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ABSTRACT 
The Life Cycle Energy Optimisation (LCEO) methodology aims at finding a design solution that uses a 
minimum amount of cumulative energy demand over the different phases of the vehicle's life cycle, 
while complying with a set of functional constraints. This effectively balances trade-offs, and therewith 
avoids sub-optimal shifting between the energy demand for the cradle-to-production of materials, 
operation of the vehicle, and end-of-life phases. The present work describes the extension of the LCEO 
methodology to perform holistic product system optimisation. The constrained design of an automotive 
component and the design of a subset of the processes which are applied to it during its life cycle are 
simultaneously optimised to achieve a minimal product system life cycle energy. A subset of the 
processes of the end-of-life phase of a vehicle’s roof are modeled through a continuous formulation. 
The roof is modeled as a sandwich structure with its design variables being the material compositions 
and the thicknesses of the different layers. The results show the applicability of the LCEO methodology 
to product system design and the use of penalization to ensure solution feasibility. 
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1 INTRODUCTION
Energy-efficient vehicle concepts are a promising approach to curb the ever increasing energy demands
of the transport sector. This sector represents just under 30% of the total energy consumption of the
European Union (EU) (European Commission, 2016). The transport energy needs of the EU are pro-
jected to grow by 0.4 to 1.4% (Ribeiro et al., 2007) while the EU-wide green house gas emissions are
targeted to be reduced by at least 80% below the 1990 baseline levels by 2050 (European Climate Foun-
dation, 2010). This trend increases the difficulty of meeting the challenge of modern vehicle design,
which is to simultaneously meet the transport needs of society while minimising energy use and its
associated environmental impact.
The Life Cycle Energy Optimisation (LCEO) methodology (O’Reilly et al., 2016) is a framework which
is intended to enable early-stage energy-efficient vehicle design through finding the optimal design that
minimises the total life cycle energy demand over the different phases of the vehicle’s life cycle. In
practice, the methodology is formulated as a mathematical optimisation problem, where the objective
function to minimise is the life cycle energy of a vehicle, while the functional requirements which
the design is subject to are implemented as mathematical constraints. The aforementioned energy acts
as a life cycle environmental proxy allowing for the inclusion of environmental considerations early
during the design process. This approach avoids the sub-optimal shifting of burdens between the energy
demand for the cradle-to-production of materials, operation of the vehicle, and End-Of-Life (EOL)
phases. Furthermore, in simultaneously considering the environmental and the technical aspects, the
LCEO methodology allows the identification of critical trade-offs and enables the emergence of novel
energy-efficient vehicle designs.
Previous works investigated the impact of the inclusion of the energies of different phases of the life
cycle in the LCEO methodology. O’Reilly et al. (2016) investigated the impact of the inclusion of
the production and use phase energies, while Jank et al. (2017) extended the framework through the
additional consideration of the energy originating from the EOL phase. The latter was achieved through
the inclusion of a closed-loop EOL model.
Within the context of the LCEO methodology, the life cycle energy of a given design is not only depen-
dent on its associated design variable values; it is also significantly affected by modelling choices made
prior to performing the design optimisation. These modelling choices generally aim at allowing all the
material flows inherent to the vehicle’s life cycle, as well as the transportation requirements to which it
is subject, to be represented in a consistent manner from an energy perspective. These choices include
the preselection of production and EOL processes which are included in the vehicle product system. In
practice, this results in a set of parameters, referred to here as process design parameters, which enable
the conversion of the material flows to their associated energy burdens and credits at the level of the
optimisation framework’s objective function. In particular, a subset of these parameters is introduced
while assigning embodied energies to the different candidate materials in order to estimate the cumula-
tive energy needed for the cradle-to-production phase of the vehicle’s life cycle. Similarly, the processes
which are included in the EOL phase of the vehicle are also explicitly fixed by dictating the amount of
energy assigned as credit or burden to the system as a result of the application of an EOL process to the
constitutive materials.
Thus, the optimal life cycle energy design resulting from this approach is optimal with respect to the
preselected processes included in the vehicle product system. Specifically, the resulting design is optimal
with respect to the process design parameters which result from the modelling of the processes that are
included in the vehicle product system. Subsequently, a potential way of alleviating this dependency is
to treat the process design parameters — or a subset of these parameters — as variables, referred to here
as Process Design Variables (PDVs). Such an approach is synonymous with simultaneously performing
the optimisation of the vehicle design and the process design. This could be argued to lead to life cycle
energy optimal vehicle product systems.
However, this expansion of the design range of the LCEO methodology hinges upon the availability of
an adequate representation of the PDVs. Namely, this representation can be discrete or continuous.
The first approach can originate from providing an exhaustive set of all the possible values that the
design variable of a particular process can take based on existing or assumed processes. This repre-
sentation has the drawback of leading to a Mixed Integer Non-Linear Problem (MINLP) formulation
(Biegler, 2010), where a subset of the variables is continuous (e.g. a component’s thickness) while

ICED192902

https://doi.org/10.1017/dsi.2019.297 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.297


the other is a set of discrete points. Despite the existence of solution methods for these formulations
(Grossmann, 2002), they are typically associated with a significant potential increase in computational
costs compared to their continuous variable counterparts (Kraemer et al., 2007). This increase is, in
essence, due to the need of solving the continuous optimisation problem numerous times for different
set combinations of the discrete variables in order to solve the larger mixed optimisation problem.
Alternatively, the PDVs can be continuously represented. They can be treated in a similar fashion to
how a typical design variable, such as the volume fraction of a material or the thickness of a com-
ponent, would be allowed to vary continuously within certain boundaries. This representation, when
feasible, would result in a computationally tractable LCEO problem formulation. Nevertheless, allow-
ing the PDVs to vary freely within too large boundaries might result in unfeasible solutions; and, per
contra, setting too narrow boundaries might significantly reduce the exploratory ability of the LCEO
methodology and subsequently hinder its potential to identify unconventional vehicle product system
designs.
Thus, an attempt at preserving the exploratory ability of the LCEO methodology can be made through
associating an energy “cost” to the PDVs. This continuous function would associate an assumed energy
value to the PDV values, and it would be appended to the total life cycle energy of a given vehicle
product system design. Subsequently, the optimiser would balance the individual energies stemming
from the three main phases of the vehicle’s life cycle with the energy stemming from the PDVs, and
would result in an life cycle energy optimal vehicle product system.
The aim of this work is to establish how the LCEO methodology can be extended to enable holistic
life cycle energy-efficient vehicle product system design. This is achieved by performing the life cycle
energy design optimisation of a vehicle component product system while representing a subset of the
processes that are employed during its EOL phase through continuous PDVs. As a consequence of this
categorisation, the resulting design variables associated with the optimal life cycle energy design are
both the vehicle sub-system design variables, as well as the process design variables associated with
the EOL phase of the vehicle component. In particular, this approach is applied to the illustrative case
of the design of a car roof sandwich panel product system under functional requirements. The design
variables of the panel, which consist of the material compositions and thicknesses of the different layers,
are simultaneously optimised with the process design variables of the EOL model. The latter phase is
modelled through the substitution with a correction factor (van der Harst et al., 2016) approach within
an assumed closed-loop recycling model. In this model the correction factors, which can be assumed to
represent the ability of a recycling process to produce materials with virgin-like mechanical properties,
are taken as the PDVs.
The novelty of this work resides in the extension of the existing discrete EOL model (Jank et al., 2017)
to a continuous one, which allows for the concurrent optimisation of the vehicle design variables and
the process design variables. This extension is enabled by the introduction of the continuous functions
which associate energy “costs” to the PDV values. The core rationale behind their introduction as well
as their impact on the resulting designs constitutes the major contribution of this work.
For the sake of clarity and self containment of the present work, section 2 will provide an overview of
the LCEO methodology and the discrete EOL phase modelling as introduced in (O’Reilly et al., 2016)
and (Jank et al., 2017). Section 3 will present the continuous EOL modelling and how it is implemented
within the methodology. Section 4 will present the illustrative case study considered in this work as well
as the results of the holistic product system life cycle energy optimisation for two different correction
factor-energy relationship functions. The first approach is to assume that the correction factor values
have an associated energy cost of 0, and are effectively set to freely vary between their prescribed
extremal values. The second approach is to assume that the correction factor-energy relationship is
modelled as a logarithmic function. Section 5 examines the validity of the results through the vernacular
of this study’s enabling assumptions. In conclusion, future improvement avenues and applications for
the continuous PDV augmented LCEO framework are identified.

2 THE LIFE CYCLE ENERGY OPTIMISATION METHODOLOGY
The LCEO method formally integrates environmental considerations into a design methodology through
the formulation of a mathematical multidisciplinary design optimisation framework. The life cycle
energy is used as the objective function to be minimised, as detailed in (O’Reilly et al., 2016). The

ICED19 2903

https://doi.org/10.1017/dsi.2019.297 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.297


functional requirements stemming from structural mechanics, and eventually other disciplinary fields,
act as constraints on the design. Thus, this methodology does not compromise design requirements, but
rather changes design variable values so as to find the design solution which features the minimum life
cycle energy use while fulfilling all the transport-related functional requirements. The life cycle energy
is formulated as

EL(X ) = EP(X )+ EU(X )+ EE(X ), (1)

where EL is the life cycle energy, EP is the production energy, EU is the use-phase energy, EE is the
end-of-life energy, and X is the set of design variables. The production energy is obtained from the
embodied energy of the constitutive materials of a given design, while the EOL energy is obtained
from the energy credit or burden associated with subjecting the constitutive materials to different EOL
processes. Finally, the use phase energy is obtained through multiplying the energy required to move
the vehicle according to a prescribed drive cycle (New European Drive Cycle) by the number of such
cycles during the entire use phase of a vehicle. The associated optimisation problem is expressed as

min(EL(X )), (2)

subject to constraints of the form:

T(I)(X ) ≤ 0, (3)

T(E)(X ) = 0, (4)

Xmin ≤ X ≤ Xmax. (5)

Equation 3 corresponds to functional requirements expressed as inequalities (I), while Equation 4 refers
to the functional requirements which are expressed as equalities (E). The last equation, Equation 5, is
the set of boundaries for the design variables.
The EOL phase of the vehicle’s life cycle has been included in the framework through the modelling
of recycling processes within an assumed closed-loop model. In particular, the substitution with a cor-
rection factor approach (van der Harst et al., 2016) has been adopted within an assumed closed-loop
recycling model to avoid the system boundary expansions inherent to open-loop models. Within this
attributional perspective, the recycled material is assumed to partially or completely substitute the input
material; the substitution quota is accounted for through a correction factor. This modelling reflects the
assumed practice of using recycled material to produce the same product as the one from which the
recycled material originates. However, depending on the employed recycling methodologies, material
properties can be degraded, leading to a partial substitution that is supplemented with the production of
virgin material destined to the same end-product. The analysed product system incurs the burden for the
EOL processing of the discarded analysed product, but also receives corrected credits for the amount
of recycled material that is obtained from the EOL recycling of said analysed product. For instance, a
correction factor of 0.2, would imply that only 20% of the virgin energy production would be avoided
when recycled materials re-enter the vehicle sub-system production system. Equivalently, the correc-
tion factor would reflect an assumed 80% degradation in material properties. As a result of this assumed
technical property loss, it would be necessary to mix recyclates with virgin produced material, at 20%
and 80% ratios respectively, in order to produce a product with high enough technical properties to meet
the functional requirements constraining the design.

3 CONTINUOUS EOL MODELING
Previous work (Jank et al., 2017) included the identification of recycling technologies that are applica-
ble to the candidate materials. These technologies were used to generate a set of scenarios combining
different, yet fixed, correction factor values within a closed-loop model identical to the one introduced in
the previous section. In that case, the correction factors were considered as process design parameters.
In the present work, these coefficients are considered continuous PDVs. this alternative perspective
requires an extension of the LCEO framework. As turning optimisation parameters into optimisation
variables is accompanied by a need to define their bounds as well as develop an initial understanding of
their potential impact on the life cycle energy objective function, and thereby the very behaviour of the
whole optimisation framework.
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Firstly, the boundaries for the continuous correction factor PDVs can be derived from their definition
(c.f. Section 2). From an ideal closed-loop perspective, a recycling technology would yield a recyclate
with material properties similar to that of the virgin produced material, as a result of no process induced
degradation. Thus, the maximal value for the correction factor is naturally set to 1. It reflects the case
where 100% of the recyclate can re-enter the production system and avoid 100% of the virgin energy
production. By extension of the same reasoning to the worst case scenario, the minimum possible value
for these continuous PDVs is set to zero.
Secondly, the total cumulative life cycle energy is a strictly decreasing function of the continuous cor-
rection factor PDVs. This behaviour derives from the role of the correction factor. It directly dictates the
amount of energy that is credited back to the product system, while it does not have any direct bearing
on the cradle-to-production energy and the operational phase energy. In other words, an increase of the
value of the correction factor translates into a reduction of the perceived energy cost associated with the
materials which figure in a given design. Hence, it can be deduced that it is highly likely that when the
correction factors are set to freely and continuously vary between their extremal values, the optimisation
process would result in their optimal value being their maximal allowed one.
However, the maximal physical PDV values are not always feasible ones. This is particularly relevant in
the case of fibre reinforced plastics, where the recycling processes tend to shorten the fibres or damage
their surfaces (Pickering, 2006). These two effects result in degraded material properties.
One way to enforce solution feasibility in the practice of constrained optimisation is to use penalty
barrier functions (Wright and Nocedal, 1999). These are functions of the optimisation variables which
are appended to the objective function. Their value increases to infinity as the candidate point for the
optimisation approaches the boundary of the feasible region of the problem.
In this illustrative study, the feasibility of the solution of the PDV augmented LCEO formulation
is enforced by modelling the relationship between the correction factors and their associated energy
penalty through a logarithmic barrier function (Griva et al., 2009) of the form:

gn(x) = −log(1− xn), ∀x ∈ [0,1[ and ∀n ∈ N∗, (6)

where gn(x) is the penalisation coefficient associated to a given penalisation parameter n and a given
correction factor value x. Figure 1 shows the value of the penalisation coefficient associated with the
logarithmic barrier function for different values of the penalisation parameter n. It can be observed that
an increase in the value of n results in a reduced penalisation of the relatively higher correction factor
values. In other words, the penalisation coefficient controls the level of access to the higher correction
values that is given to the optimiser. It is possible to tune the value of n in order to render the correction
factor values, which are beyond a predefined limit, very prohibitive from an energy standpoint.

Figure 1. Value of the logarithmic barrier penalisation coefficient for different values of the
correction factor and of the penalisation parameter.

A new penalised life cycle energy objective function is obtained from updating the previous life cycle
energy objective function with the barrier functions:

EPEN = EP(X )+ EU(X )+ EE(X )+ |EE(X )|

Nm∑
i=1

gni(Cfi), (7)
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where Nm is the number of design candidate materials to which a recycling process is applied, while Cfi
is their associated correction factor and ni is their associated penalisation parameter. The penalisation
functions are multiplied by the EOL energy in order to properly scale the penalisation energy (Griva
et al., 2009). This is necessary in order to avoid a subset of the PDVs having an undue influence on the
search process, or the lack of any influence at all. Furthermore, the EOL energy is taken in its absolute
value to enforce the positivity of the scaling energy, since crediting the system is expressed through
negative energy values. Such values would incentivise the optimisation in the wrong direction.

4 RESULTS
This section will briefly introduce the vehicle component product system on which the PDV augmented
LCEO formulation will be applied. The main focus will be on the resulting designs for two different
correction factor-energy relationship function choices. The first choice concerns the free optimisation
case, where the correction factors have no associated energy burden. The second case features the mod-
elling of the correction factor-energy relationship through a logarithmic penalisation function in order
to ensure the feasibility of the resulting product system.

4.1 Case study: the car roof sandwich panel
The LCEO methodology is applied to the case study of the design of a vehicle component product
system in order to illustrate its ability to perform holistic energy-efficient vehicle product system design.
In particular, the vehicle component considered is the roof of a car. Such a component has already served
as a benchmark for previous LCEO studies (O’Reilly et al., 2016; Jank et al., 2017). In this work, the
roof is modelled as a 2D sandwich panel measuring 0.6 m of length.
Figure 2 lists the different design variables introduced by the sandwich panel structural choice: layer
thicknesses ti, as well as the material volume fractions Vi,j . The face sheets of the panel may be com-
posed of a blend of Carbon Fibre (CF) and Glass Fibre (GF) as reinforcements to an epoxy matrix. The
core of the panel can be composed of polyvinylchloride (PVC), polyethylene (PET) or polyurethane
(PUR). The material properties of these material design variables, as well as their related production
phase energies, are given in (O’Reilly et al., 2016). Note that the concept of hybridisation is used
to allow for the continuous representation of the intra-layer material properties (Ashby and Bréchet,
2003). The Young’s Modulus, density and Poisson’s ratio are proportionally determined depending on
the volume fractions, Vi,j , selected.

Figure 2. The sandwich structural choice dependent design variables.

The functional requirements which are constraining the design are of a similar nature to the ones for-
mulates in (O’Reilly et al., 2016). The design is subject to two maximum displacement functional
requirements set to d1,max = d2,max = 2.5× 10−6 m. The former acts as a constraint on the acceptable
load response to a localised static pressure, while the latter refers to the constraint on the acceptable load
response to a static pressure distributed over the entire top of the panel. Two supplementary requirements
are set for the vibrational behaviour of the panel. Minimum frequency constraints of f1,min = 330 Hz and
f2,min = 520 Hz are respectively set for the first and second natural frequencies of the panel.
In the following, the processes which are assumed to be included in the EOL phase of the roof panel are
the incineration with energy recovery of the core layer, CF chemical recycling as well as the mechanical
grinding of GF. The energy credits (negative values) and burdens (positive values) associated with the
application of these processes to the different constitutive materials are summarised in Table 1. The
correction factors which are associated with the processes applied to the CF and GF candidate materials
are modelled as continuous PDVs. Thus, Nm = 2 and Cf1 and n1 are respectively the correction factor
and penalisation parameter associated with CF, while Cf2 and n2 are the ones associated with the GF
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Table 1. The energy credits and burdens incurred by the vehicle product system for the EOL
processing of the different candidate materials. Taken from (Jank et al., 2017)

Carbon Fibre Glass Fibre Polyethylene Polyvinylchloride Polyurethane
38 MJ/kg 0.17 MJ/kg −23.8 MJ/kg −22.9 MJ/kg −24 MJ/kg

material choice. The following results are obtained for a 60,000 km drive cycle. The first minimum
eigenfrequency requirement is the active constraint limiting any further minimisation of the life cycle
energy in all the following resulting designs.

4.2 LCE optimisation in the free continuous PDV case
The resulting panel design variables and their associated optimal life cycle energy PDVs for the unpe-
nalised continuous PDV optimisation case are presented in Table 2. The final life cycle energy design
features a top sheet which is over two times thicker than the bottom one, 0.85 mm and 0.38 mm respec-
tively, with a core thickness of 40 mm. The core is also composed of a blend of the softer PUR with the
stiffer PVC, at 37% and 63% ratios respectively, while the face sheets are solely composed of CF. Table

Table 2. Resulting optimal design variables and PDVs for the free optimisation case

V1,CF V1,GF V2,CF V2,GF Vc,PET Vc,PVC Vc,PUR t1[mm] t2[mm] tc[mm] Cf ,CF Cf ,GF
100% 0% 100% 0% 0% 63% 37% 0.85 0.38 40 0.99 0.47

3 presents the individual energies associated with the different phases of the life cycle of the optimal
design as well as its associated life cycle energy and total mass. The EOL energy associated with the
life cycle energy optimal design balances, for the most part, the embodied energy of the panel. The
final design is also characterised by a 247.6 MJ life cycle energy and weighs 1.096 kg. These results

Table 3. Resulting energies and mass of the free optimisation case

Production energy Use energy EOL energy Life cycle energy Total mass
145.5 MJ 224.1 MJ −122 MJ 247.6 MJ 1.096 kg

confirm the analysis performed in Section 3. Namely, the CF correction factor PDV takes the maximal
allowable value, thus making the CF material choice for the face sheets even more attractive from the
optimiser’s perspective. This is due to the amalgam of CF’s relatively superior material properties with
the possibility offered by the unpenalised formulation to alleviate its high embodied energy. In fact, by
setting Cf1 to virtually 1, the system is significantly credited for an intensive use of CF in the resulting
design. This is reflected by the face sheets being solely composed of CF.
The resulting Cf2 is set to 0.47. It is worth noting that this value does not carry any particular signifi-
cance — for this particular optimal design, in this formulation — as GF does not enter into the material
composition of the final design. This value stems from the use of a derivative-free heuristic optimiser
(Price et al., 2006) to solve the energy minimisation problem. A randomly generated population of
candidate design solutions is evolved and mutated over a predetermined number of iterations and the
member of the final population with the minimum life cycle energy value is selected as the optimal
solution. In this particular case, the latter member carried that particular value of Cf2 . Performing the
optimisation multiple times yields the same life cycle energy optimal design variables, with the same
value of the CF recycling PDV, but with different values for the GF recycling PDV.

4.3 LCE optimisation in the penalised continuous PDV case
Figure 3 shows the results of the life cycle energy optimisation for the logarithmically penalised con-
tinuous PDVs case. The results are shown for a single CF penalisation parameter, n1 = 1, while the GF
penalisation parameter, n2, is varied from 1 to 10. The following quantities are plotted against n2, from
left to right and top to bottom: the EOL PDVs, the material compositions of the different layers, the face
sheet thicknesses, the core layer thicknesses, the life cycle energy and its penalised counterpart as well
as the resulting designs’ masses.
It can be seen from the plot describing the evolution of the EOL PDVs as functions of the GF penali-
sation parameter that the penalisation parameter has the intended effect on the PDVs resulting from the
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optimisation process. Namely, an increase of the value, which represents a relaxation of the penalisation
on the higher correction factor values, results in increased optimal values of the GF associated PDV. In
particular, the optimal Cf2 value increases from 0 to 0.51. It is also worth noting that the variation of
the degree of penalisation of Cf2 results in a slightly decreasing Cf1 over the span of the penalisation
parameters, with its average value being 0.26.
The increases in the value of Cf2 have a direct impact on the presence of GF in the material composition
of the life cycle energy optimal panel designs. The presence of GF in the bottom face sheet increases
from 0% to 25% as the penalisation is relaxed from n2 = 1 to 10. The mix of GF and CF in the bottom
layer results in a hybrid-material (Ashby and Bréchet, 2003) based sheet with a decreased stiffness in
comparison to a sheet made up solely of CF and with an identical thickness. This decrease in stiffness
is balanced by an increase of the thickness of the top facing sheet, which is solely composed of CF.

Figure 3. Results of the continuous penalised PDV case. The following quantities are plotted
against n2, from left to right and top to bottom: the EOL PDVs, the layers’ material

compositions, the face sheet thicknesses, the core layer thicknesses, the life cycle energy
and the penalised one as well as the resulting designs’ masses. n2 is varied from 1 to 10.

However, changing the thickness of the top layer is not the only degree of freedom at the optimiser’s
disposal to maintain the overall stiffness of the design at the functionally required level. In fact, when
the penalisation is relaxed from n2 = 6 to 7, the thickness of the top sheet decreases from 0.357 to 0.343
mm while the thickness of the core increases. The latter was largely left unaffected by the incremental
relaxations of the penalisation of the GF associated PDV up to, and including, n2 = 6. It subsequently
increases by an average of 1.2 mm up to n2 = 10. However, the resulting material composition of the
core is kept unchanged. This indicates that the overall structural stiffness is maintained by increasing the
geometrical stiffness of the structure through increasing the thickness of its core layer. The optimiser,
which earlier relied on increasing the amount of CF in the top facing sheet to preserve the overall struc-
tural stiffness, relies subsequently on the main feature of sandwich structures (Zenkert, 1995): increasing
the bending stiffness through an increased distance between the two load-carrying face sheets.
The penalised life cycle energy is slightly decreasing with the increase of the parameter n2. This decrease
is explained by the successive increases in the optimal value of the GF associated PDV, which dictates
that the system is increasingly credited for employing GF in its face sheets. The effect of the more
significant presence of GF in the resulting designs can all also be noticed in their masses. The mass tends
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to increase with increases in the penalisation parameter. Thus, under the assumptions of the penalised
continuous PDV optimisation, heavier designs coincide with more energy-efficient product systems.
This conclusion still holds when the results of the penalised model are compared with the free continu-
ous optimisation case’s. In fact the resulting design of Section 4.2 weighs 1.096 kg, with an associated
life cycle energy of 247.6 MJ, as opposed to just under 0.93 kg, and about 295 MJ, for the heaviest
penalised design. This is due to the impact of the logarithmic penalisation function. In the first case, the
perceived energy cost of the use of CF is lower than the cost of capitalising on the inherent geometri-
cal stiffness offered by the sandwich structure design choice. Since increasing the thickness of the core
would increase the material flows associated with PVC and PUR, which are incinerated with energy
recovery during the EOL phase of the vehicle component. Thus, the system is not credited as much as
when employing thicker face sheets made of CF in conjunction with a high correction factor.

5 DISCUSSION
The previous results demonstrate the sensitivity of the designs resulting from the penalised continuous
PDV augmented LCEO formulation to the choice of penalisation parameters. The choice has also been
shown to directly impact which mechanisms drive the optimiser to the minimum life cycle energy
design, namely material-choice related stiffness as opposed to geometrical stiffness.
The resulting designs are not only sensitive to the penalisation parameter choice, but also to the choice
of the functions representing the PDV-energy relationship. These functions are not a priori known,
and their choice constitutes an integral part of the modelling phase of the LCEO formulation. The
relative complexity introduced by this additional modelling phase is outweighed by the flexibility it
offers. Indeed, it potentially allows to perform LCEO studies with different intents.
Penalisation functions are adequate PDV-energy relationship candidate functions as they allow for the
fine tuning of the feasibility of the resulting design. Additionally, as shown in Section 4.3, they also
facilitate the identification of the underlying mechanisms which enable trade-offs between technical and
environmental aspects. In doing so, they can potentially help the designer in managing the complexity
of the design task and identify the vehicle sub-system’s environmental criticalities more effectively.
Alternatively, for a given candidate material, all the available applicable processing technologies can be
used as data points over which a PDV-energy relationship function can be interpolated. In constructing
the functions in such a manner for all, or a select few, candidate materials, the resulting designs would
not only be life cycle energy optimal vehicle sub-system designs, but would also contain their optimal
PDVs, and by extension their associated optimal processing technologies. This approximation, when
applicable, preserves the computational tractability of the original LCEO formulation.
The PDV augmented LCEO methodology allows to tackle two main barriers to the effective imple-
mentation of quantitative ecodesign tools in industrial environments (Rossi et al., 2016). Firstly, the
methodology implicitly compares different product system configurations and provides designers with
the best alternative while allowing for the identification of trade-off mechanisms in terms of envi-
ronmental and technical aspects. Secondly, the PDV formulation helps designers maintain solution
feasibility across an extended range of product characteristic configurations by taking into account dif-
ferent processes. To the knowledge of the authors, such flexibility is novel within the field of quantitative
ecodesign methods and tools.
The novelty of the augmented LCEO formulation, coupled with its ability to tackle established barriers
to the wider adoption of ecodesign tools, warrant further methodological developments. In particular,
the robustness of the resulting designs to the PDV-energy relationship function choice should be further
examined and guidelines for a standardised approach to constructing the relationship functions should
be devised. Furthermore, the sensitivity of the resulting designs with respect to modelling uncertainties
should be analysed and quantified.

6 CONCLUSION
This work has shown how the LCEO methodology can be extended to perform holistic product sys-
tem optimisation through simultaneously performing vehicle sub-system design optimisation, as well as
process design optimisation. This extension was based on considering previous parameters of the opti-
misation as continuous process design variables, and the introduction of continuous functions which
map the different possible values of these variables to energy burdens. Applying this approach to the
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illustrative case study of the design of a car roof sandwich panel resulted in the formulation of a con-
tinuous EOL model. The inclusion of the latter in the optimisation framework has shown the ability of
the augmented formulation to offer finer control of the feasibility of the resulting holistic design. Fur-
thermore, the potential of the methodology to identify the underlying mechanisms enabling trade-offs
amongst the component’s technical aspects was demonstrated. Finally, the sensitivity of the resulting
designs to the choice of process design variable-energy relationship functions implies that further work
is needed to define and formulate these mapping functions.
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