reference chemical potential (A.5)
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Symbol Explanation Reference Equation

μAV
V Chemical potential of water vapour in humid air (5)

μ̂AV
V Molar chemical potential of water vapour in humid air (D.1)

μ̂AW
W Molar chemical potential of water in air-saturated liquid water (D.1)

μ̂W Molar chemical potential of pure liquid water (D.2)
ρV Mass density of water vapour (B.55)
ψf RF of water in humid air (5)
ψAW

f RF relative to liquid water Table 2
ψIh

f RF relative to ice Ih Table 2
ψV,Ih

f RF (extended range) relative to ice Ih Table 2
ψV,W

f RF (extended range) relative to water Table 2
ψq RH (climatological definition) (9)
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