Skip to main content

Advertisement

Log in

Effect of Wet Milling and Reinforcement Content on Iron-Multi-walled Carbon Nanotube Metal Matrix Composite Fabricated by Conventional Powder Metallurgy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research paper reports fabrication of iron reinforced with 0.5, 1, 2 and 4 vol.% multi-walled carbon nanotubes (MWCNTs) metal matrix composite (MMC) by powder metallurgy involving mechanical milling in wet (toluene) condition followed by cold compaction and conventional sintering at 900, 1200 and 1300 °C for 2 h under commercial argon gas. The iron-MWCNTs composite powders were milled in a high energy dual drive planetary mill for 10 h and then characterized by using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study confirmed the formation of ferrite, austenite and iron carbides (Fe3C and Fe7C3) after milling for 10 h. However, iron carbides were not stable, rather metastable and not visible after consolidation. Hence, iron carbides disappeared and iron oxide (Fe3O4) was formed along with ferrite after consolidation at all temperatures. The optimum relative density, Vickers hardness and compressive strength of 90%, 350 HV, 800 MPa were obtained respectively for 1 vol.% MWCNTs-reinforced iron composite sintered at 1300 °C for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Kelly, Composite Materials After 70 Years, J. Mater. Sci., 2006, 41, p 905–912.

    Article  CAS  Google Scholar 

  2. P.S. Bains, S.S. Sidhu, and H.S. Payal, Fabrication and Machining of Metal Matrix Composites: A Review, Mater. Manuf. Processes, 2016, 31(5), p 553–573.

    Article  CAS  Google Scholar 

  3. S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites -a Review, Int. Mater. Rev., 2010, 55(1), p 41–64.

    Article  CAS  Google Scholar 

  4. E. Neubauer, M. Kitzmantel, M. Hulman, and P. Angerer, Potential and Challenges of Metal-Matrix-Composites Reinforced with Carbon Nanofibers and Carbon Nanotubes, Compos. Sci. Technol., 2010, 70, p 2228–2236.

    Article  CAS  Google Scholar 

  5. R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni, Strengthening in Carbon Nanotube/Aluminum (CNT/Al) Composites, Scripta Mater., 2005, 53, p 1159–1163.

    Article  CAS  Google Scholar 

  6. H.J. Choi and D.H. Bae, Strengthening and Toughening of Aluminum by Single-Walled Carbon Nanotubes, Mater. Sci. Eng., A, 2011, 528, p 2412–2417.

    Article  Google Scholar 

  7. J.P. Salvetat-Delmotte and A. Rubio, Mechanical Properties of Carbon Nanotubes: a Fiber Digests for Beginners, Carbon, 2002, 40, p 729–1734.

    Article  Google Scholar 

  8. E. Saether, S.J.V. Frankland, and R.B. Pipes, Transverse Mechanical Properties of Single Walled Carbon Nanotube Crystals. Pt. I: Determination of Elastic Moduli, Compos. Sci. Technol., 2003, 63, p 1543–1550.

    Article  CAS  Google Scholar 

  9. N. Park, D. Sung, S. Lim, S. Moon, and S. Hong, Realistic Adsorption Geometries and Binding Affinities of Metal Nanoparticles Onto the Surface of Carbon Nanotubes, Appl. Phys. Lett., 2009, 94(7), p 073105.

    Article  Google Scholar 

  10. F. Banhart, Interactions Between Metals and Carbon Nanotubes: at the Interface Between Old and New Materials, Nanoscale, 2009, 1, p 201–213.

    Article  CAS  Google Scholar 

  11. Y. Zhang, N.W. Franklin, R.J. Chen, and H. Dai, Metal Coating on Suspended Carbon Nanotubes and Its Implication to Metal-Tube Interaction, Chem. Phys. Lett., 2000, 331, p 35–41.

    Article  CAS  Google Scholar 

  12. Y. He, J. Zhang, Y. Wang, and Z. Yu, Coating Geometries of Metals on Single-Walled Carbon Nanotubes, Appl. Phys. Lett., 2010, 96, p 063108.

    Article  Google Scholar 

  13. S. Yuan, Y. Kong, F. Wen, and F. Li, Fe4 Cluster Adsorbed on Single-Wall Carbon Nanotubes: A Density Functional Study, Comput. Mater. Sci., 2008, 42, p 83–89.

    Article  CAS  Google Scholar 

  14. A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, and P. Borah, Fabrication and Properties of Dispersed Carbon Nanotube-Aluminum Composites, Mater. Sci. Eng., A, 2009, 508, p 167–173.

    Article  Google Scholar 

  15. O. Boshko, O. Nakonechna, N. Belyavina, M. Dashevskyi, and S. Revo, Nanocrystalline Fe-C Composites Obtained by Mechanical Alloying of Iron and Carbon Nanotubes, Adv. Powder Technol., 2017, 28, p 964–972.

    Article  CAS  Google Scholar 

  16. J.Y. Suh and D.H. Bae, Mechanical Properties of Fe Based Composites Reinforced with Multi-Walled Carbon Nanotubes, Mater. Sci. Eng., A, 2013, 582, p 321–325.

    Article  CAS  Google Scholar 

  17. Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Single Dispersed Carbon Nanotube/Aluminum Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing, Carbon, 2012, 50, p 1843–1852.

    Article  CAS  Google Scholar 

  18. G. Neumann and C. Tuijn, Interstitial Impurity Diffusion in Metals; the Apparent Size Effect, Physica B, 2002, 315, p 164–170.

    Article  CAS  Google Scholar 

  19. A. Slipenyuk, V. Kuprin, Y.U. Milman, J.E. Spowart, and D.B. Miracle, The Effect of Matrix to Reinforcement Particle Size Ratio (PSR) on the Microstructure and Mechanical Properties of a P/M Processed AlCuMn/SiCp MMC, Mater. Sci. Eng., A, 2004, 381, p 165–170.

    Article  Google Scholar 

  20. N. Pierard, A. Fonseca, J.F. Colomer, C. Bossuot, J.M. Benoit, G. Van Tendeloo, J.P. Pirard, and J.B. Nagy, Ball Milling Effect on the Structure of Single-Wall Carbon Nanotubes, Carbon, 2004, 42, p 1691–1697.

    Article  CAS  Google Scholar 

  21. W.M. Tucho, H. Mauroy, J.C. Walmsley, S. Deledda, R. Holmestada, and B.C. Hauback, Scripta Mater., 2010, 63, p 637–640.

    Article  CAS  Google Scholar 

  22. X. Zeng, Xu. GuoHua Zhou, Y.X. Qiang, Wu. Chao Luo, and Jicai, A New Technique for Dispersion of Carbon Nanotube in a Metal Melt, Mater. Sci. Eng. A, 2010, 527, p 5335–5340.

    Article  Google Scholar 

  23. S. Yoshio, J. Tatami, T. Yamakawa, T. Wakihara, K. Komeya, T. Meguro, K. Aramaki, and K. Yasuda, Dispersion of Carbon Nanotubes in Ethanol by a Bead Milling Process, Carbon, 2011, 49, p 4131–4137.

    Article  CAS  Google Scholar 

  24. M.K. Akshay Kumar and U.P. Banerjee, Development of a Novel MWCNT Reinforced Iron Matrix Nanocomposite Through Powder Metallurgy Route, Powder Technol., 2018, 331, p 41–51.

    Article  Google Scholar 

  25. J. Kano and F. Saito, Correlation of Powder Characteristics of Talc During Planetary Ball Milling with the Impact Energy of the Balls Simulated by the Particle Element Method, Powder Technol., 1998, 98, p 166–170.

    Article  CAS  Google Scholar 

  26. Y.A. Kim, T. Hayashi, Y. Fukai, M. Endo, T. Yanagisawa, and M.S. Dresselhaus, Effect of Ball Milling on Morphology of Cup-Stacked Carbon Nanotubes, Chem. Phys. Lett., 2002, 355, p 279–284.

    Article  CAS  Google Scholar 

  27. B. Munkhbayar, Nasan Bayaraa, Hafizur Rehman, Junhyo Kim, Hanshik Chung, and Hyomin Jeong, Grinding Characteristic of Multiwall Carbon Nanotube-Alumina Composite particle, J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2012, 27, p 1009–1013.

    Article  CAS  Google Scholar 

  28. B. Munkhbayar, Md.J. Nine, J. Jeoun, M. Bat-Erdene, H. Chung, and H. Jeong, Influence of Dry and Wet Ball Milling on Dispersion Characteristics of the Multi-Walled Carbon Nanotubes in Aqueous Solution with and Without Surfactant, Powder Technol., 2013, 234, p 132–140.

    Article  CAS  Google Scholar 

  29. B.S. Meher, R. Saha, and D. Chaira, Fabrication of Mwcnts Reinforced Iron Metal Matrix Composite by Powder Metallurgy: Effects of Wet and Dry Milling, J. Alloy. Compd., 2021, 872, p 159688.

    Article  CAS  Google Scholar 

  30. J.-H. Ahna, H.-S. Shin, Y.-J. Kim, and H. Chung, Structural Modification of Carbon Nanotubes by Various Ball Milling, J. Alloy. Compd., 2007, 434–435(2007), p 428–432.

    Article  Google Scholar 

  31. B.S. Meher, P.R. Samantaray, R. Saha, and D. Chaira, Effect of Dry Milling and MWCNTs Content During Fabrication of Fe-MWCNTs Metal Matrix Composite by High Energy Planetary Milling Followed by Conventional Sintering, Adv. Powder Technol., 2022, 33(2), p 103447.

    Article  CAS  Google Scholar 

  32. D. Chaira, B.K. Mishra, and S. Sangal, Efficient Synthesis and Characterization of Iron Carbide Powder by Reaction Milling, Powder Technol., 2009, 191(1–2), p 149–154.

    Article  CAS  Google Scholar 

  33. A. Kumar, U. Pandel, and M.K. Banerjee, Effect of High Energy Ball Milling on the Structure of Iron-Multiwall Carbon Nanotubes (MWCNT) Composite, Adv. Mater. Res., 2017, 6(3), p 245–255.

    Google Scholar 

  34. R.S. Longbottom, O. Ostrovski, J. Zhang, and D. Young, Stability of Cementite Formed from Hematite and Titanomagnetite Ore, Metall. and Mater. Trans. B., 2007, 38B, p 175–184.

    Article  CAS  Google Scholar 

  35. C.M. Fang, M.H.F. Sluiter, M.A. van Huis, C.K. Ande, and H.W. Zandbergen, Origin of Predominance of Cementite Among Iron Carbides in Steel at Elevated Temperature, Phys. Rev. Lett., 2010, 105, p 055503.

    Article  CAS  Google Scholar 

  36. G. Polat, I. Emre-Canbolat, A. Uzunog˘lu, and H. Kotan, Effect of Milling Time, MWCNT Content, and Annealing Temperature on Microstructure and Hardness of Fe/MWCNT Nanocomposites Synthesized by High-Energy Ball Milling, Adv. Powder Technol., 2021, 32, p 3107–3116.

    Article  CAS  Google Scholar 

  37. A. Kumar, U. Banerjee, M.K. Chowrasia, H. Sekhar, and M.K. Banerjee, Effect of MWCNT Content on the Structure and Properties of Spark Plasma Sintered iron-MWCNT Composites Synthesized by High-Energy Ball Milling, J. Mater. Eng. Perform., 2019, 28(5), p 2983–3000.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from public, commercial, or not-for-profit funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Chaira.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meher, B.S., Saha, R., Sahoo, B.K. et al. Effect of Wet Milling and Reinforcement Content on Iron-Multi-walled Carbon Nanotube Metal Matrix Composite Fabricated by Conventional Powder Metallurgy. J. of Materi Eng and Perform 32, 3755–3771 (2023). https://doi.org/10.1007/s11665-022-07352-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07352-9

Keywords

Navigation