Skip to main content

Advertisement

Log in

Use of the RBANS to Evaluate Cognition in Patients with Schizophrenia and Metabolic Syndrome: a Meta-Analysis of Case-Control Studies

  • Review Article
  • Published:
Psychiatric Quarterly Aims and scope Submit manuscript

Abstract

Schizophrenia is associated with an increased risk of metabolic syndrome (MetS), which is an important risk factor for developing cognitive impairment in the general population. A few case-control studies have explored the relationship between MetS and cognitive deficits in individuals with schizophrenia but with inconsistent findings. This meta-analysis of case-control studies was carried out to explore the association between MetS and cognitive performance in patients with schizophrenia. Only case-control studies assessing the association of cognitive function and MetS in patients with schizophrenia were identified. Cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) scale. Six case-control studies (n = 992) comparing cognition between patients with schizophrenia with MetS (n = 426) and those without MetS (n = 566) using the RBANS were identified. Compared to patients with schizophrenia without MetS, patients with schizophrenia and MetS had significantly more impairments in RBANS total scores [standardized mean difference (SMD) = −0.26, 95% confidence interval (CI): −0.51 to −0.02; I2 = 72%; p = 0.03], immediate memory (SMD = -0.32, 95% CI: −0.54 to −0.10; I2 = 66%; p = 0.005), attention (SMD = -0.29, 95% CI: −0.56 to −0.02; I2 = 77%; p = 0.03), and delayed memory (SMD = -0.24, 95% CI: −0.46 to −0.03; I2 = 64%; p = 0.03). No group difference was found regarding visuospatial skills and language (p > 0.05). This meta-analysis found that schizophrenia patients with MetS had worse performance on certain cognitive tasks than non-MetS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huang YQ, Wang Y, Wang H, Liu ZR, Yu X, Yan J, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry. 2019;6(3):211–24. https://doi.org/10.1016/s2215-0366(18)30511-x.

    Article  PubMed  Google Scholar 

  2. Denis F, Millot I, Abello N, Carpentier M, Peteuil A, Soudry-Faure A. Study protocol: a cluster randomized controlled trial to assess the effectiveness of a therapeutic educational program in oral health for persons with schizophrenia. Int J Ment Heal Syst. 2016;10:65. https://doi.org/10.1186/s13033-016-0096-0.

    Article  Google Scholar 

  3. Huang A, Amos TB, Joshi K, Wang L, Nash A. Understanding healthcare burden and treatment patterns among young adults with schizophrenia. J Med Econ. 2018;21(10):1026–35. https://doi.org/10.1080/13696998.2018.1500370.

    Article  PubMed  Google Scholar 

  4. Emsley R, Chiliza B, Asmal L, Harvey BH. The nature of relapse in schizophrenia. BMC Psychiatry. 2013;13:50. https://doi.org/10.1186/1471-244x-13-50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zheng W, Zhang QE, Cai DB, Yang XH, Ungvari GS, Ng CH, et al. Combination of metformin and lifestyle intervention for antipsychotic-related weight gain: a meta-analysis of randomized controlled trials. Pharmacopsychiatry. 2019;52(1):24–31. https://doi.org/10.1055/s-0044-101466.

    Article  CAS  PubMed  Google Scholar 

  6. Zheng W, Xiang YT, Xiang YQ, Li XB, Ungvari GS, Chiu HF, et al. Efficacy and safety of adjunctive topiramate for schizophrenia: a meta-analysis of randomized controlled trials. Acta Psychiatr Scand. 2016;134(5):385–98. https://doi.org/10.1111/acps.12631.

    Article  CAS  PubMed  Google Scholar 

  7. Gu XJ, Chen R, Sun CH, Zheng W, Yang XH, Wang SB, et al. Effect of adjunctive ranitidine for antipsychotic-induced weight gain: a systematic review of randomized placebo-controlled trials. J Int Med Res. 2018;46(1):22–32. https://doi.org/10.1177/0300060517716783.

    Article  CAS  PubMed  Google Scholar 

  8. Said S, Mukherjee D, Whayne TF. Interrelationships with metabolic syndrome, obesity and cardiovascular risk. Curr Vasc Pharmacol. 2016;14(5):415–25. https://doi.org/10.2174/1570161114666160722121615.

    Article  CAS  PubMed  Google Scholar 

  9. Vancampfort D, Stubbs B, Mitchell AJ, De Hert M, Wampers M, Ward PB, et al. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis. World Psychiatry. 2015;14(3):339–47. https://doi.org/10.1002/wps.20252.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cevik B, Mance-Calisir O, Atbasoglu EC, Saka MC, Alptekin K, Ucok A, et al. Psychometric liability to psychosis and childhood adversities are associated with shorter telomere length: a study on schizophrenia patients, unaffected siblings, and non-clinical controls. J Psychiatr Res. 2019;111:169–85. https://doi.org/10.1016/j.jpsychires.2019.01.022.

    Article  PubMed  Google Scholar 

  11. Piotrowski P, Gondek TM, Królicka-Deręgowska A, Misiak B, Adamowski T, Kiejna A. Causes of mortality in schizophrenia: An updated review of European studies. Psychiatria Danubina. 2017;29(2):108–20. https://doi.org/10.24869/psyd.2017.108.

    Article  PubMed  Google Scholar 

  12. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005;112(17):2735–52. https://doi.org/10.1161/circulationaha.105.169404.

    Article  PubMed  Google Scholar 

  13. Mazloomzadeh S, Karami Zarandi F, Shoghli A, Dinmohammadi H. Metabolic syndrome, its components and mortality: A population-based study. Med J Islam Repub Iran. 2019;33:11. https://doi.org/10.34171/mjiri.33.11.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. https://doi.org/10.1007/s11906-018-0812-z.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mitchell AJ, Vancampfort D, Sweers K, van Winkel R, Yu W, De Hert M. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders--a systematic review and meta-analysis. Schizophr Bull. 2013;39(2):306–18. https://doi.org/10.1093/schbul/sbr148.

    Article  PubMed  Google Scholar 

  16. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32. https://doi.org/10.1016/j.jacc.2010.05.034.

    Article  PubMed  Google Scholar 

  17. von Frankenberg AD, Reis AF, Gerchman F. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: a literature review. Arch Endocrinol Metab. 2017;61(6):614–22. https://doi.org/10.1590/2359-3997000000316.

    Article  PubMed  Google Scholar 

  18. Tang XN, Liebeskind DS, Towfighi A. The role of diabetes, obesity, and metabolic syndrome in stroke. Semin Neurol. 2017;37(3):267–73. https://doi.org/10.1055/s-0037-1603753.

    Article  PubMed  Google Scholar 

  19. Stino AM, Smith AG. Peripheral neuropathy in prediabetes and the metabolic syndrome. J Diab Invest. 2017;8(5):646–55. https://doi.org/10.1111/jdi.12650.

    Article  CAS  Google Scholar 

  20. Bora E, Akdede BB, Alptekin K. The relationship between cognitive impairment in schizophrenia and metabolic syndrome: a systematic review and meta-analysis. Psychol Med. 2017;47(6):1030–40. https://doi.org/10.1017/S0033291716003366.

    Article  CAS  PubMed  Google Scholar 

  21. Meyer JM, Nasrallah HA, McEvoy JP, Goff DC, Davis SM, Chakos M, et al. The clinical antipsychotic trials of intervention effectiveness (CATIE) schizophrenia trial: clinical comparison of subgroups with and without the metabolic syndrome. Schizophr Res. 2005;80(1):9–18. https://doi.org/10.1016/j.schres.2005.07.015.

    Article  PubMed  Google Scholar 

  22. Randolph C, Tierney MC, Mohr E, Chase TN. The repeatable battery for the assessment of neuropsychological status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998;20(3):310–9. https://doi.org/10.1076/jcen.20.3.310.823.

    Article  CAS  PubMed  Google Scholar 

  23. Gold JM, Queern C, Iannone VN, Buchanan RW. Repeatable battery for the assessment of neuropsychological status as a screening test in schizophrenia, I: sensitivity, reliability, and validity. Am J Psychiatr. 1999;156(12):1944–50.

    CAS  PubMed  Google Scholar 

  24. Wang YY, Wang S, Zheng W, Zhong BL, Ng CH, Ungvari GS, et al. Cognitive functions in smoking and non-smoking patients with check for schizophrenia: a systematic review and meta-analysis of comparative updates. Studies. Psychiatry Res. 2019;272:155–63. https://doi.org/10.1016/j.psychres.2018.12.064.

    Article  PubMed  Google Scholar 

  25. Man LJ, Lv XL, Du XD, Yin GZ, Zhu XM, Zhang YY, et al. Cognitive impairments and low BDNF serum levels in first-episode drug-naive patients with schizophrenia. Psychiatry Res. 2018;263:1–6. https://doi.org/10.1016/j.psychres.2018.02.034.

    Article  CAS  PubMed  Google Scholar 

  26. Braff DL, Heaton R, Kuck J, Cullum M, Moranville J, Grant I, et al. The generalized pattern of neuropsychological deficits in outpatients with chronic-schizophrenia with heterogeneous Wisconsin card sorting test-results. Arch Gen Psychiatry. 1991;48(10):891–8.

    Article  CAS  PubMed  Google Scholar 

  27. Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P, et al. Neuropsychological deficits in neuroleptic naive patients with first-episode schizpphrenia. Arch Gen Psychiatry. 1994;51(2):124–31.

    Article  CAS  PubMed  Google Scholar 

  28. Goldberg TE, Ragland JD, Torrey EF, Gold JM, Bigelow LB, Weinberger DR. Neuropsychological assessment of monozygotic twins discordant for schizophrnia. Arch Gen Psychiatry. 1990;47(11):1066–72.

    Article  CAS  PubMed  Google Scholar 

  29. Fang X, Wang Y, Chen Y, Ren J, Zhang C. Association between IL-6 and metabolic syndrome in schizophrenia patients treated with second-generation antipsychotics. Neuropsychiatr Dis Treat. 2019;15:2161–70. https://doi.org/10.2147/NDT.S202159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang GF, Wang RC, Liu Y. Effect of olanzapine on the cognitive function of schizophrenic patients complicated with or without metabolic syndrome (in Chinese). J Bengbu Med Coll. 2019;44(8):1027–9.

    Google Scholar 

  31. Li CH, Zhan GL, Rao SZ, Zhang H. Metabolic syndrome and its factors affect cognitive function in chronic schizophrenia complicated by metabolic syndrome. J Nerv Ment Dis. 2014;202(4):313–8. https://doi.org/10.1097/NMD.0000000000000124.

    Article  PubMed  Google Scholar 

  32. Zhang C, Fang XY, Yao PF, Mao YM, Cai J, Zhang Y, et al. Metabolic adverse effects of olanzapine on cognitive dysfunction: a possible relationship between BDNF and TNF-alpha. Psychoneuroendocrinology. 2017;81:138–43. https://doi.org/10.1016/j.psyneuen.2017.04.014.

    Article  CAS  PubMed  Google Scholar 

  33. Jia S, Lv QY, Bao CX, Geng RJ, Cheng XY, Zhu MH, et al. A study on cognitive function in schizophrenia with metabolic syndrome (in Chinese). J Psychiatry. 2018;31(2):81–4.

    Google Scholar 

  34. Zhang C, Wang W, Fan W, Yang Z, Ma C, Xu F, et al. Relationship among the cognitive function, serum homocysteine levels and metabolic syndrome in patients with schizophrenia (in Chinese). J Clin Psychiatry. 2020;30(1):25–7.

    Google Scholar 

  35. Li CH, Rao SZ, Shen WL, Zhan GL, Xu P, Zhang H, et al. Cognitive function of chronic schizophrenics with metabolic syndrom (in Chinese). J Neurosci Mental Health. 2011;11(6):586–8. https://doi.org/10.3969/j.issn.1009-6574.2011.06.015.

    Article  Google Scholar 

  36. Gao H, Yao PF, Sheng JL, Dai JJ, Wang WP, Tang W, et al. The relationship of cognitive function and metabolic syndrome in stable schizophrenia patients under longterm olanzapine treatment (in Chinese). J Clin Psychiatry. 2017;27(5):293–6.

    Google Scholar 

  37. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z.

    Article  PubMed  Google Scholar 

  38. Higgins J, Higgins J. Prof. Cochrane handbook for systematic reviews of interventions: Wiley; 2008.

  39. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  40. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002. https://doi.org/10.1136/bmj.d4002.

    Article  PubMed  Google Scholar 

  43. Bora E. Neurodevelopmental origin of cognitive impairment in schizophrenia. Psychol Med. 2015;45(1):1–9. https://doi.org/10.1017/s0033291714001263.

    Article  CAS  PubMed  Google Scholar 

  44. Lu WH, Zhang C, Yi ZH, Li ZZ, Wu ZG, Fang YR. Association between BDNF Val66Met polymorphism and cognitive performance in antipsychotic-naïve patients with schizophrenia. J Mol Neurosci. 2012;47(3):505–10. https://doi.org/10.1007/s12031-012-9750-4.

    Article  CAS  PubMed  Google Scholar 

  45. Kruiper C, Fagerlund B, Nielsen M, Düring S, Jensen MH, Ebdrup BH, et al. Associations between P3a and P3b amplitudes and cognition in antipsychotic-naïve first-episode schizophrenia patients. Psychol Med. 2019;49(5):868–75. https://doi.org/10.1017/s0033291718001575.

    Article  PubMed  Google Scholar 

  46. Kaffashian S, Dugravot A, Elbaz A, Shipley MJ, Sabia S, Kivimäki M, et al. Predicting cognitive decline: a dementia risk score vs. the Framingham vascular risk scores. Neurology. 2013;80(14):1300–6. https://doi.org/10.1212/WNL.0b013e31828ab370.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qiu C, Fratiglioni L. A major role for cardiovascular burden in age-related cognitive decline. Nat Rev Cardiol. 2015;12(5):267–77. https://doi.org/10.1038/nrcardio.2014.223.

    Article  PubMed  Google Scholar 

  48. Grover S, Padmavati R, Sahoo S, Gopal S, Nehra R, Ganesh A, et al. Relationship of metabolic syndrome and neurocognitive deficits in patients with schizophrenia. Psychiatry Res. 2019;278:56–64. https://doi.org/10.1016/j.psychres.2019.05.023.

    Article  PubMed  Google Scholar 

  49. Rouch I, Trombert B, Kossowsky MP, Laurent B, Celle S, Ntougou Assoumou G, et al. Metabolic syndrome is associated with poor memory and executive performance in elderly community residents: the PROOF study. Am J Geriatr Psychiatry. 2014;22(11):1096–104. https://doi.org/10.1016/j.jagp.2014.01.005.

    Article  PubMed  Google Scholar 

  50. Rubens M, Ramamoorthy V, Saxena A, George F, Shehadeh N, Attonito J, et al. Relationship between metabolic syndrome and cognitive abilities in U.S. adolescents. Metab Syndr Relat Disord. 2016;14(8):397–403. https://doi.org/10.1089/met.2016.0015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Science and Technology Planning Project of Liwan District of Guangzhou (202004034), Guangzhou Health Science and Technology Project (20211A011045), Guangzhou science and Technology Project of traditional Chinese Medicine and integrated traditional Chinese and Western medicine (20211A011045), China International Medical Exchange Foundation (Z-2018-35-2002), Guangzhou Clinical Characteristic Technology Project (2019TS67), and Guangdong Hospital Association (2019ZD06). The funding sources had no role in the study design, analysis or interpretation of data or in the preparation of the report or decision to publish.

Code Availability

N/A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Nian Liang or Wei Zheng.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

N/A.

Consent for Publication

All co-authors approve the final version for publication.

Conflict of Interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Jiang, WL., Zhang, X. et al. Use of the RBANS to Evaluate Cognition in Patients with Schizophrenia and Metabolic Syndrome: a Meta-Analysis of Case-Control Studies. Psychiatr Q 93, 137–149 (2022). https://doi.org/10.1007/s11126-021-09889-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11126-021-09889-9

Keywords

Navigation