Skip to main content

Advertisement

Log in

Molecular evolution of the E8 promoter in tomato and some of its relative wild species

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The E8 gene is related to ethylene biosynthesis in plants. To explore the effect of the expression pattern of the E8 gene on different E8 promoters, the molecular evolution of E8 promoters was investigated. A total of 16 E8 promoters were cloned from 16 accessions of seven tomato species, and were further analysed. The results from 19 E8 promoters including three previously cloned E8 promoters (X13437, DQ317599 and AF515784) showed that the size of the E8 promoters varied from 2101 bp (LA2150) to 2256 bp (LA2192); their sequences shared 69.9% homology and the average A/T content was 74.9%. Slide-window analysis divided E8 promoters into three regions — A, B and C — and the sequence identity in these regions was 72.5%, 41.2% and 70.8%, respectively. By searching the cis-elements of E8 promoters in the PLACE database, mutant nucleotides were found in some functional elements, and deletions or insertions were also found in regions responsible for ethylene biosysnthesis (−1702 to −1274) and the negative effect region (−1253 to −936). Our results indicate that the size of the functional region for ethylene biosynthesis in the E8 promoter could be shortened from 429 bp to 113 bp (−1612 to −1500). The results of molecular evolution analysis showed that the 19 E8 promoters could be classified into four clade groups, which is basically consistent with evolution of the tomato genome. Southern blot analysis results showed that the copy number of E8 promoters in tomato and some other wild species changed from 1 to 4. Taken together, our study provides important information for further elucidating the E8 gene expression pattern in tomato, analysing functional elements in the E8 promoter and reconstructing the potent E8 promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ACO:

l-aminocyclopropane 1-carboxylic oxidase

ARF:

auxin response factor

BSA:

bulked segregant analysis

CTAB:

cetyltrimethyl ammonium bromide

EB:

ethidium bromide

ERE:

ethylene-responsive element

Gsij :

genetic similarity

RAPD:

random amplification polymorphism DNA

SAHN:

sequential agglomerative hierarchical and nested clustering

UPGMA:

unweighted pair-group method and arithmetic average

UV:

ultraviolet

References

  • Broglie K E, Gaynort J J and Broglie R M 1986 Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris; Proc. Natl. Acad. Sci. USA 83 6820–6824

    Article  CAS  Google Scholar 

  • Clamp M, Cuff J, Searle S M and Barton G J 2004 The jalview java alignment editor; Bioinformatics 20 426–427

    Article  CAS  Google Scholar 

  • Deikman J and Fischer R L 1988 Interaction of a DNA binding factor with the 5′-flanking region of an ethylene-responsive fruit ripening gene from tomato; EMBO J. 7 3315–3320

    Article  CAS  Google Scholar 

  • Deikman J, Kline R and Fischer R L 1992 Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lycopersicon esculentum); Plant Physiol. 100 2013–2017

    Article  CAS  Google Scholar 

  • Deikman J, Xu R, Kneissl M L, Ciardi J A, Kim K N and Pelah D 1998 Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5′-flanking region of the ripening-related E8 gene; Plant Mol. Biol. 37 1001–1011

    Article  CAS  Google Scholar 

  • Ellerstrom M, Stalberg K, Ezcurra I and Rask L 1996 Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription; Plant Mol. Biol. 32 1019–1027

    Article  CAS  Google Scholar 

  • Ezcurra I, Ellerstrom M, Wycliffe P, Stalberg K and Rask L 1999 Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression; Plant Mol. Biol. 40 699–709

    Article  CAS  Google Scholar 

  • Ezcurra I, Wycliffe P, Nehlin L, Ellerstrom M and Rask L 2000 Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box; Plant J. 24 57–66

    Article  CAS  Google Scholar 

  • Fluhr R, Kuhlemeier C, Nagy F and Chua N H 1986 Organ-specific and light-induced expression of plant genes; Science 232 1106–1112

    Article  CAS  Google Scholar 

  • Garza R D, Quinlivan E P, Klaus S M J, Basset G J C, Gregory J F and Hanson A D 2004 Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis; Proc. Natl. Acad. Sci. USA 101 13720–13725

    Article  Google Scholar 

  • Giovannoni J J, DellaPenna D, Bennett A B and Fischer R L 1989 Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening; Plant Cell 1 53–63

    Article  CAS  Google Scholar 

  • Giritch A, Marillonnet S, Engler C, Eldik G, Botterman J, Klimyuk V and Gleba Y 2006 Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors; Proc. Natl. Acad. Sci. USA 103 14701–14706

    Article  CAS  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y and Yoshida S 2004 Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis; Plant Physiol. 134 1555–1573

    Article  CAS  Google Scholar 

  • Gomord V, Sourrouille C, Fitchette A C, Bardor M, Pagny S, Lerouge P and Faye L 2004 Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge; Plant Biotechnol. J. 2 83–100

    Article  CAS  Google Scholar 

  • Good X, Kellogg J A, Wagoner W, Langhoff D, Matsumura W and Bestwick R K 1994 Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase; Plant Mo1. Biol. 26 781–790

    Article  CAS  Google Scholar 

  • Grace M L, Chandrasekharan M B, Hall T C and Crowe A J 2004 Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter; J Biol. Chem. 279 8102–8110

    Article  CAS  Google Scholar 

  • Hagen G and Guilfoyle T 2002 Auxin-responsive gene expression: genes, promoters and regulatory factors; Plant Mol. Biol. 49 373–385

    Article  CAS  Google Scholar 

  • Hamilton A J, Lycett G W and Grierson D 1990 Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants; Nature (London) 346 284–287

    Article  CAS  Google Scholar 

  • He Z M, Jiang X L, Qi Y and Luo D Q 2007 Assessment of the utility of the tomato fruit-specific E8 promoter for driving vaccine antigen expression; Genetica 133 207–214

    Article  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M and Korenaga T 1999 Plant cis-acting regulatory DNA elements (PLACE) database:1999; Nucleic Acids Res. 27 297–300

    Article  CAS  Google Scholar 

  • Hiroaki E, Hiroyuki I, Tadashi T and Shigeru I 2000 Genetic diversity of the ‘peruvianum-complex’ (Lycopersicon peruvianum (L.) Mill. and L. chilense Dun.) revealed by RAPD analysis; Euphytica 116 23–31

    Article  Google Scholar 

  • Holdsworth M J, Bird C R, Ray J, Schuch W and Grierson D 1987 Structure and expression of an ethylene-related mRNA from tomato; Nucleic Acids Res. 15 731–739

    Article  CAS  Google Scholar 

  • Itzhaki H, Maxson J M and Woodson W R 1994 An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GSTI) gene; Proc. Natl. Acad. Sci. USA 91 8925–8929

    Article  CAS  Google Scholar 

  • Jiang X L, He Z M, Peng Z Q, Qi Y, Chen Q and Yu S Y 2007 Cholera toxin B protein in transgenic tomato fruit induces systemic immune response in mice; Transgenic Res. 16 169–175

    Article  CAS  Google Scholar 

  • Kaulen H, Schell J and Kreuzaler F 1986 Light-induced expression of the chimeric chalcone synthase-NPTII gene in tobacco cells; EMBO J. 5 1–8

    Article  CAS  Google Scholar 

  • Kneissl M L and Deikman J 1996 The tomato E8 gene influences ethylene biosynthesis in fruit but not in flowers; Plant Physiol. 112 537–547

    Article  CAS  Google Scholar 

  • Kochieva E Z, Ryzhova N N, Khrapalova I A and Pukhal’skii V A 2002 Using RAPD for estimating genetic polymorphism in and phylogenetic relationships among species of the genus Lycopersicon (Tourn.) Mill; Genetika 38 1298–1303

    CAS  PubMed  Google Scholar 

  • Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S and Pichersky E 2001 Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits; Plant Physiol. 127 1256–1265

    Article  CAS  Google Scholar 

  • Lincoln J E, Cordes S, Read E and Fischer R L 1987 Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit ripening; Proc. Natl. Acad. Sci. USA 84 2793–2797

    Article  CAS  Google Scholar 

  • Lincoln J E and Fischer R L 1988 Diverse mechanisms for the regulation of ethylene-inducible gene expression; Mol. Gen. Genet. 212 71–75

    Article  CAS  Google Scholar 

  • Matarasso N, Schuster S and Avni A 2005 A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression; Plant Cell 17 1205–1216

    Article  CAS  Google Scholar 

  • McGarvey D J, Sirevag R and Christoffersen R E 1992 Ripening-related gene from avocado fruit: ethylene-inducible expression of the mRNA and polypeptide; Plant Physiol. 98 554–559

    Article  CAS  Google Scholar 

  • Mehta R A, Cassol T, Li N, Ali N, Handa A K and Mattoo A K 2002 Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life; Nat. Biotechnol. 20 613–618

    Article  CAS  Google Scholar 

  • Morgan W D, Williams G T, Morimoto R I, Greene J, Kingston R E and Tjian R 1987 Two transcriptional activators, CCAAT-box-binding transcription factor and heat shock transcription factor, interact with a human hsp70 gene promoter; Mol. Cell Biol. 7 1129–1138

    Article  CAS  Google Scholar 

  • Murray M G and Thompson W F 1980 Rapid isolation of high molecular weight plant DNA; Nucleic Acids Res. 8 4321–4325

    Article  CAS  Google Scholar 

  • Nemhauser J L, Mockler T C and Chory J 2004 Interdependency of brassinosteroid and auxin signaling in Arabidopsis; PLoS Biol. 2 1460–1471

    Article  CAS  Google Scholar 

  • Nykiforuk C L, Boothe J G, Murray E W, Keon R G, Goren H J, Markley N A and Moloney M M 2006 Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds; Plant Biotechnol. J. 4 77–85

    Article  CAS  Google Scholar 

  • Oeller P W, Min-Wong L, Taylor L, Pike D A and Theologis A 1991 Reversible inhibition of tomato fruit senescence by antisense RNA; Science 254 437–439

    Article  CAS  Google Scholar 

  • Penarrubia L, Aguilar M, Margossian L and Fischer R L 1992 An antisense gene stimulates ethylene hormone production during tomato fruit ripening; Plant Cell 4 681–687

    Article  CAS  Google Scholar 

  • Prescott A G 1993 A dilemma of dioxygenases (or where biochemistry and molecular biology fail to meet); J. Exp. Bot. 44 849–861

    Article  CAS  Google Scholar 

  • Prestridge D S 1991 SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements; Comput. Appl. Biosci. 7 203–206

    CAS  PubMed  Google Scholar 

  • Ramírez Y J, Tasciotti E, Gutierrez-Ortega A, Donayre Torres A J, Olivera Flores M T, Giacca M and Gómez Lim M A 2007 Fruit-specific expression of the human immunodeficiency virus type 1 tat gene in tomato plants and its immunogenic potential in mice; Clin. Vaccine Immunol. 14 685–692

    Article  Google Scholar 

  • Rieping M and Schoffl F 1992 Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco; Mol. Gen. Genet. 231 226–232

    CAS  PubMed  Google Scholar 

  • Sandhu J S, Krasnyanski S F, Domier L L, Korban S S, Osadjan M D and Buetow D E 2000 Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response; Transgenic Res. 9 127–135

    Article  CAS  Google Scholar 

  • Shirsat A, Wilford N, Croy R and Boulter D 1989 Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco; Mol. Gen. Genet. 215 326–331

    Article  CAS  Google Scholar 

  • Stougaard J, Sandal N N, Gron A, Kiihle A and Marcker K A 1987 5′ Analysis of the soybean leghaemoglobin lbc3 gene: regulatory elements required for promoter activity and organ specificity; EMBO J. 6 3565–3569

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M and Kumar S 2007 MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0; Mol. Biol. Evol. 24 1596–1599

    Article  CAS  Google Scholar 

  • Tapia G, Verdugo I, Yanez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, Gonzalez E and Ruiz-Lara S 2005 Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun; Plant Physiol. 138 2075–2086

    Article  CAS  Google Scholar 

  • Thompson J D, Gibson T J, Plewniak F, Jeanmougin F and Higgins D G 1997 The CLUSTAL-X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools; Nucleic Acids Res. 25 4876–4882

    Article  CAS  Google Scholar 

  • Ulmasov T, Hagen G and Guilfoyle T J 1999 Dimerization and DNA binding of auxin response factors; Plant J. 19 309–319

    Article  CAS  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A and Coupland G 2006 CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis; Plant Cell 18 2971–2984

    Article  CAS  Google Scholar 

  • Yamagata H, Yonesu K, Hirata A and Aizono Y 2002 TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene; J. Biol. Chem. 277 11582–11590

    Article  CAS  Google Scholar 

  • Zhao L X, Li J F, Chai Y R, Kai G Y, Cao Y F, Sun X F and Tang K X 2006 Investigation on genetic relationship and cross compatibility of S. lycopersiocides and Lycopersicon; Pakistan J. Biol. Sci. 9 1160–1168

    Article  CAS  Google Scholar 

  • Zhou X H, Chen X G, Zhang X D, Wang Y N, Li L, Xi J F and Hu J J 2003 Cloning and sequence analysis of tomato fruit-specific E8 promoter from Lycopersicon esculentum (Zhongshu No. 5); Di Yi Jun Yi Da Xue Xue Bao 23 25–28

    CAS  PubMed  Google Scholar 

  • Zhu Q, Dabi T and Lamb C 1995 TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro; Plant Cell 7 1681–1689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexuan Tang.

Additional information

Supplementary material pertaining to this article is available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/mar2009/pp71-83-suppl.pdf

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Lu, L., Zhang, L. et al. Molecular evolution of the E8 promoter in tomato and some of its relative wild species. J Biosci 34, 71–83 (2009). https://doi.org/10.1007/s12038-009-0010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0010-x

Keywords

Navigation