Skip to main content

Advertisement

Log in

Down-regulation of achaete-scute complex homolog 1 (ASCL1) in neuroblastoma cells induces up-regulation of insulin-like growth factor 2 (IGF2)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Neuroblastoma (NB) is the most common extra-cranial solid pediatric tumor. The prognosis of patients with NB has been improved during the last decades. However, treatment results for patients with advanced tumor stages are still unsatisfying. NB cells are characterized by a high tendency for spontaneous or induced differentiation. During differentiation, down-regulation of the basic helix-loop-helix transcription factor achaete-scute complex homolog 1 (ASCL1) has been observed but the consequences of ASCL1 down-regulation have not been elucidated. We used RNA interference to knock-down ASCL1 in NB cells. DNA microarray analysis was used for the identification of ASCL1-regulated genes. Furthermore, conventional and quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used for validation of ASCL1-regulated genes. Down-regulation of ASCL1 influenced the expression of several genes. After down-regulation of ASCL1, we observed very high expression of insulin-like growth factor 2 (IGF2), a factor that is known to be induced during differentiation of NB cells. RT-PCR indicated up-regulation of multiple IGF2 transcript variants after ASCL1 knock-down. Our data suggest that the ASCL1-pathway is responsible for the up-regulation of IGF2 during NB differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spix C, Pastore G, Sankila R, Stiller CA, Steliarova-Foucher E (2006) Neuroblastoma incidence and survival in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer 42:2081–2091

    Article  PubMed  Google Scholar 

  2. Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    Article  CAS  PubMed  Google Scholar 

  3. Meredith A, Johnson JE (2000) Negative autoregulation of Mash 1 expression in CNS development. Dev Biol 222:336–346

    Article  CAS  PubMed  Google Scholar 

  4. Axelson H (2004) The Notch signaling cascade in neuroblastoma: role of the basic helix-loop-helix proteins HASH-1 and HES-1. Cancer Lett 204:171–178

    Article  CAS  PubMed  Google Scholar 

  5. Morgan TH (1917) The theory of the gene. Am Nat 51:513–544

    Article  Google Scholar 

  6. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  7. Liu WM, Laux H, Henry JY, Bolton TB, Dalgleish AG, Galustian C (2010) A microarray study of altered gene expression in colorectal cancer cells after treatment with immunomodulatory drugs: differences in action in vivo and in vitro. Mol Biol Rep 37:1801–1814

    Article  CAS  PubMed  Google Scholar 

  8. Sharma VM, Draheim KM, Kelliher MA (2007) The Notch1/c-Myc pathway in T cell leukemia. Cell Cycle 6:927–930

    Article  CAS  PubMed  Google Scholar 

  9. Hoennscheidt C, Max D, Richter N, Staege MS (2009) Expression of CD4 on Epstein–Barr virus-immortalized B cells. Scand J Immunol 70:216–225

    Article  CAS  PubMed  Google Scholar 

  10. Metzler M, Staege MS, Harder L, Mendelova D, Zuna J, Fronkova E, Meyer C, Flohr T, Bednarova D, Harbott J, Langer T, Gesk S, Trka J, Siebert R, Dingermann T, Marschalek R, Niemeyer C, Rascher W (2008) Inv(11)(q21q23) fuses MLL to the Notch co-activator mastermind-like 2 in secondary T-cell acute lymphoblastic leukemia. Leukemia 22:1807–1811

    Article  CAS  PubMed  Google Scholar 

  11. Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33:2643–2652

    CAS  PubMed  Google Scholar 

  12. Ross RA, Spengler BA, Biedler JL (1983) Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71:741–747

    CAS  PubMed  Google Scholar 

  13. Staege MS, Hansen G, Baersch G, Burdach S (2004) Functional and molecular characterization of interleukin-2 transgenic Ewing tumor cells for in vivo immunotherapy. Pediatr Blood Cancer 43:23–34

    Article  PubMed  Google Scholar 

  14. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  CAS  PubMed  Google Scholar 

  15. Staege MS, Banning-Eichenseer U, Weissflog G, Volkmer I, Burdach S, Richter G, Mauz-Körholz C, Föll J, Körholz D (2008) Gene expression profiles of Hodgkin’s lymphoma cell lines with different sensitivity to cytotoxic drugs. Exp Hematol 36:886–896

    Article  CAS  PubMed  Google Scholar 

  16. Foell JL, Hesse M, Volkmer I, Schmiedel BJ, Neumann I, Staege MS (2008) Membrane-associated phospholipase A1 beta (LIPI) is an Ewing tumour-associated cancer/testis antigen. Pediatr Blood Cancer 51:228–234

    Article  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  18. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform 11:129

    Article  Google Scholar 

  19. Liangliang X, Yonghui H, Shunmei E, Shoufang G, Wei Z, Jiangying Z (2010) Dominant-positive HSF1 decreases alpha-synuclein level and alpha-synuclein-induced toxicity. Mol Biol Rep 37:1875–1881

    Article  PubMed  Google Scholar 

  20. Xu K, Wang X, Tian C, Shi S, Wang GR, Shi Q, Li P, Zhou RM, Jiang HY, Chu YL, Dong XP (2009) Transient expressions of doppel and its structural analog prionDelta32-121 in SH-SY5Y cells caused cytotoxicity possibly by triggering similar apoptosis pathway. Mol Biol Rep. doi:10.1007/s11033-009-9772-3

  21. Ghosh C, Song W, Lahiri DK (2000) Efficient DNA transfection in neuronal and astrocytic cell lines. Mol Biol Rep 27:113–121

    Article  CAS  PubMed  Google Scholar 

  22. Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ (2003) Retinoid therapy of high-risk neuroblastoma. Cancer Lett 197:185–192

    Article  CAS  PubMed  Google Scholar 

  23. Zhang XM, Li QM, Su DJ, Wang N, Shan ZY, Jin LH, Lei L (2000) RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells. Mol Biol Rep 37:1197–1202

    Article  Google Scholar 

  24. Stevanovic M (2003) Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2. Mol Biol Rep 30:127–132

    Article  CAS  PubMed  Google Scholar 

  25. Schoorlemmer J, Jonk L, Sanbing S, van Puijenbroek A, Feijen A, Kruijer W (1995) Regulation of Oct-4 gene expression during differentiation of EC cells. Mol Biol Rep 21:129–140

    Article  CAS  PubMed  Google Scholar 

  26. Wang L, Bai J, Hu Y (2008) Identification of the RA response element and transcriptional silencer in human alphaCaMKII promoter. Mol Biol Rep 35:37–44

    Article  PubMed  Google Scholar 

  27. Ueno T, Suita S, Zaizen Y (1993) Retinoic acid induces insulin-like growth factor II expression in a neuroblastoma cell line. Cancer Lett 71:177–182

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto K, Gaetano C, Daughaday WH, Thiele CJ (1992) Retinoic acid regulates insulin-like growth factor II expression in a neuroblastoma cell line. Endocrinology 130:3669–3676

    Article  CAS  PubMed  Google Scholar 

  29. Gabbitas B, Canalis E (1997) Retinoic acid regulates the expression of insulin-like growth factors I and II in osteoblasts. J Cell Physiol 172:253–264

    Article  CAS  PubMed  Google Scholar 

  30. Vu TH, Li T, Nguyen D, Nguyen BT, Yao XM, Hu JF, Hoffman AR (2000) Symmetric and asymmetric DNA methylation in the human IGF2-H19 imprinted region. Genomics 64:132–143

    Article  CAS  PubMed  Google Scholar 

  31. Srivastava M, Hsieh S, Grinberg A, Williams-Simons L, Huang SP, Pfeifer K (2000) H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev 14:1186–1195

    CAS  PubMed  Google Scholar 

  32. Banet G, Bibi O, Matouk I, Ayesh S, Laster M, Kimber KM, Tykocinski M, de Groot N, Hochberg A, Ohana P (2000) Characterization of human and mouse H19 regulatory sequences. Mol Biol Rep 27:157–165

    Article  CAS  PubMed  Google Scholar 

  33. El-Badry OM, Romanus JA, Helman LJ, Cooper MJ, Rechler MM, Israel MA (1989) Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J Clin Investig 84:829–839

    Article  CAS  PubMed  Google Scholar 

  34. Mattsson ME, Enberg G, Ruusala AI, Hall K, Påhlman S (1986) Mitogenic response of human SH-SY5Y neuroblastoma cells to insulin-like growth factor I and II is dependent on the stage of differentiation. J Cell Biol 102:1949–1954

    Article  CAS  PubMed  Google Scholar 

  35. Hedborg F, Ohlsson R, Sandstedt B, Grimelius L, Hoehner JC, Pählman S (1995) IGF2 expression is a marker for paraganglionic/SIF cell differentiation in neuroblastoma. Am J Pathol 146:833–847

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Sebastian Staege.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Neumann, I., Volkmer, I. et al. Down-regulation of achaete-scute complex homolog 1 (ASCL1) in neuroblastoma cells induces up-regulation of insulin-like growth factor 2 (IGF2). Mol Biol Rep 38, 1515–1521 (2011). https://doi.org/10.1007/s11033-010-0259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0259-z

Keywords

Navigation