Skip to main content
Log in

Melaleuca alternifolia formulations in the treatment of experimental pythiosis

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Essential oils (EO) are aromatic compounds from the plant secondary metabolism. Melaleuca alternifolia EO is well known for its medicinal properties and promising use as an antimicrobial agent. Pythiosis is a difficult-to-treat and emerging disease caused by the oomycete Pythium insidiosum. This study evaluated a nanoemulsion formulation of M. alternifolia (NEMA) in topical and intralesional application to treat experimental pythiosis. Dermal toxicity tests were performed on M. alternifolia EO in Wistar rats. Pythiosis was reproduced in rabbits (n = 9) that were divided into groups: group 1 (control), cutaneous lesions with daily topical application of a non-ionizable gel-based formulation and intralesional application of sterile distilled water every 48 h; group 2 (topical formulation), lesions treated daily with topical application of a non-ionizable gel-based formulation containing 5 mg/ml of NEMA; and group 3 (intralesional formulation), lesions treated with NEMA at 5 mg/ml in aqueous solution applied intralesionally/48 h. The animals were treated for 45 days, and the subcutaneous lesion areas were measured every 5 days. M. alternifolia EO showed no dermal toxicity. The lesion areas treated with intralesional NEMA reduced at the end of treatment, differing from groups 1 and 2 (P < 0.05). In the topically treated group, the lesion areas did not differ from the control group, although the number of hyphae significantly reduced (P < 0.05). Under the experimental conditions of this study, the NEMA formulations presented a favorable safety profile. However, further studies are required to evaluate if this safety applies to higher concentrations of NEMA and to validate its use in clinical pythiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bakkali F (2008) Biological effects of essential oils - a review. Food Chem Toxicol 46:446–475. https://doi.org/10.1016/j.fct.2007.09.106

    Article  CAS  PubMed  Google Scholar 

  2. Amann S, Neef K, Kohl S (2019) Antimicrobial resistance (AMR). Eur J Hosp Pharm 26:175–177. https://doi.org/10.1136/ejhpharm-2018-001820

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kozics K, Bučková M, Puškárová A et al (2019) The effect of ten essential oils on several cutaneous Drug-resistant microorganisms and their cyto/genotoxic and antioxidant properties. Molecules 24:4570. https://doi.org/10.3390/molecules24244570

    Article  CAS  PubMed Central  Google Scholar 

  4. Carmo PHF, Costa MC, Franco PHC et al (2020) Essential oils of Taxandria fragrans and Melaleuca alternifolia have effective antidermatophytic activities in vitro and in vivo that are antagonised by ketoconazole and potentiated in gold nanospheres. Nat Prod Res 2:1–4. https://doi.org/10.1080/14786419.2019.1709186

    Article  CAS  Google Scholar 

  5. Casarin M, Pazinatto J, Oliveira LM et al (2019) Anti-biofilm and anti-inflammatory effect of a herbal nanoparticle mouthwash: a randomized crossover trial. Braz Oral Res 33:e062. https://doi.org/10.1590/1807-3107bor-2019.vol33.0062

    Article  PubMed  Google Scholar 

  6. Ireland DDJ, Greay SJ, Hooper CM et al (2012) Topically applied Melaleuca alternifolia (tea tree) oil causes direct anti-cancer cytotoxicity in subcutaneous tumour bearing mice. J Dermatol Sci 67:120–129. https://doi.org/10.1016/j.jdermsci.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  7. Souza CF, Lima T, Baldissera MD et al (2018) Nanoencapsulated Melaleuca alternifolia essential oil exerts anesthetic effects in the brachyuran crab using Neohelice granulata. Academ Bras Ciências 90:2855–2864. https://doi.org/10.1590/0001-3765201820170930

    Article  CAS  Google Scholar 

  8. Tullio V, Roana J, Scala SD et al (2019) Enhanced killing of Candida krusei by polymorphonuclear leucocytes in the presence of subinhibitory concentrations of Melaleuca alternifolia and "Mentha of Pancalieri" essential oils. Molecules 24:3824. https://doi.org/10.3390/molecules24213824

    Article  CAS  PubMed Central  Google Scholar 

  9. Teng L, Fan X, Nelson DR et al (2019) Diversity and evolution of cytochromes P450 in stramenopiles. Planta 249:647–661. https://doi.org/10.1007/s00425-018-3028-1

    Article  CAS  PubMed  Google Scholar 

  10. Gaastra W, Lipman LJ, De Cock AW et al (2010) Pythium insidiosum: an overview. Vet Microbiol 146:1–16. https://doi.org/10.1016/j.vetmic.2010.07.019

    Article  PubMed  Google Scholar 

  11. Souto EPF, Maia LA, Neto EGM et al (2021) Pythiosis in Equidae in Northeastern Brazil: 1985-2020. J Equine Vet Sci 105:103726. https://doi.org/10.1016/j.jevs.2021.103726

    Article  PubMed  Google Scholar 

  12. Hilton RE, Tepedino K, Glenn CJ et al (2016) Swamp cancer: a case of human pythiosis and review of the literature. Br J Dermatol 175:394–397. https://doi.org/10.1111/bjd.14520

    Article  CAS  PubMed  Google Scholar 

  13. Pereira DIB, Santurio JM, Alves SH et al (2007) Caspofungin in vitro and in vivo activity against Brazilian Pythium insidiosum strains isolated from animals. J Antimicrob Chemother 60:1168–1171. https://doi.org/10.1093/jac/dkm332

    Article  CAS  PubMed  Google Scholar 

  14. Zanette RA, Jesus FP, Pilotto MB et al (2015) Micafungin alone and in combination therapy with deferasirox against Pythium insidiosum. J Mycol Med 25:91–94. https://doi.org/10.1016/j.mycmed.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  15. Itaqui SR, Verdi CM, Tondolo JS et al (2016) In vitro synergism between azithromycin or terbinafine and topical antimicrobial agents against Pythium insidiosum. Antimicrob Agents Chemother 60:5023–5025. https://doi.org/10.1128/AAC.00154-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jesus FP, Loreto ES, Ferreiro L et al (2016) In vitro and in vivo antimicrobial activities of minocycline in combination with azithromycin, clarithromycin, or tigecycline against Pythium insidiosum. Antimicrob Agents Chemother 60:87–91. https://doi.org/10.1128/AAC.01480-15

    Article  CAS  PubMed  Google Scholar 

  17. Bagga B, Sharma S, Guda SJM et al (2018) Leap forward in the treatment of Pythium insidiosum keratitis. British J Ophthalmol 102:1629–1633. https://doi.org/10.1136/bjophthalmol-2017-311360

    Article  Google Scholar 

  18. Chatterjee S, Agrawal D (2018) Azitromycin in the management of Pythium insidiosum keratitis. Cornea 37:e8–e9. https://doi.org/10.1097/ICO.0000000000001419

    Article  PubMed  Google Scholar 

  19. Loreto ES, Tondolo JSM, Oliveira DC et al (2018) In vitro activities of miltefosine and antibacterial agents from the macrolide, oxazolidinone and pleuromutilin classes against Pythium insidiosum and Pythium aphanidermatum. Antimicrob Agents Chemother 62:1678–1717. https://doi.org/10.1128/AAC.01678-17

    Article  Google Scholar 

  20. Loreto ES, Tondolo JSM, Jesus FPK et al (2019) Efficacy of miltefosine therapy against subcutaneous experimental pythiosis in rabbits. J Mycol Med 30:1009–1019. https://doi.org/10.1016/j.mycmed.2019.100919

    Article  Google Scholar 

  21. Fonseca AO, Pereira DI, Botton SA et al (2015) Treatment of experimental pythiosis with essential oils of Origanum vulgare and Mentha piperita singly, in association and in combination with immunotherapy. Vet Microbiol 178:265–269. https://doi.org/10.1016/j.vetmic.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  22. Araujo MJAM, Bosco SMG, Sforcin JM (2016) Pythium insidiosum: inhibitory effects of propolis and geopropolis on hyfal growth. Braz J Microbiol 47:863–869. https://doi.org/10.1016/j.bjm.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valente JSS, Fonseca AO, Brasil CL et al (2016a) In vitro activity of Melaleuca alternifolia (tea tree) in its free oil and nanoemulsion formulations against Pythium insidiosum. Mycopathologia 181:865–869. https://doi.org/10.1007/s11046-016-0051-2

    Article  CAS  Google Scholar 

  24. Valente JSS, Fonseca AO, Denardi LB et al (2016b) In vitro susceptibility of Pythium insidiosum to Melaleuca alternifolia, Mentha piperita and Origanum vulgare essential oils combinations. Mycopathologia 181:5–6. https://doi.org/10.1007/s11046-016-0019-2

    Article  CAS  Google Scholar 

  25. Trolezi R, Azanha JM, Paschoal NR et al (2017) Stryphnodendron adstringens and purified tannin on Pythium insidiosum:in vitro and in vivo studies. Ann Clin Microbiol Antimicrob 1:1–7. https://doi.org/10.1186/s12941-017-0183-3

    Article  CAS  Google Scholar 

  26. Valente JSS, Brasil CL, Braga CQ et al (2020) Biogenic silver nanoparticles in the treatment of experimental Pythiosis. Med Mycol 58:913–918. https://doi.org/10.1093/mmy/myz141

    Article  CAS  PubMed  Google Scholar 

  27. Bouchemal K, Briançon S, Perrier E et al (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm 280:241–251. https://doi.org/10.1016/j.ijpharm.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  28. Flores FC, Ribeiro RF, Ourique AF et al (2011) Nanostructured systems containing an essential oil: protection against volatilization. Química Nova 34:968–972. https://doi.org/10.1590/S0100-40422011000600010

    Article  CAS  Google Scholar 

  29. OECD (Organization for Economic Cooperation and Development): Guideline for the testing of chemicals, 410: “repeated dose dermal toxicity: 21/28-day study”, Adopted 12 May 1981

  30. Statistical Analysis System (SAS) (2019) SAS/STAT user guide, Version 9.4. Cary, NC: SAS Institute

  31. Spinelli MO, Motta MC, Cruz RJ et al (2012) Estudo dos analitos bioquímicos no plasma de coelhos (Nova Zelândia) mantidos no biotério da Faculdade de Medicina da Universidade de São Paulo. Soc Bras Cienc Anim Lab (SBCAL) 1:163–168

    Google Scholar 

  32. Ameri M, Schnaars HA, Sibley JR et al (2011) Determination of plasma fibrinogen concentrations in beagle dogs, Cynomolgus monkeys, New Zealand white rabbits, and Sprague-Dawley rats by using Clauss and prothrombin-time-derived assays. J Am Assoc Labo Anim Sci 50:864–867

    CAS  Google Scholar 

  33. Emanuelli M, Lopes ST, Maciel R et al (2008) Concentração sérica de fosfatase alcalina, gama-glutamil transferase, uréia e creatinina em coelhos (Oryctolagus cuniculus). Ciênc Anim Bras 9:251–255

    Google Scholar 

  34. Pisseri F, Bertolib A, Nardonic S et al (2009) Antifungal activity of tea tree oil from Melaleuca alternifolia against Trichophyton equinum: An in vivo assay. Phytomedicine 16:1056–1058. https://doi.org/10.1016/j.phymed.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  35. Swamy MK, Akhtar MS, Sinniah UR (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 1:1–21. https://doi.org/10.1155/2016/3012462

    Article  Google Scholar 

  36. Kong Q, Zhang L, An P et al (2019) Antifungal mechanisms of a-terpineol and terpene-4-alcohol as the critical components of Melaleuca alternifolia oil in the inhibition of rot disease caused by Aspergillus ochraceus in postharvest grapes. J Appl Microbiol 126:1161–1174. https://doi.org/10.1111/jam.14193

    Article  CAS  PubMed  Google Scholar 

  37. Bezdjian A, Mujica-mota MA, Azzi M et al (2014) Assessment of ototoxicity of tea tree oil in a chinchilla animal model. Int J Pediatr Otorhinolaryngol 78:2136–2139. https://doi.org/10.1016/j.ijporl.2014.09.023

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES - Finance Code 001) and National Council for Scientific and Technological Development – CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for student and researcher scholarships.

Author information

Authors and Affiliations

Authors

Contributions

Silveira JS, Pereira DIB, and Botton SA conceived the idea, performed the experiment, collected and interpreted data, and wrote the manuscript. Silveira JS, Brasil CL, Braga CQ, Moreira AS, Albano AP, and Zambrano CG performed the animal experiment. Zamboni R and Sallis ES performed necropsy and histopathological analysis. Franz HC performed hematological and biochemical analysis. Silva CB and Araujo LC produced Melaleuca alternifolia nanoemulsion. Pötter L. performed the statistical analysis, interpreted data, and wrote the manuscript.

Corresponding author

Correspondence to Daniela Isabel Brayer Pereira.

Ethics declarations

Ethics approval

All applicable institutional guidelines for the care and use of animals were followed (Ethics Committee of Federal University of Pelotas – CEEA - n° 23110.002723/2016-77).

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luiz Henrique Rosa

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Silveira, J., Brasil, C.L., Braga, C.Q. et al. Melaleuca alternifolia formulations in the treatment of experimental pythiosis. Braz J Microbiol 53, 1011–1017 (2022). https://doi.org/10.1007/s42770-022-00720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00720-6

Keywords

Navigation