Skip to main content
Log in

Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achal V, Pan X (2011). Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr Microbiol, 62(3): 894–902

    Article  Google Scholar 

  • Aislabie J, Saul D J, Foght J M (2006). Bioremediation of hydrocarboncontaminated polar soils. Extremophiles, 10(3): 171–179

    Article  Google Scholar 

  • Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17): 3389–3402

    Article  Google Scholar 

  • Ausma S, Edwards G C, Fitzgerald-Hubble C R, Halfpenny-Mitchell L, Gillespie T J, Mortimer W P (2002). Volatile hydrocarbon emissions from a diesel fuel-contaminated soil bioremediation facility. J Air Waste Manag Assoc, 52(7): 769–780

    Article  Google Scholar 

  • Barriga J A T, Cooper D G, Idziak E S, Cameron D R (1999). Components of the bioemulsifier from S. cerevisiae. Enzyme Microb Technol, 25(1–2): 96–102

    Article  Google Scholar 

  • Cooper D G, Goldenberg B G (1987). Surface active agents from Bacillus sp. Appl Environ Microbiol, 55: 224–229

    Google Scholar 

  • Dillard L A, Essaid H I, Herkelrath W N (1997). Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution. Water Resour Res, 33(7): 1617–1632

    Article  Google Scholar 

  • EPA (1997). Standard methods for evaluating solid waste: physical/chemical methods. Environmental Protection Agency Publication, EPA: 530/SW-846

    Google Scholar 

  • Ganesh A, Lin J (2009). Diesel degradation and biosurfactant production by Gram-positive isolates. Afr J Biotechnol, 8(21): 5847–5854

    Google Scholar 

  • Hong J, Kim J, Choi O, Cho K S, Ryu H (2005). Characterization of a diesel-degrading bacterium, Pseudomonas aeruginosa IU5, isolated from oil-contaminated soil in Korea. World J Microbiol Biotechnol, 21(3): 381–384

    Article  Google Scholar 

  • Kebria D Y, Khodadadi A, Ganjidoust H, Badkoubi A, Amoozegar M A (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int J Environ Sci Technol, 6(3): 435–442

    Article  Google Scholar 

  • Leahy J G, Colwell R R (1990). Microbial degradation of hydrocarbons in the environment. Microbiol Rev, 54(3): 305–315

    Google Scholar 

  • Lidderdale T (1993). Demand, supply, and price outlook for low-sulfur diesel fuel. Energy Information Administration/Short term energy outlook annual supplement, DOE/EIA-0202 (93)

    Google Scholar 

  • Lin T C, Young C C, Ho M J, Yeh M S, Chou C L, Wei Y H, Chang J S (2005). Characterization of floating activity of indigenous dieselassimilating bacterial isolates. J Biosci Bioeng, 99(5): 466–472

    Article  Google Scholar 

  • MacLeod C T, Daugulis A J (2005). Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbon (PAHs) by a hydrophobic Mycobacterium. Process Biochem, 40(5): 1799–1805

    Article  Google Scholar 

  • Marcoux J, Déziel E, Villemur R, Lépine F, Bisaillon J G, Beaudet R (2000). Optimization of high-molecular-weight polycyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. J Appl Microbiol, 88(4): 655–662

    Article  Google Scholar 

  • Menezes Bento F, de Oliveira Camargo F A, Okeke B C, Frankenberger W T Jr (2005). Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res, 160(3): 249–255

    Article  Google Scholar 

  • Milcic-Terzic J, Lopez-Vidal Y, Vrvic M M, Saval S (2001). Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil. Bioresour Technol, 78(1): 47–54

    Article  Google Scholar 

  • Nandy P, Thakur A R, Chaudhuri S R (2007). Characterization of bacterial strains isolated through microbial profiling of urine samples. OnLine J Biol Sci, 7(1): 44–51

    Article  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron E Z, Rosenberg E (1995). Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol, 61(9): 3240–3244

    Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett, 9(1): 29–33

    Article  Google Scholar 

  • Stelmack P L, Gray M R, Pickard M A (1999). Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol, 65(1): 163–168

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 24(8): 1596–1599

    Article  Google Scholar 

  • Yousaf S, Andria V, Reichenauer T G, Smalla K, Sessitsch A (2010). Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater, 184(1–3): 523–532

    Article  Google Scholar 

  • Zhang Z, Gai L, Hou Z, Yang C, Ma C, Wang Z, Sun B, He X, Tang H, Xu P (2010). Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresour Technol, 101(21): 8452–8456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varenyam Achal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Wang, D., Li, M. et al. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil. Front. Earth Sci. 8, 58–63 (2014). https://doi.org/10.1007/s11707-013-0415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-013-0415-6

Keywords

Navigation