Skip to main content
Log in

Global transcriptomic profiles of circulating leucocytes in early lactation cows with clinical or subclinical mastitis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bovine mastitis, an inflammatory disease of the mammary gland, is classified as subclinical or clinical. Circulating neutrophils are recruited to the udder to combat infection. We compared the transcriptomic profiles in circulating leukocytes between healthy cows and those with naturally occurring subclinical or clinical mastitis. Holstein Friesian dairy cows from six farms in EU countries were recruited. Based on milk somatic cell count and clinical records, cows were classified as healthy (n = 147), subclinically (n = 45) or clinically mastitic (n = 22). Circulating leukocyte RNA was sequenced with Illumina NextSeq single end reads (30 M). Differentially expressed genes (DEGs) between the groups were identified using CLC Genomics Workbench V21, followed by GO enrichment analysis. Both subclinical and clinical mastitis caused significant changes in the leukocyte transcriptome, with more intensive changes attributed to clinical mastitis. We detected 769 DEGs between clinical and healthy groups, 258 DEGs between subclinical and healthy groups and 193 DEGs between clinical and subclinical groups. Most DEGs were associated with cell killing and immune processes. Many upregulated DEGs in clinical mastitis encoded antimicrobial peptides (AZU1, BCL3, CAMP, CATHL1, CATHL2, CATHL4,CATHL5, CATHL6, CCL1, CXCL2, CXCL13, DEFB1, DEFB10, DEFB4A, DEFB7, LCN2, PGLYRP1, PRTN3, PTX3, S100A8, S100A9, S100A12, SLC11A1, TF and LTF) which were not upregulated in subclinical mastitis. The use of transcriptomic profiles has identified a much greater up-regulation of genes encoding antimicrobial peptides in circulating leukocytes of cows with naturally occurring clinical compared with subclinical mastitis. These could play a key role in combatting disease organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The sequencing data were deposited to the European Nucleotide Archive (ERP019874).

Abbreviations

AMP:

Antimicrobial peptide

BH:

Benjamini Hochberg

DEG:

Differentially expressed gene

DIM:

Days in milk

GO:

Gene ontology

LDH:

Lactate dehydrogenase

NAGase:

N-acetyl-β-d-glucosaminidase

PAMP:

Pathogen-associated molecular pattern

PMNL:

Polymorphonuclear leukocytes

SC:

Somatic cells

SCC:

Somatic cell count

References

  1. Oviedo-Boyso J, Valdez-Alarcon JJ, Cajero-Juarez M, Ochoa-Zarzosa A, Lopez-Meza JE, Bravo-Patino A, Baizabal-Aguirre VM (2007) Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Infect 54(4):399–409. https://doi.org/10.1016/j.jinf.2006.06.010

    Article  PubMed  Google Scholar 

  2. Ruegg PL (2017) A 100-year review: mastitis detection, management, and prevention. J Dairy Sci 100(12):10381–10397. https://doi.org/10.3168/jds.2017-13023

    Article  CAS  PubMed  Google Scholar 

  3. Lawless N, Reinhardt TA, Bryan K, Baker M, Pesch B, Zimmerman D, Zuelke K, Sonstegard T, O’Farrelly C, Lippolis JD, Lynn DJ (2014) MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model. G3 (Bethesda) 4(6):957–971. https://doi.org/10.1534/g3.113.009936

    Article  PubMed Central  Google Scholar 

  4. Wells SJ, Ott SL, Seitzinger AH (1998) Key health issues for dairy cattle-new and old. J Dairy Sci 81(11):3029–3035. https://doi.org/10.3168/jds.s0022-0302(98)75867-9

    Article  CAS  PubMed  Google Scholar 

  5. Bradley A (2002) Bovine mastitis: an evolving disease. Vet J 164(2):116–128. https://doi.org/10.1053/tvjl.2002.0724

    Article  CAS  PubMed  Google Scholar 

  6. Reinoso EB, Lasagno MC, Dieser SA, Odierno LM (2011) Distribution of virulence-associated genes in Streptococcus uberis isolated from bovine mastitis. FEMS Microbiol Lett 318(2):183–188. https://doi.org/10.1111/j.1574-6968.2011.02258.x

    Article  CAS  PubMed  Google Scholar 

  7. Ward PN, Holden MT, Leigh JA, Lennard N, Bignell A, Barron A, Clark L, Quail MA, Woodward J, Barrell BG, Egan SA, Field TR, Maskell D, Kehoe M, Dowson CG, Chanter N, Whatmore AM, Bentley SD, Parkhill J (2009) Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genomics 10:54. https://doi.org/10.1186/1471-2164-10-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pyorala S (2002) New strategies to prevent mastitis. Reprod Domest Anim 37(4):211–216. https://doi.org/10.1046/j.1439-0531.2002.00378.x

    Article  CAS  PubMed  Google Scholar 

  9. Leitner G, Yadlin B, Glickman A, Chaffer M, Saran A (2000) Systemic and local immune response of cows to intramammary infection with Staphylococcus aureus. Res Vet Sci 69(2):181–184. https://doi.org/10.1053/rvsc.2000.0409

    Article  CAS  PubMed  Google Scholar 

  10. Thompson-Crispi K, Atalla H, Miglior F, Mallard BA (2014) Bovine mastitis: frontiers in immunogenetics. Front Immunol 5:493. https://doi.org/10.3389/fimmu.2014.00493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schukken YH, Wilson DJ, Welcome F, Garrison-Tikofsky L, Gonzalez RN (2003) Monitoring udder health and milk quality using somatic cell counts. Vet Res 34(5):579–596. https://doi.org/10.1051/vetres:2003028

    Article  PubMed  Google Scholar 

  12. Heimes A, Brodhagen J, Weikard R, Seyfert HM, Becker D, Meyerholz MM, Petzl W, Zerbe H, Hoedemaker M, Rohmeier L, Schuberth HJ, Schmicke M, Engelmann S, Kuhn C (2020) Hepatic transcriptome analysis identifies divergent pathogen-specific targeting-strategies to modulate the innate immune system in response to intramammary infection. Front Immunol 11:715. https://doi.org/10.3389/fimmu.2020.00715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang L, Sorensen P, Rontved C, Vels L, Ingvartsen KL (2008) Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide. BMC Genomics 9:443. https://doi.org/10.1186/1471-2164-9-443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moyes KM, Sorensen P, Bionaz M (2016) The Impact of intramammary Escherichia coli challenge on liver and mammary transcriptome and cross-talk in dairy cows during early lactation using RNAseq. PLoS One 11(6):e0157480. https://doi.org/10.1371/journal.pone.0157480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rinaldi M, Li RW, Capuco AV (2010) Mastitis associated transcriptomic disruptions in cattle. Vet Immunol Immunopathol 138(4):267–279. https://doi.org/10.1016/j.vetimm.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  16. Chen X, Cheng Z, Zhang S, Werling D, Wathes DC (2015) Combining genome wide association studies and differential gene expression data analyses identifies candidate genes affecting mastitis caused by two different pathogens in the dairy cow. Open J Anim Sci 05(04):358–393. https://doi.org/10.4236/ojas.2015.54040

    Article  CAS  Google Scholar 

  17. Bruckmaier RM, Wellnitz O (2017) TRIENNIAL LACTATION SYMPOSIUM/BOLFA: pathogen-specific immune response and changes in the blood–milk barrier of the bovine mammary gland. J Anim Sci 95(12):5720–5728. https://doi.org/10.2527/jas2017.1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheldon IM, Lewis GS, LeBlanc S, Gilbert RO (2006) Defining postpartum uterine disease in cattle. Theriogenology 65(8):1516–1530. https://doi.org/10.1016/j.theriogenology.2005.08.021

    Article  PubMed  Google Scholar 

  19. Vangroenweghe F, Lamote I, Burvenich C (2005) Physiology of the periparturient period and its relation to severity of clinical mastitis. Domest Anim Endocrinol 29(2):283–293. https://doi.org/10.1016/j.domaniend.2005.02.016

    Article  CAS  PubMed  Google Scholar 

  20. Mallard BA, Dekkers JC, Ireland MJ, Leslie KE, Sharif S, Vankampen CL, Wagter L, Wilkie BN (1998) Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. J Dairy Sci 81(2):585–595. https://doi.org/10.3168/jds.s0022-0302(98)75612-7

    Article  CAS  PubMed  Google Scholar 

  21. Wathes DC, Cheng Z, Chowdhury W, Fenwick MA, Fitzpatrick R, Morris DG, Patton J, Murphy JJ (2009) Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows. Physiol Genomics 39(1):1–13. https://doi.org/10.1152/physiolgenomics.00064.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ingvartsen KL, Moyes K (2013) Nutrition, immune function and health of dairy cattle. Animal 7(Suppl 1):112–122. https://doi.org/10.1017/S175173111200170X

    Article  CAS  PubMed  Google Scholar 

  23. Ster C, Loiselle MC, Lacasse P (2012) Effect of postcalving serum nonesterified fatty acids concentration on the functionality of bovine immune cells. J Dairy Sci 95(2):708–717. https://doi.org/10.3168/jds.2011-4695

    Article  CAS  PubMed  Google Scholar 

  24. Kehrli ME Jr, Shuster DE (1994) Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J Dairy Sci 77(2):619–627. https://doi.org/10.3168/jds.S0022-0302(94)76992-7

    Article  PubMed  Google Scholar 

  25. Lacetera N, Scalia D, Bernabucci U, Ronchi B, Pirazzi D, Nardone A (2005) Lymphocyte functions in overconditioned cows around parturition. J Dairy Sci 88(6):2010–2016. https://doi.org/10.3168/jds.S0022-0302(05)72877-0

    Article  CAS  PubMed  Google Scholar 

  26. Nonnecke BJ, Kimura K, Goff JP, Kehrli ME Jr (2003) Effects of the mammary gland on functional capacities of blood mononuclear leukocyte populations from periparturient cows. J Dairy Sci 86(7):2359–2368. https://doi.org/10.3168/jds.S0022-0302(03)73829-6

    Article  CAS  PubMed  Google Scholar 

  27. Mitterhuemer S, Petzl W, Krebs S, Mehne D, Klanner A, Wolf E, Zerbe H, Blum H (2010) Escherichia coli infection induces distinct local and systemic transcriptome responses in the mammary gland. BMC Genomics 11:138. https://doi.org/10.1186/1471-2164-11-138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petzl W, Zerbe H, Gunther J, Seyfert HM, Hussen J, Schuberth HJ (2018) Pathogen-specific responses in the bovine udder. Models and immunoprophylactic concepts. Res Vet Sci 116:55–61. https://doi.org/10.1016/j.rvsc.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  29. De Koster J, Salavati M, Grelet C, Crowe MA, Matthews E, O’Flaherty R, Opsomer G, Foldager L, GplusE HM (2019) Prediction of metabolic clusters in early-lactation dairy cows using models based on milk biomarkers. J Dairy Sci 102(3):2631–2644. https://doi.org/10.3168/jds.2018-15533

    Article  CAS  PubMed  Google Scholar 

  30. Krogh MA, Hostens M, Salavati M, Grelet C, Sorensen MT, Wathes DC, Ferris CP, Marchitelli C, Signorelli F, Napolitano F, Becker F, Larsen T, Matthews E, Carter F, Vanlierde A, Opsomer G, Gengler N, Dehareng F, Crowe MA, Ingvartsen KL, Foldager L (2020) Between- and within-herd variation in blood and milk biomarkers in Holstein cows in early lactation. Animal 14(5):1067–1075. https://doi.org/10.1017/S1751731119002659

    Article  CAS  PubMed  Google Scholar 

  31. Larsen T, Rontved CM, Ingvartsen KL, Vels L, Bjerring M (2010) Enzyme activity and acute phase proteins in milk utilized as indicators of acute clinical E. coli LPS-induced mastitis. Animal 4(10):1672–1679. https://doi.org/10.1017/S1751731110000947

    Article  CAS  PubMed  Google Scholar 

  32. Green MJ, Bradley AJ, Medley GF, Browne WJ (2007) Cow, farm, and management factors during the dry period that determine the rate of clinical mastitis after calving. J Dairy Sci 90(8):3764–3776. https://doi.org/10.3168/jds.2007-0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steeneveld W, Hogeveen H, Barkema HW, van den Broek J, Huirne RB (2008) The influence of cow factors on the incidence of clinical mastitis in dairy cows. J Dairy Sci 91(4):1391–1402. https://doi.org/10.3168/jds.2007-0705

    Article  CAS  PubMed  Google Scholar 

  34. Luoreng ZM, Wang XP, Mei CG, Zan LS (2018) Expression profiling of peripheral blood miRNA using RNAseq technology in dairy cows with Escherichia coli-induced mastitis. Sci Rep 8(1):12693. https://doi.org/10.1038/s41598-018-30518-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang D, Liu L, Augustino SMA, Duan T, Hall TJ, MacHugh DE, Dou J, Zhang Y, Wang Y, Yu Y (2020) Identification of novel molecular markers of mastitis caused by Staphylococcus aureus using gene expression profiling in two consecutive generations of Chinese Holstein dairy cattle. J Anim Sci Biotechnol 11:98. https://doi.org/10.1186/s40104-020-00494-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yalcin C, Stott AW, Logue DN, Gunn J (1999) The economic impact of mastitis-control procedures used in Scottish dairy herds with high bulk-tank somatic-cell counts. Prev Vet Med 41(2–3):135–149. https://doi.org/10.1016/s0167-5877(99)00052-5

    Article  CAS  PubMed  Google Scholar 

  37. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’Garra A (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977. https://doi.org/10.1038/nature09247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blankley S, Berry MP, Graham CM, Bloom CI, Lipman M, O’Garra A (2014) The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis. Philos Trans R Soc Lond B Biol Sci 369(1645):20130427. https://doi.org/10.1098/rstb.2013.0427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schukken YH, Gunther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DG, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM, members of the Pfizer mastitis research c (2011) Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 144(3–4):270–289. https://doi.org/10.1016/j.vetimm.2011.08.022

    Article  PubMed  Google Scholar 

  40. Bannerman DD (2009) Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci 87(13 Suppl):10–25. https://doi.org/10.2527/jas.2008-1187

    Article  CAS  PubMed  Google Scholar 

  41. Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32(2):143–171. https://doi.org/10.3109/07388551.2011.594423

    Article  CAS  PubMed  Google Scholar 

  42. Risso A (2000) Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J Leukoc Biol 68(6):785–792

    CAS  PubMed  Google Scholar 

  43. Afacan NJ, Yeung AT, Pena OM, Hancock RE (2012) Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des 18(6):807–819. https://doi.org/10.2174/138161212799277617

    Article  CAS  PubMed  Google Scholar 

  44. Auvynet C, Rosenstein Y (2009) Multifunctional host defense peptides: antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS J 276(22):6497–6508. https://doi.org/10.1111/j.1742-4658.2009.07360.x

    Article  CAS  PubMed  Google Scholar 

  45. Hilchie AL, Wuerth K, Hancock RE (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9(12):761–768. https://doi.org/10.1038/nchembio.1393

    Article  CAS  PubMed  Google Scholar 

  46. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098

    Article  CAS  PubMed  Google Scholar 

  47. Kosciuczuk EM, Lisowski P, Jarczak J, Strzalkowska N, Jozwik A, Horbanczuk J, Krzyzewski J, Zwierzchowski L, Bagnicka E (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39(12):10957–10970. https://doi.org/10.1007/s11033-012-1997-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolymers 47(6):415–433. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6%3c415::AID-BIP2%3e3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  49. Gurao A, Kashyap SK, Singh R (2017) beta-defensins: an innate defense for bovine mastitis. Vet World 10(8):990–998. https://doi.org/10.14202/vetworld.2017.990-998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stanton TB (2013) A call for antibiotic alternatives research. Trends Microbiol 21(3):111–113. https://doi.org/10.1016/j.tim.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  51. Young-Speirs M, Drouin D, Cavalcante PA, Barkema HW, Cobo ER (2018) Host defense cathelicidins in cattle: types, production, bioactive functions and potential therapeutic and diagnostic applications. Int J Antimicrob Agents 51(6):813–821. https://doi.org/10.1016/j.ijantimicag.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  52. Loftus RM, Finlay DK (2016) Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem 291(1):1–10. https://doi.org/10.1074/jbc.R115.693903

    Article  CAS  PubMed  Google Scholar 

  53. Habel J, Sundrum A (2020) Mismatch of glucose allocation between different life functions in the transition period of dairy cows. Animals (Basel) 10(6):1028–1049. https://doi.org/10.3390/ani10061028

    Article  Google Scholar 

  54. LeBlanc SJ (2012) Interactions of metabolism, inflammation, and reproductive tract health in the postpartum period in dairy cattle. Reprod Domest Anim 47(Suppl 5):18–30. https://doi.org/10.1111/j.1439-0531.2012.02109.x

    Article  PubMed  Google Scholar 

  55. Moyes KM, Larsen T, Ingvartsen KL (2013) Generation of an index for physiological imbalance and its use as a predictor of primary disease in dairy cows during early lactation. J Dairy Sci 96(4):2161–2170. https://doi.org/10.3168/jds.2012-5646

    Article  CAS  PubMed  Google Scholar 

  56. Bradley AJ, Leach KA, Breen JE, Green LE, Green MJ (2007) Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet Rec 160(8):253–257. https://doi.org/10.1136/vr.160.8.253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GplusE Consortium: Mark Crowe, Niamh McLoughlin, Alan Fahey, Elizabeth Matthews, Andreia Santoro, Colin Byrne, Pauline Rudd, Roisin O’Flaherty, Sinead Hallinan, Claire Wathes, Zhangrui Cheng, Ali Fouladi, Geoff Pollott, Dirk Werling, Beatriz Sanz Bernardo, Mazdak Salavati, Laura Buggiotti, Alistair Wylie, Matt Bell, Mieke Vaneetvelde, Kristof Hermans, Geert Opsomer, Sander Moerman, Jenne De Koster, Hannes Bogaert, Jan Vandepitte, Leila Vandevelde, Bonny Vanranst, Johanna Hoglund, Susanne Dahl, Klaus Ingvartsen, Martin Sørensen, Leslie Foldager, Soren Ostergaard, Janne Rothmann, Mogens Krogh, Else Meyer, Charlotte Gaillard, Jehan Ettema, Tine Rousing, Federica Signorelli, Francesco Napolitano, Bianca Moioli, Alessandra Crisa, Luca Buttazzoni, Jennifer McClure, Daragh Matthews, Francis Kearney, Andrew Cromie, Matt McClure, Shujun Zhang, Xing Chen, Huanchun Chen, Junlong Zhao, Liguo Yang, Guohua Hua, Chen Tan, Guiqiang Wang, Michel Bonneau, Andrea Pompozzi, Armin Pearn, Arnold Evertson, Linda Kosten, Anders Fogh, Thomas Andersen, Matthew Lucy, Chris Elsik, Gavin Conant, Jerry Taylor, Nicolas Gengler, Michel Georges, Frederic Colinet, Marilou Ramos Pamplona, Hedi Hammami, Catherine Bastin, Haruko Takeda, Aurelie Laine, Anne-Sophie Van Laere, Martin Schulze, Cinzia Marchitelli and Sergio Palma-Vera.

Funding

This project received funding from the European Union’s Seventh Framework Programme (Brussels, Belgium) for research, technological development, and demonstration under Grant Agreement No. 613689. The views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Zhangrui Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures had local ethical approval and complied with the relevant national and EU legislation under European Union Directive 2010/63/EU.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The members of GplusE Consortium are listed in Acknowledgements section.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Buggiotti, L., Salavati, M. et al. Global transcriptomic profiles of circulating leucocytes in early lactation cows with clinical or subclinical mastitis. Mol Biol Rep 48, 4611–4623 (2021). https://doi.org/10.1007/s11033-021-06494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06494-8

Keywords

Navigation