Skip to main content

Advertisement

Log in

Process comparison of biomass-to-liquid (BtL) routes Fischer–Tropsch synthesis and methanol to gasoline

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is currently seen as a renewable alternative to fossil fuels in the transport sector. There are two possible routes to produce liquid hydrocarbon fuels from biomass via synthesis gas: Fischer–Tropsch (FT) synthesis and methanol to gasoline (MtG). This paper evaluates, based on chemistry and chemical engineering aspects, the process design, the economic feasibility and the process potential for both synthesis routes. FT and MtG reactions can be described under the same overall chemical equation. However, the differences between the two syntheses were found in chemical mechanism, catalyst and product distribution. The material and energy balances do not establish a clear preference for any synthesis route, the market application of the product being a key parameter. The calculated overall chemical energy efficiencies to synthetic liquid hydrocarbons (C5–C20) from biomass are 25.8–46.5% for FT and 23.4–44.4% for MtG. The calculated carbon efficiency to synthetic liquid hydrocarbons (C5–C20) ranges between 18.6% and 33.5% for FT and 17.3–32.8% for MtG. The production costs for synthetic liquid hydrocarbon fuels are calculated based on the efficiencies given above. They range between 21€ and 34€ per gigajoule. These values could drop to 18–28€ per gigajoule in the medium term based on optimistic predictions (increase of efficiencies and reduction of capital investment). If the prize difference between crude oil and biomass becomes as high as 20€ per gigajoule, the production of liquid hydrocarbons from biomass will probably become competitive with petroleum-based products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Here defined as the sum of all outputs/total biomass input (as HHV).

Abbreviations

ASF:

Anderson–Schulz–Flory

BtL:

Biomass to liquids

CtL:

Coal to liquids

DME:

Dimethylether

FT:

Fischer–Tropsch

GtL:

Gas to liquids

HHV:

High heating value (MJ/kg)

LTFT:

Low-temperature Fischer–Tropsch

MtG:

Methanol to gasoline

NC:

Carbon number

NZ:

New Zealand

r p :

Chain propagation rate

r t :

Change termination rate

y C,frac :

Molar fraction of a lump of hydrocarbons in mole C

y i :

Molar fraction of component i

X i :

Conversion of component i

α :

Chain growth propagation

η :

Efficiency

References

  1. IEA (2009) Transport, Energy and CO2. Moving towards sustainability. International Energy Agency. www.iea.org/press/pressdetail.asp?PRESS_REL_ID=293. Accessed 16 November 2010

  2. Dabelstein W, Reglitzky A, Schütze A, Reders K (2008) Automotive fuels. In: Elvers B (ed) Handbook of fuels: energy sources for transportation, Chapter 3. Wiley-VCH, Weinheim 97–197

  3. Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Explorations of the possibilities for production of Fischer–Tropsch liquids and power via biomass gasification. Biomass and Bioenergy 23:129–152

    Article  Google Scholar 

  4. Henrich E, Dinjus E (2003) Pyrolysis and gasification of biomass and waste. Proceedings of Expert Meeting, Strasbourg 2002. CPL Press, Newbury, p 511

  5. Althapp A (2003) Synthetic transportation fuels from biomass via Fischer–Tropsch synthesis—principles and perspectives. Paper presented at the Conference “Regenerative Kraftstoffe”, November 13–14, Stuttgart, Germany, pp 218–227

  6. Hofbauer H, Rauch R, Foscolo P, Matera D (2000) Hydrogen rich gas from biomass steam gasification. Paper presented at 1st World Conference on Biomass for Energy and Industry, Proceedings 1999–2001

  7. Van der Meijden CM, van der Drift A, Vreugdenhil BJ (2007) Experimental results from the Allothermal Biomass Gasifier Milena. Paper presented at the 15th European Biomass Conference, May 7–11, Berlin, Germany

  8. Dena (2006) Biomass-to-liquid BtL. Realisierungsstudie (Summary). Final Report (Deutsche Energie-Agentur)

  9. Choren (2010). www.choren.com. Accessed 16 November 2010

  10. Makino E, Gray D (2001) Coal liquefaction. In: Ullmann’s Encyclopedia of Industrial Chemistry, Chapter 2. http://onlinelibrary.wiley.com/doi/10.1002/14356007.a07_197/pdf. Accessed 16 November 2010

  11. Schulz H (2003) Major and minor reactions in Fischer–Tropsch synthesis on cobalt catalysts. Top Catal 1–4:73–85

    Article  Google Scholar 

  12. Van der Laan AB (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catalysis Rev 41:255–318

    Article  Google Scholar 

  13. Wender I (1996) Reactions of synthesis gas. Fuel Processing Technology 48:189–297

    Article  Google Scholar 

  14. Steynberg A, Dry M (2004) Chemical concepts used for engineering purposes (edited by Steynberg A, Dry M). Stud Surf Sci Catal 152:196–257

    Google Scholar 

  15. Eilers J, Posthuma SA, Sie ST (1990) The Shell Middle distillate synthesis process (SMDS). Catal Lett 7:253–270

    Article  Google Scholar 

  16. Weitkamp J, Jacobs PA, Martens JA (1983) Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite. Applied Catalysis 8:123–141

    Article  Google Scholar 

  17. De Klerk A (2008) Fischer–Tropsch refining. Dissertation, University of Pretoria, South Africa

  18. Sie ST, Senden MMG, Van Wechem HMH (1991) Conversion of natural gas to transportation fuels via the Shell Middle distillate synthesis process. Catalysis Today 8:371–394

    Article  Google Scholar 

  19. Hoeck A (2006) The Shell GTL process. Towards a world scale project in Qatar: The Pearl Project. DGMK-Conference “Synthesis gas Chemistry”, October 4–6, Dresden

  20. Dry ME (2002) The Fischer Tropsch process: 1950–2000. Catalysis Today 71:227–241

    Article  Google Scholar 

  21. Deutsches Institut für Normung (2009) DIN EN 590. Beuth Verlag, Berlin

  22. Kvisle S, Fuglerud T, Kolboe S, Olsbye U, Lillerud K, Vora B (2008) Methanol to hydrocarbons. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, electronic version. Wiley-VCH, Weinheim, pp 2950–2965

  23. Stöcker M (1998) Methanol-to-hydrocarbons: catalytic materials and their behaviour. Microporous and Mesoporous Materials 29:3–48

    Article  Google Scholar 

  24. Zhao X, McGihon R, Tabak S (2008). ExxonMobil’s methanol to gasoline (MTG) technology for the production of clean gasoline from coal. Hydrocarbon engineering, Coal to clean gasoline. www.exxonmobil.com/Apps/RefiningTechnologies/files/article_CoaltoLiquids_HydrocarbonEng.pdf. Accessed 2 November 2010

  25. Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory, Colorado NREL/TP-510-34929

  26. Olsbye U, Bjorgen M, Svellle S, Lillerud K, Kolboe S (2005) Mechanistic insight into the methanol-to-hydrocarbons reaction. Catalysis Today 106:108–111

    Article  Google Scholar 

  27. Maxwell IE, Stork WHJ (2001) Hydrocarbon processing with zeolites. In: van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) Introduction to zeolite science and practice. Studies in Surface Science and Catalysis 137, Chap 17

  28. Gierlich H, Dolkemeyer W, Avidan A, Thiagarajan N (1986) Umwandlung von Methanol zu Benzin nach dem Wirbelbett-Verfahren. Chem.-Ing.-Tech.58 Nr 3 238–239

    Google Scholar 

  29. Exxon Mobil (2009) An alternative for liquid fuel production. Gasification Technology Conference

  30. Schreiner M (1978) Research guidance studies to assess gasoline from coal by methanol-to-gasoline and Sasol-type Fischer–Tropsch technologies. Report No. FE-2447-13, U.S. Department of Energy, Washington

  31. Probstein H (1990) Synthetic fuels. Dover, New York

    Google Scholar 

  32. Deutsches Institut für Normung (2008) DIN EN 228. Beuth Verlag, Berlin

  33. Perry (1984) Perry’s chemical engineers’ handbook, 6th edn. McGraw-Hill, New York

    Google Scholar 

  34. Leckel D (2009) Diesel production from Fischer–Tropsch: the past, the present and new concepts. Energy and Fuels 23:2342–2358

    Article  Google Scholar 

  35. Boie W (1953) Beiträge zum feuerungstechnischen Rechnen—Teil 1: Ableitung neuer Heizwertformeln mit umfassendem Gültigkeitsbereich. Energietechnik 3:309–316

    Google Scholar 

  36. Meunier J (1962) Vergasung fester Brennstoffe und oxidative Umwandlung von Kohlenwasserstoffen. Verlag Chemie, Weinheim

    Google Scholar 

  37. America’s Energy Future Panel on Alternative Liquid Transportation fuels, National Academy of Science, National Academy of Engineering, National Research Council (2009) Liquid Transportation fuels from coal and biomass. Technological status, costs and environmental impacts. www.nap.edu/openbook.php?record_id=12620. Accessed 13 December 2010

  38. Methanex (2010) www.methanex.com. Accessed 12 November 2010

  39. European Commission Energy (2010) ec.europa.eu/energy/observatory/oil/bulletin_en.htm. Accessed 24 January 2010

  40. Rostrup-Nielsen et al (2007) Polygeneration–integration of gasoline synthesis and IGCC power production using Topsoe’s TIGAS process. In: Sonderberg PL, Larsen H (eds) Conference Proceedings, Energy Solutions for Sustainable Development, Roskilde, Denmark. RisØ-R-1608 (EN)

  41. Stahlschmidt R (2010) Evaluierung aktueller BtL-Prozesse. Technische Universität Bergakademie Freiberg, 4th BtL-Congress, 1–2 December, Berlin

Download references

Acknowledgement

The authors gratefully acknowledge financial support from the Fachagentur Nachwachsende Rohstoffe (Methanol-to-Hydrocarbons, FKZ 220-086-07)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Iglesias Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias Gonzalez, M., Kraushaar-Czarnetzki, B. & Schaub, G. Process comparison of biomass-to-liquid (BtL) routes Fischer–Tropsch synthesis and methanol to gasoline. Biomass Conv. Bioref. 1, 229–243 (2011). https://doi.org/10.1007/s13399-011-0022-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-011-0022-2

Keywords

Navigation