Skip to main content

Advertisement

Log in

Peroxisome proliferator-activated receptors

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

An exciting and rapidly evolving area in vascular biology and atherosclerosis research over the past 3 years has been the establishment of peroxisome proliferator-activated receptor (PPAR) expression in the vascular and inflamamtory cells, and the emerging picture of the roles these ligand-activated nuclear receptor/transcription factors might play in vascular biology and atherosclerosis. Such work is all the more compelling given the ongoing clinical use of PPAR activators in patients. Thiazolidinediones [1] (PPAR-γ agonists) are used as insulin sensitizers in diabetic patients known to be at extraordinarily high risk for cardiovascular disease, whereas fibrates [2] (PPAR-α agonists) are used to treat dyslipidemia, particularly in the case of high triglycerides and low high-density lipoprotein cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Komers R, Vrana A: Thiazolidinediones—tools for the research of metabolic syndrome X. Physiol Res 1998, 47:215–225.

    PubMed  CAS  Google Scholar 

  2. Staels B, Dallongeville J, Auwerx J, et al.: Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998, 98:2088–2093.

    PubMed  CAS  Google Scholar 

  3. Ricote M, Huang JT, Welch JS, Glass CK: The peroxisome proliferator-activated receptor(PPARgamma) as a regulator of monocyte/macrophage function. J Leukocyte Biol 1999, 66:733–739.

    PubMed  CAS  Google Scholar 

  4. Plutzky J: Peroxisome proliferator-activated receptors in vascular biology and atherosclerosis: emerging insights for evolving paradigms. Curr Atheroscler Rep 2000, 2:327–335.

    PubMed  CAS  Google Scholar 

  5. Bishop-Bailey D: Peroxisome proliferator-activated receptors in the cardiovascular system. Br J Pharmacol 2000, 129:823–834.

    Article  PubMed  CAS  Google Scholar 

  6. Rosen ED, Spiegelman BM: PPAR(gamma): a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 2001, 17:17.

    Google Scholar 

  7. Fajas L, Debril MB, Auwerx J: Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J Mol Endocrinol 2001, 27:1–9.

    Article  PubMed  CAS  Google Scholar 

  8. Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B: Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 2001, 12:245–254.

    Article  PubMed  CAS  Google Scholar 

  9. de Duve C: The peroxisome in retrospect. Ann N Y Acad Sci 1996, 804:1–10.

    Article  PubMed  Google Scholar 

  10. Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem 2000, 43:527–550.

    Article  PubMed  CAS  Google Scholar 

  11. Mangelsdorf D, Thummel C, Beato M, et al.: The nuclear receptor superfamily: the second decade. Cell 1995, 83:835–839.

    Article  PubMed  CAS  Google Scholar 

  12. Glass CK, Rosenfeld MG: The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000, 14:121–141.

    PubMed  CAS  Google Scholar 

  13. Delerive P, Fruchart JC, Staels B: Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 2001, 169:453–459.

    Article  PubMed  CAS  Google Scholar 

  14. Pineda Torra I, Gervois P, Staels B: Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Curr Opin Lipidol 1999, 10:151–159.

    Article  Google Scholar 

  15. Lee SS, Pineau T, Drago J, et al.: Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 1995, 15:3012–3022.

    PubMed  CAS  Google Scholar 

  16. Gonzalez FJ: Recent update on the PPAR alpha-null mouse. Biochimie 1997, 79:139–144.

    Article  PubMed  CAS  Google Scholar 

  17. Tontonoz P, Graves RA, Budavari AI, et al.: Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res 1994, 22:5628–5634.

    Article  PubMed  CAS  Google Scholar 

  18. Uppenberg J, Svensson C, Jaki M, et al.: Crystal structure of the ligand binding domain of the human nuclear receptor PPAR-gamma. J Biol Chem 1998, 273:31108–31112.

    Article  PubMed  CAS  Google Scholar 

  19. Oliver WR Jr, Shenk JL, Snaith MR, et al.: A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 2001, 98:5306–5311.

    Article  PubMed  CAS  Google Scholar 

  20. Greene M, Blumberg B, McBride O, et al.: Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoetic cells and chromosomal mapping. Gene Expression 1995, 4:281–299.

    PubMed  CAS  Google Scholar 

  21. Plutzky J: Atherosclerotic plaque rupture: emerging insights and opportunities. Am J Cardiol 1999, 84:15J-20J.

    Article  PubMed  CAS  Google Scholar 

  22. Steppan CM, Bailey ST, Bhat S, et al.: The hormone resistin links obesity to diabetes. Nature 2001, 409:307–312.

    Article  PubMed  CAS  Google Scholar 

  23. Steppan CM, Brown EJ, Wright CM, et al.: A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci U S A 2001, 98:502–506.

    Article  PubMed  CAS  Google Scholar 

  24. Yokota T, Oritani K, Takahashi I, et al.: Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000, 96:1723–1732.

    PubMed  CAS  Google Scholar 

  25. Ouchi N, Kihara S, Arita Y, et al.: Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001, 103:1057–1063.

    PubMed  CAS  Google Scholar 

  26. Farnier M, Davignon J: Current and future treatment of hyperlipidemia: the role of statins. Am J Cardiol 1998, 82:3J-10J.

    Article  PubMed  CAS  Google Scholar 

  27. Singh RB, Rastogi SS, Rao PV, et al.: Treatment of diabetic dyslipidemia. Am J Cardiol 1998, 81:47B-51B.

    Article  Google Scholar 

  28. Plutzky J: Emerging concepts in metabolic abnormalities associated with coronary artery disease. Curr Opin Cardiol 2000, 15:416–421.

    Article  PubMed  CAS  Google Scholar 

  29. Martin G, Duez H, Blanquart C, et al.: Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I. J Clin Invest 2001, 107:1423–1432.

    PubMed  CAS  Google Scholar 

  30. Staels B, Auwerx J: Regulation of apo A-I gene expression by fibrates. Atherosclerosis 1998, 137(suppl):S19–23.

    Article  PubMed  CAS  Google Scholar 

  31. Marx N, Schonbeck U, Lazar MA, et al.: Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998, 83:1097–1103.

    PubMed  CAS  Google Scholar 

  32. Nagy L, Tontonoz P, Alvarez JG, et al.: Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998, 93:229–240.

    Article  PubMed  CAS  Google Scholar 

  33. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM: PPAR-gamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998, 93:241–252.

    Article  PubMed  CAS  Google Scholar 

  34. Li AC, Brown KK, Silvestre MJ, et al.: Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000, 106:523–531.

    PubMed  CAS  Google Scholar 

  35. Huang JT, Welch JS, Ricote M, et al.: Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 1999, 400:378–382.

    Article  PubMed  CAS  Google Scholar 

  36. Spiegelman BM: PPARgamma in monocytes: less pain, any gain? Cell 1998, 93:153–155.

    Article  PubMed  CAS  Google Scholar 

  37. Rosen ED, Spiegelman BM: Peroxisome proliferator-activated receptor gamma ligands and atherosclerosis: ending the heartache. J Clin Invest 2000, 106:629–631.

    PubMed  CAS  Google Scholar 

  38. Marx N, Sukhova GK, Collins T, et al.: PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999, 99:3125–3131.

    PubMed  CAS  Google Scholar 

  39. Chawla A, Barak Y, Nagy L, et al.: PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001, 7:48–52.

    Article  PubMed  CAS  Google Scholar 

  40. Moore KJ, Rosen ED, Fitzgerald ML, et al.: The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 2001, 7:41–47.

    Article  PubMed  CAS  Google Scholar 

  41. Chinetti G, Lestavel S, Bocher V, et al.: PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001, 7:53–58.

    Article  PubMed  CAS  Google Scholar 

  42. Ordovas JM: ABC1: the gene for Tangier disease and beyond. Nutr Rev 2000, 58:76–79.

    Article  PubMed  CAS  Google Scholar 

  43. Schmitz G, Langmann T: Structure, function and regulation of the ABC1 gene product. Curr Opin Lipidol 2001, 12:129–140.

    Article  PubMed  CAS  Google Scholar 

  44. Minamikawa J, Tanaka S, Yamauchi M, Inoue D, Koshiyama H: Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998, 83:1818–1820.

    Article  PubMed  CAS  Google Scholar 

  45. Takagi T, Akasaka T, Yamamuro A, et al.: Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000, 36:1529–1535.

    Article  PubMed  CAS  Google Scholar 

  46. Collins AR, Meehan WP, Kintscher U, et al.: Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001, 21:365–371.

    PubMed  CAS  Google Scholar 

  47. Chen Z, Ishibashi S, Perrey S, et al.: Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001, 21:372–377.

    PubMed  CAS  Google Scholar 

  48. Lee H, Shi W, Tontonoz P, et al.: Role for peroxisome proliferator-activated receptor alpha in oxidized phospholipid-induced synthesis of monocyte chemotactic protein-1 and interleukin-8 by endothelial cells. Circ Res 2000, 87:516–521.

    PubMed  CAS  Google Scholar 

  49. Tordjman K, Bernal-Mizrachi C, Zemany L, et al.: PPAR[alpha] deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 2001, 107:1025–1034.

    Article  PubMed  CAS  Google Scholar 

  50. Berger J, Leibowitz MD, Doebber TW, et al.: Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem 1999, 274:6718–6725.

    Article  PubMed  CAS  Google Scholar 

  51. Haigh D, Allen G, Birrell HC, et al.: Non-thiazolidinedione antihyperglycaemic agents. Part 3: The effects of stereochemistry on the potency of alpha-methoxy-beta-phenylpropanoic acids. Bioorg Med Chem 1999, 7:821–830.

    Article  PubMed  CAS  Google Scholar 

  52. Wang Y, Porter WW, Suh N, et al.: A synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), is a ligand for the peroxisome proliferator-activated receptor gamma. Mol Endocrinol 2000, 14:1550–1556.

    Article  PubMed  CAS  Google Scholar 

  53. Henke BR, Adkison KK, Blanchard SG, et al.: Synthesis and biological activity of a novel series of indole-derived PPAR-gamma agonists. Bioorg Med Chem Lett 1999, 9:3329–3334.

    Article  PubMed  CAS  Google Scholar 

  54. Cesario RM, Klausing K, Razzaghi H, et al.: The rexinoid lg100754 is a novel rxr:ppargamma agonist and decreases glucose levels in vivo. Mol Endocrinol 2001, 15:1360–1369.

    Article  PubMed  CAS  Google Scholar 

  55. Brooks DA, Etgen GJ, Rito CJ, et al.: Design and synthesis of 2-methyl-2-[4-(2-[5-methyl-2-aryloxazol-4-yl]ethoxy)phenoxy]propionic acids: a new class of dual PPARalpha/gamma agonists. J Med Chem 2001, 44:2061–2064.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziouzenkova, O., Perrey, S., Marx, N. et al. Peroxisome proliferator-activated receptors. Curr Atheroscler Rep 4, 59–64 (2002). https://doi.org/10.1007/s11883-002-0063-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-002-0063-x

Keywords

Navigation