Skip to main content

Advertisement

Log in

Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Recent evidence confirmed that the maximum energy in metastatic breast cancer progression is supplied by fatty acid oxidation (FAO) governed by a rate-limiting enzyme, carnitine palmitoyltransferase 1 (CPT1). Therefore, the active limitation of FAO could be an emerging aspect to inhibit breast cancer progression. Herein, for the first time, we have introduced quercetin (QT) from a non-dietary source (Mikania micrantha Kunth) to limit the FAO in triple-negative breast cancer cells (TNBC) through an active targeting of CPT1.

Methods

Molecular quantification of QT was confirmed through high-performance thin-layer chromatography (HPTLC). Computational docking analyses predicted the binding affinity of QT to CPT1. Cell-based seahorse energy efflux investigated the mitochondrial respiration rate, glycolytic function and ATP production rate. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) investigated the FAO-associated gene expression. Matrigel cell invasion and fluorescence-activated cell sorting analyses investigated anti-metastatic and apoptotic cell death induction activities, respectively. In vivo antitumor activities were checked using the female breast cancer mice (BALB/c) model.

Results

QT resulted in a significant reduction in the intracellular mitochondrial respiration and glycolytic function, limiting extensive ATP production. In turn, QT elevated the reactive oxygen species (ROS) and depleted antioxidant levels to induce anti-metastatic and cell apoptosis activities. qRT-PCR resulted in active healing of altered FAO-associated gene expression which was well predicted through the successful in silico molecular binding potentiality of QT to CPT1. Subsequently, QT has shown excellent in vivo antitumor activities through the altered lipid profile and oxidative stress-healing capabilities.

Conclusions

All the obtained data significantly grounded the fact that QT could be a promising metabolism-targeted breast cancer therapeutic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

ACC:

Acetyl-CoA carboxylase

AMPK:

Activated protein kinase

ATP:

Adenosine triphosphate

C/EBPα:

CCAAT-enhancer-binding protein a

CPT1:

Carnitine palmitoyltransferase 1

DCF:

Dichlorofluorescein

DCFDA:

2′,7′-Dichlorofluorescein diacetate

ELISA:

Enzyme-linked immunosorbent assay

ER:

Estrogen receptor

ETC:

Electron transport chain

FAO:

Fatty acid oxidation

FASN:

Fatty acid synthase

FFA:

Free fatty acid

HBSS:

Hanks’ balanced salt solution

HER-2:

Human epidermal growth factor receptor 2

LCFA:

Long chain fatty acid

MMP:

Matrix metalloproteinase

PPARγ:

Peroxisome proliferator-activated receptor-gamma

PR:

Progesterone receptor

qRT-PCR:

Real-time quantitative reverse transcription polymerase chain reaction

QT:

Quercetin

TCA:

Tricarboxylic acid

TMB:

3,3′,5,5′-Tetramethylbenzidine

TNBC:

Triple-negative breast cancer

XP:

Extra-precision

References

  1. Anders CK, Abramson V, Tan T, Dent R. The evolution of triple-negative breast cancer: from biology to novel therapeutics. Am Soc Clin Oncol Educ Book. 2016;35:34–42.

    Article  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  Google Scholar 

  3. The cancer genome atlas network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  4. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (er)-negative, progesterone receptor (pr)-negative, and her2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer. 2007;109:1721–8.

    Article  Google Scholar 

  5. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22.

    Article  CAS  Google Scholar 

  6. Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY, Fang X. Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett. 2018;435:92–100.

    Article  CAS  Google Scholar 

  7. Monaco ME. Fatty acid metabolism in breast cancer subtypes. Oncotarget. 2017;8:29487–500.

    Article  Google Scholar 

  8. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140:49–61.

    Article  CAS  Google Scholar 

  9. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

    Article  CAS  Google Scholar 

  10. Porporato PE, Filigheddu N, Pedro JNVS, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–80.

    Article  CAS  Google Scholar 

  11. Wang T, Fahrmann JF, Lee HY, Li J, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, Somlo G, Jandial R, Ann D, Hanash S, Jove R, Yu H. JAK/STAT3-regulated fatty acid b-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 2018;27:136-150e5.

    Article  CAS  Google Scholar 

  12. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13:227–32.

    Article  CAS  Google Scholar 

  13. Ferraro GB, Ali A, Luengo A, Kodack DP, Deik A, et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat Cancer. 2021;2:414–28.

    Article  CAS  Google Scholar 

  14. Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, Eyob H, Kajimura S, Tward A, Krings G, Nomura DK, Goga A. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22:427–32.

    Article  CAS  Google Scholar 

  15. Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 2016;7: e2226.

    Article  CAS  Google Scholar 

  16. Hunt DA, Lane HM, Zygmont ME, Dervan PA, Hennigar RA. mRNA stability and over expression of fatty acid synthase in human breast cancer cell lines. Anticancer Res. 2007;27:27–34.

    CAS  PubMed  Google Scholar 

  17. Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V. Acetyl-coA carboxylase α is essential to breast cancer cell survival. Cancer Res. 2006;66(10):5287–94.

    Article  CAS  Google Scholar 

  18. Yao C-H, Liu G-Y, Wang R, Moon SH, Gross RW, Patti GJ. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of beta-oxidation. PLoS Biol. 2018;16(3): e2003782.

    Article  Google Scholar 

  19. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12(11):829–46.

    Article  CAS  Google Scholar 

  20. Ashraf MA. Phytochemicals as potential anticancer drugs: time to ponder nature’s bounty. BioMed Res Int. 2020;2020:8602879.

    Article  Google Scholar 

  21. Guerra AR, Maria F, Duarte MF, Duarte IF. Targeting tumor metabolism with plant-derived natural products: emerging trends in cancer therapy. J Agric Food Chem. 2018;66:10663–85.

    Article  CAS  Google Scholar 

  22. Koh YC, Ho CT, Pan MH. Recent advances in cancer chemoprevention with phytochemicals. J Food Drug Anal. 2020;28:14–37.

    Article  CAS  Google Scholar 

  23. Sheam MM, Haque Z, Nain Z. Towards the antimicrobial, therapeutic and invasive properties of Mikania micrantha Kunth: a brief overview. J Adv Biotechnol Exp Ther. 2020;3:92–101.

    Article  Google Scholar 

  24. Tabaczar S, Pieniążek A, Czepas J, PiaseckaZelga J, Gwoździński K, Koceva-Chyła A. Quercetin attenuates oxidative stress in the blood plasma of rats bearing DMBA-induced mammary cancer and treated with a combination of doxorubicin and docetaxel. Gen Physiol Biophys. 2013;32:535–43.

    Article  CAS  Google Scholar 

  25. Ali H, Dixit S. Quercetin attenuates the development of 7, 12-dimethyl benz (a) anthracene (DMBA) and croton oil-induced skin cancer in mice. J Biomed Res. 2015;29:139–44.

    PubMed  Google Scholar 

  26. Ahn J, Lee H, Kim S, Park J, Ha T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun. 2008;373:545–9.

    Article  CAS  Google Scholar 

  27. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem. 2005;280:5636–45.

    Article  CAS  Google Scholar 

  28. Zhang M, Xie Z, Gao W, Pu L, Wei J, Gao C. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutr Res. 2016;36:271–9.

    Article  Google Scholar 

  29. Kim Y, Kim CS, Joe Y, Chung HT, Ha TY, Yu R. Quercetin reduces tumor necrosis factor alpha-induced muscle atrophy by upregulation of heme oxygenase-1. J Med Food. 2018;21(6):551–9.

    Article  CAS  Google Scholar 

  30. Sultan AS, Khalil MIM, Sami BM, Alkhuriji AF, Sadek O. Quercetin induces apoptosis in triple-negative breast cancer cells via inhibiting fatty acid synthase and beta-catenin. Int J Clin Exp Pathol. 2017;10:156–72.

    CAS  Google Scholar 

  31. Ruidas B, Sur TK, Pal K, Som Chaudhury S, Prasad P, Sinha K, Sarkar PK, Das P, Das MC. Herbometallic nano-drug inducing metastatic growth inhibition in breast cancer through intracellular energy depletion. Mol Biol Rep. 2020;47:3745–63.

    Article  CAS  Google Scholar 

  32. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.

    Article  CAS  Google Scholar 

  33. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–7.

    Article  CAS  Google Scholar 

  34. Ruidas B, Som Chaudhury S, Pal K, Sarkar PK, Das MC. A novel herbometallic nanodrug has the potential for antibacterial and anticancer activity through oxidative damage. Nanomedicine. 2019;14:1173–89.

    Article  Google Scholar 

  35. Srinivasan A, Thangavel C, Liu Y, Shoyele S, Den RB, Selvakumar P, Lakshmikuttyamma A. Quercetin regulates b-catenin signaling and reduces the migration of triple negative breast cancer. Mol Carcinog. 2016;55:743–56.

    Article  CAS  Google Scholar 

  36. Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, Sotgia F, Lisanti MP, Frank PG. Role of cholesterol in the development and progression of breast cancer. Am J Pathol. 2011;178:402–12.

    Article  CAS  Google Scholar 

  37. Montesdeoca N, Lopez M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J. 2020;34:11355–81.

    Article  CAS  Google Scholar 

  38. Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10:84–9.

    Article  Google Scholar 

  39. Srivastava S, Somasagara R, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC. Quercetin, a natural flavonoid interacts with dna, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep. 2016;6:24049.

    Article  CAS  Google Scholar 

  40. Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of qt: molecular implications in cancer metabolism. Int J Mol Sci. 2019;20:3177.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sib Sankar Roy (Senior scientist, CSIR-IICB, West Bengal, India) for helping us in cell-based seahorse energy efflux experimentations.

Funding

This work was not supported by any grant from funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design of study: BR. Experimentation, data acquisition and analysis: BR, TKS, KS, PS, SSC, SB, RM. Drafting manuscript: BR. Critical revision of the manuscript: CDM, AS. Study supervision: BR. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Bhuban Ruidas.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed involving animals were in accordance with the NIH guidelines and institutional animal ethical committee approval (RKC/IAEC/A/03 dated 14/12/17) for laboratory animals at R.G. Kar Medical College, Kolkata, India.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 570 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruidas, B., Sur, T.K., Das Mukhopadhyay, C. et al. Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1. Breast Cancer 29, 748–760 (2022). https://doi.org/10.1007/s12282-022-01356-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-022-01356-y

Keywords

Navigation