Skip to main content
Log in

The effect of age and educational level on the cognitive processes used to comprehend the meaning of pictograms

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims

Pictograms, designed to be a universal communication system, are often created from several concrete and easily recognizable drawings. Does understanding depend on a logical approach? Or is it the ability to inhibit the concrete sense of each picture that allows access to a higher level of comprehension? (ability to abstract). These executive functions are sensitive to the effects of aging and educational level. The aim of our study was to evaluate the nature of the cognitive processes underlying the meaning of pictograms and to test the effect of aging and educational level.

Methods

We enrolled 19 older adults (60–69 years old) and 63 young adults (20–29 years old). Of these 63 young adults, 43 had a high educational level (Young-High participants), and 20 had a lower educational level (Young-Low participants). Each participant was asked the meaning of 20 pictograms and underwent an assessment of abstraction and logical abilities with WAIS-III test.

Results

Older adults had lower pictogram assessment scores and abstraction and logical abilities when compared with young adults. In both groups, abstraction and logical abilities were correlated with the interpretation of pictograms but only abstraction ability remains strongly correlated with pictogram comprehension in the older group after adjustment of sex, age and educational level. Consequently, the poorer performances of older adults to determine the meaning of pictograms could be explained by the decline of abstraction ability in elderly.

Conclusions

Pictograms are not the universal communication system as we formerly thought. Age and educational level may influence the performance in determining the meaning of pictograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tijus C, Barcenilla J, Cambon de Lavalette B, Meunier JG (2005) The design, understanding and usage of pictograms. In: Alamargot D, Terrier P, Cellier JM (eds) Improving the production and understanding of written documents in the workplace. Elsevier Publishers, Amsterdam, pp 17–32

    Google Scholar 

  2. Bordon E (2004) Comment les pictogrammes sont interprétés par des lecteurs ordinaires? Communication et langages 142:43–52

    Article  Google Scholar 

  3. Tourneux H (1994) L’interprétation paysanne des pictogrammes phytosanitaires. Agriculture et développement 1:10–13

    Google Scholar 

  4. Wilkinson R, Cary J, Barr N, Reynolds J (1997) Comprehension of pesticide safety information: effects of pictorial and textual warnings. Intern J Pest Manag 43:239–245

    Article  Google Scholar 

  5. Al-Madani H, Al-Janahi A (2002) Assessment of drivers’ comprehension of traffic signs based on their traffic, personal and social characteristics. Transport Res Part F 5:63–76

    Article  Google Scholar 

  6. Ells JG, Dewar RE (1979) Rapid comprehension of verbal and symbolic traffic sign messages. Hum Fact 21:161–168

    Google Scholar 

  7. Davies S, Haines H, Norris B, Wilson JR (1998) Safety pictograms: are they getting the message across? Appl Ergon 29:15–23

    Article  CAS  PubMed  Google Scholar 

  8. Dowse R, Ehlers MS (1998) Pictograms in pharmacy. Intern J Pharm Pract 6:109–118

    Article  Google Scholar 

  9. Dowse R, Ehlers MS (2003) The influence of education on the interpretation of pharmaceutical pictograms for communicating medicine instruction. Intern J Pharm Pract 11:11–18

    Article  Google Scholar 

  10. Knapp P, Raynor DK, Jebar AH, Price SJ (2005) Interpretation of medication pictograms by adults in the UK. Ann Pharmacother 39:1227–1233

    Article  PubMed  Google Scholar 

  11. Barcenilla J, Tijus C (2002) Compréhension et évaluation de pictogrammes: effets du contexte. Psychologie Française 47:55–64

    Google Scholar 

  12. Droste FG (1976) The grammar of traffic signs. Semiotica 5:256–262

    Google Scholar 

  13. Szlichcinski KP (1980) The syntax of pictorial instructions. In: Kolers PA, Wrolstad ME, Bouma H (eds) Processing of visible language, 2nd edn. Plenum Press, New-York, pp 113–124

    Chapter  Google Scholar 

  14. Van der Linden M, Seron X, Le Gall D, Andres P (1999) Neuropsychologie des lobes frontaux. Solal, Marseille

    Google Scholar 

  15. Alvarez JA, Emory E (2006) Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16:17–42

    Article  PubMed  Google Scholar 

  16. Lorenz-Reuter PA (2000) Cognitive neuropsychology of the aging brain. In: Park DC, Schwarz N (eds) Cognitive aging: a primer. Psychology Press, Philadelphia, pp 93–114

    Google Scholar 

  17. Raz N (2000) Aging of the brain and its impact on cognitive performance: integration of structural and functional findings. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition, 2nd edn. Lawrence Erlbaum Associates, Mahwah, pp 1–90

    Google Scholar 

  18. Plumet J, Gil R, Gaonac’h D (2005) Neuropsychological assessment of executive functions in women: effects of age and education. Neuropsychology 195:66–77

    Google Scholar 

  19. Kempler D, Teng EL, Dick M, Taussiq IM, Davis DS (1998) The effects of age, education, and ethnicity on verbal fluency. J Intern Neuropsychol Soc 4:531–538

    Article  CAS  Google Scholar 

  20. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  21. Gregoire J (2004) Factor structure of the French version of the Wechsler adult intelligence scale-III. Educ Psychol Measur 64:463–474

    Article  Google Scholar 

  22. Daigneault G, Joly P, Frigon JY (2002) Executive functions in the evaluation of accident risk of older drivers. J Clin Exp Neuropsychol 2002(24):221–238

    Google Scholar 

  23. Lafont S, Marin-Lamellet C, Paire-Ficout L, Thomas-Anterion C, Laurent B, Fabrigoule C (2010) The Wechsler digit symbol substitution test as the best indicator of the risk of impaired driving in Alzheimer disease and normal aging. Dement Geriatr Cogn Disord 29:154–163

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Beaufils.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaufils, E., Hommet, C., Brault, F. et al. The effect of age and educational level on the cognitive processes used to comprehend the meaning of pictograms. Aging Clin Exp Res 26, 61–65 (2014). https://doi.org/10.1007/s40520-013-0179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-013-0179-6

Keywords

Navigation