Skip to main content

Advertisement

Log in

Amount and isolation of aquatic habitat drive anuran diversity in agricultural landscapes in the Brazilian Cerrado

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Declining in biodiversity in the Anthropocene is mostly a result of habitat loss due to changes in the landscape.

Objectives

Here, we address how landscape composition and configuration affect anuran diversity in agricultural landscapes in the Brazilian Cerrado ecoregion.

Methods

We sampled 29 breeding sites during the rainy season using auditory census and visual encounters to record anuran species richness, and specialist, generalist and dominant species richness. For each sampling site, we estimated eight landscape metrics at five spatial scales.

Results

We recorded 36 species from seven anuran families, 17 habitat specialist and 19 habitat generalists. We found that aquatic habitat cover (%) and number of aquatic patches played a positive effect on both total anuran richness and richness of dominant species. However, landscape compositional heterogeneity and aquatic habitat isolation negatively influenced community rarity, and abundance of habitat specialist species. In addition, more diverse anuran communities were found in areas where the amount and number of aquatic habitat patches were greater.

Conclusions

Our results emphasize the importance of maintaining high amounts of waterbodies and high aquatic habitat connectivity across the landscapes. Moreover, rare species and habitat specialist species are sensitive to landscape composition and configuration, respectively. Therefore, water body amount and connectivity must be considered in conservation plans to mitigate anuran community loss in agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Additional data are provided as supporting information in the online version of this article.

References

  • Agostine G, Deutsch C, Bilenca DN (2021) Differential responses of anuran assemblages to land use in agroecosystems of central Argentina. Agric Ecosyst Environ 311:107323

    Article  Google Scholar 

  • Almeida-Gomes M, Vieira MV, Rocha CF, Melo AS (2019) Habitat amount drives the functional diversity and nestedness of anuran communities in an Atlantic Forest fragmented landscape. Biotropica 51:874–884

    Article  Google Scholar 

  • Bastos RP (2007) Anfíbios do cerrado, in: Nascimento, L.B., Oliveira, M.E. (Eds.), Herpetologia no Brasil II. Sociedade Brasileira de Herpetologia, Belo Horizonte, Brazil, pp. 87–100.

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–47

    Article  Google Scholar 

  • Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Birx-Raybuck DA, Price SJ, Dorcas ME (2010) Pond age and riparian zone proximity influence anuran occupancy of urban retention ponds. Urban Ecosyst 13:181–190

    Article  Google Scholar 

  • Bolker B (2009) bbmle: Tools for general maximum likelihood estimation. R package version 0.9.3. http://CRAN.R-project.org/package=bbmle.

  • Brewster CL, Beaupre SJ, Willson JD (2018) Habitat loss and local extinction: linking population declines of Eastern Collared Lizards (Crotaphytus collaris) to habitat degradation in Ozark Glades. J Herpetol 52:352–360

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) A practical information-theoretic approach. Model selection and multimodel inference, 2nd edn. Springer, New York

    Google Scholar 

  • Buxton VL, Sperry JH (2017) Reproductive Decisions in Anurans: a review of how predation and competition affects the deposition of eggs and tadpoles. Bioscience 67:26–38

    Article  Google Scholar 

  • Carscadden KA, Emery NC, Arnillas CA, Cadotte MW, Afkhami ME, Gravel D, Livingstone SW, Wiens JJ (2020) Niche Breadth: causes and consequences for ecology, evolution, and conservation. Q Rev Biol 95:179–214

    Article  Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547

    Article  PubMed  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Collins SJ, Fahrig L (2017) Responses of anurans to composition and configuration of agricultural landscapes. Agric Ecosyst Environ 239:399–409

    Article  Google Scholar 

  • Cunha GG, Dalzochio MS, Tozetti AM (2021) Anuran diversity in ponds associated with soybean plantations. An Acad Bras Cienc 93:e20201926

    Article  PubMed  Google Scholar 

  • Curado N, Hartel T, Arntzen JW (2011) Amphibian pond loss as a function of landscape change – A case study over three decades in an agricultural area of northern France. Biol Conserv 144:1610–1618

    Article  Google Scholar 

  • Dabés L, Bonfim VMG, Napoli MF, Klein W (2012) Water balance and spatial distribution of an anuran community from Brazil. Herpetologica 68:443–455

    Article  Google Scholar 

  • Dalmolin DA, Tozetti AM, Pereira MJR (2020) Turnover or intraspecific trait variation: explaining functional variability in a neotropical anuran metacommunity. Aquat Sci 82:62

    Article  Google Scholar 

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

  • Fahrig L (2017) Ecological Responses to Habitat Fragmentation Per Se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Fletcher R, Fortin M (2018) Spatial ecology and conservation modeling. Springer, New York

    Book  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Mestre I, Pyron RA, Wiens JJ (2012) Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evol Int J Org Evol 66:3687–3700

    Article  Google Scholar 

  • Hanski I (2011) Habitat Loss, the Dynamics of Biodiversity, and a Perspective on Conservation. Ambio 40:248–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartig, F., 2019. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2, 4. https://CRAN.R-project.org/package=DHARMa

  • Hibbitts TJ, Ryberg WA, Adams CS, Fields AM, Lay D, Young ME (2013) Microhabitat selection by a habitat specialist and a generalist in both fragmented and unfragmented landscapes. Herpetol Conserv Biol 8:104–113

    Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456

    Article  Google Scholar 

  • Huais PY (2018) multifit: an R function for multi-scale analysis in landscape ecology. Landsc Ecol 33:1023–1028

    Article  Google Scholar 

  • Iop S, Santos TG, Cechin SZ, Vélez-Martin E, Pillar VD, Prado PI (2020) The interplay between local and landscape scales on the density of pond-dwelling anurans in subtropical grasslands. Biotropica 52:913–926

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27:929–941

    Article  Google Scholar 

  • Latrubesse EM, Arima E, Ferreira ME, Nogueira SH, Wittmann F, Dias MS, Dagosta FCP, Bayer M (2019) Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conserv Sci Pract 1:1–8

    Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116

    Article  PubMed  Google Scholar 

  • Leroy B, Petillon J, Gallon R, Canard A, Ysnel F (2012) Improving occurrence-based rarity metrics in conservation studies by including multiple rarity cut-off points. Insect Conserv Divers 5:159–168

    Article  Google Scholar 

  • Leroy B, Viol I, Pétillon J (2014) Complementarity of rarity, specialization and functional diversity metrics to assess community responses to environmental changes, using an example of spider communities in salt marshes. Ecol Indic 46:351–357.

    Article  Google Scholar 

  • Lima FP, Bastos RP (2019) Perceiving the invisible: Formal education affects the perception of ecosystem services provided by native areas. Ecosyst Serv 40:101029.

    Article  Google Scholar 

  • Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D (2021) performance: An R package for assessment comparison and testing of statistical models. J Open Source Softw 6(60):3139. https://doi.org/10.21105/joss.03139

  • McGarigal K, Cushman S, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. http://www.umass.edu/landeco/research/fragstats/fragstats.htm.

  • Mouquet N, Loreau M (2002) Coexistence in metacommunities: the regional similarity hypothesis. Am Nat 159:420–426

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Borger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Diaz S, Echeverria-Londono S, Edgar MJ, Feldman A, Garon M, Harrison ML, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DL, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HR, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JP, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SL, Hoskins AJ, Lysenko I, Phillips HR, Burton VJ, Chng CW, Emerson S, Gao D, Pask-Hale G, Hutton J, Jung M, Sanchez-Ortiz K, Simmons BI, Whitmee S, Zhang H, Scharlemann JP, Purvis A (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291

    Article  CAS  PubMed  Google Scholar 

  • Nowakowski AJ, Watling JI, Thompson ME, Brusch GA IV, Catenazzi A, Whitfield SM, Kurz DJ, Suárez-Mayorga Á, Aponte-Gutiérrez A, Donnelly MA, Todd BD (2018) Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol Lett 21:345–355

    Article  PubMed  Google Scholar 

  • Oda FH, Batista VG, Gambale PG, Mise FT, de Souza F, Bellay S, Ortega JCG, Takemoto RM (2016) Anuran species richness, composition, and breeding habitat preferences: a comparison between forest remnants and agricultural landscapes in Southern Brazil. Zool Stud 55:e34

    Google Scholar 

  • Piha H, Luoto M, Piha M, Merilä J (2007) Anuran abundance and persistence in agricultural landscapes during a climatic extreme. Glob Change Biol 13:300–311

    Article  Google Scholar 

  • Plumptre AJ, Baisero D, Belote RT, Vázquez-Domínguez E, Faurby S, Jȩdrzejewski W, Kiara H, Kül H, Benítez-López A, Luna-Aranguré C, Voigt M, Wich S, Wint W, Gallego-Zamorano J, Boyd C (2021) Where might we find ecologically intact communities? Front Fr Glob Change 4:26

    Google Scholar 

  • Polus E, Vandewoestijne S, Choutt J, Baguette M (2007) Tracking the effects of one century of habitat loss and fragmentation on calcareous grassland butterfly communities. Biodivers Conserv 16:3423–3436

    Article  Google Scholar 

  • Porensky LM, Young TP (2013) Edge-effect interactions in fragmented and patchy landscapes. Conserv Biol 27:509–519

    Article  PubMed  Google Scholar 

  • Prado VH, Rossa-Feres DDC (2014) Multiple determinants of anuran richness and occurrence in an agricultural region in south-eastern Brazil. Environ Manage 53:823–837

    Article  PubMed  Google Scholar 

  • R Development Core Team (2021) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna

    Google Scholar 

  • Ramalho WP, Prado VHM, Signorelli L, With KA (2021) Multiple environmental filters and competition affect the spatial co-occurrence of pond-breeding anurans at both local and landscape scales in the Brazilian Cerrado. Landsc Ecol 36:1663–1683

    Article  Google Scholar 

  • Rausch LL, Gibbs HK, Schelly I, Brandão A, Morton DC, Filho AC, Strassburg B, Walker N, Noojipady P, Barreto P, Meyer D (2019) Soy expansion in Brazil’s Cerrado. Conserv Lett 12:e12671

    Article  Google Scholar 

  • Ribeiro J, Colli GR, Batista R, Soares A (2017a) Landscape and local correlates with anuran taxonomic, functional and phylogenetic diversity in rice crops. Landsc Ecol 32:1599–1612

    Article  Google Scholar 

  • Ribeiro J, Colli GR, Caldwell JP, Ferreira E, Batista R, Soares A (2017b) Evidence of Neotropical anuran community disruption on rice crops: a multidimensional evaluation. Biodivers Conserv 26:3363–3383

    Article  Google Scholar 

  • Ribeiro J, Colli G, Soares A (2019) Landscape correlates of anuran functional connectivity in rice crops: a graph-theoretic approach. J Trop Ecol 35:118–131

    Article  Google Scholar 

  • Ribeiro J, Colli GR, Soares AMVM (2020) The anurofauna of a vanishing savanna: the case of the Brazilian Cerrado. Biodivers Conserv 29:1993–2015

    Article  Google Scholar 

  • Rödel M, Ersnt R (2003) Measuring and monitoring amphibian diversity in tropical forests. I. An evaluation of methods with recommendations for standardization. Ecotropica 10:1–14

    Google Scholar 

  • Rozen-Rechels D, Dupoué A, Lourdais O, Chamaillé-Jammes S, Meylan S, Clobert J, Le Galliard JF (2019) When water interacts with temperature: ecological and evolutionary implications of thermo-hydroregulation in terrestrial ectotherms. Ecol Evol 9:10029–10043

    Article  PubMed  PubMed Central  Google Scholar 

  • Sano EE, Rosa R, Scaramuzza CAM, Adami M, Bolfe EL, Coutinho AC, Esquerdo JCDM, Maurano LEP, Narvaes IS, de Oliveira Filho FJB, Silva EB, Victoria DC, Ferreira LG, Brito JLS, Bayma AP, Oliveira GH, Bayma-Silva G (2019) Land use dynamics in the Brazilian Cerrado in the period from 2002 to 2013. Pesqui Agropec Bras. https://doi.org/10.1590/S1678-3921.pab2019.v54.00138

    Article  Google Scholar 

  • Santoro GRCC, Brandao RA (2014) Reproductive modes, habitat use, and richness of anurans from Chapada dos Veadeiros, central Brazil. North-West J Zool 10:141505

    Google Scholar 

  • Santos JS, Dodonov P, Oshima JEF, Martello F, de Jesus AS, Ferreira ME, Silva-Neto CM, Ribeiro MC, Collevatti RG (2021a) Landscape ecology in the anthropocene: an overview for integrating agroecosystems and biodiversity conservation. Perspect Ecol Conserv 19:21–32

    Google Scholar 

  • Santos JS, Miziara F, Fernandes HS, Miranda RC, Collevatti RG (2021b) Technification in dairy farms may reconcile habitat conservation in a Brazilian Savanna region. Sustainability 13:5606

    Article  Google Scholar 

  • Santos JS, Silva-Neto CM, Silva TC, Siqueira KN, Ribeiro MC, Collevatti RG (2022) Landscape structure and local variables affect plant community diversity and structure in a Brazilian agricultural landscape. Biotropica 54:239–250

    Article  Google Scholar 

  • Sazima I, Eterovick PC (2000) Structure of an anuran community in a montane meadow in Southeastern Brazil: effects of seasonality, habitat, and predation. Amphibia-Reptilia 21:439–461

    Article  Google Scholar 

  • Semlitsch RD, Bodie JR (2003) Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conserv Biol 17:1219–1228

    Article  Google Scholar 

  • Signorelli L, Bastos RP, de Marco P, With KA (2016) Landscape context affects site occupancy of pond-breeding anurans across a disturbance gradient in the Brazilian Cerrado. Landsc Ecol 31:1997–2012

    Article  Google Scholar 

  • Silva FR, Rossa-Feres DC (2011) Influence of terrestrial habitat isolation on the diversity and temporal distribution of anurans in an agricultural landscape. J Trop Ecol 27:327–331

    Article  Google Scholar 

  • Silva FR, Oliveira TAL, Gibbs JP, Rossa-Feres DC (2012) An experimental assessment of landscape configuration effects on frog and toad abundance and diversity in tropical agro-savannah landscapes of southeastern Brazil. Landsc Ecol 27:87–96

    Article  Google Scholar 

  • Skelly DK (2001) Distributions of pond-breeding anurans: an overview of mechanisms. Isr J Zool 47:313–332

    Article  Google Scholar 

  • Smith AM, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Suárez RP, Zaccagnini ME, Babbitt KJ, Calamari NC, Natale GS, Cerezo A, Codugnello N, Boca T, Damonte MJ, Vera-Candioti J, Gavier-Pizarro GI (2016) Anuran responses to spatial patterns of agricultural landscapes in Argentina. Landsc Ecol 31:2485–2505

    Article  Google Scholar 

  • Teixido AL, Sehn H, Quintanilla LG, Gonçalves SRA, Férnandez-Arellano GJ, Dáttilo W, Izzo TJ, Layme VMG, Moreira LFB (2021) A meta-analysis of the effects of fragmentation on the megadiverse herpetofauna of Brazil. Biotropica 53:726–737

    Article  Google Scholar 

  • Thompson ME, Nowakowski AJ, Donnelly MA (2016) The importance of defining focal assemblages when evaluating amphibian and reptile responses to land use. Conserv Biol 30:249–258

    Article  PubMed  Google Scholar 

  • Urquiza-Haas T, Peres CA, Dolman PM (2009) Regional scale effects of human density and forest disturbance on large-bodied vertebrates throughout the Yucatán Peninsula. Mexico Biol Conserv 142:134–148.

    Article  Google Scholar 

  • Valério LM, Dorado-Rodrigues TF, Chupel TF, Penha J, Strüssmann C (2016) Vegetation structure and hydroperiod affect anuran composition in a large neotropical Wetland. Herpetologica 72:181–188

    Article  Google Scholar 

  • Vasconcelos TS, Santos TG, Rossa-Feres DC, Haddad CFB (2009) Influence of the environmental heterogeneity of breeding ponds on anuran assemblages from Southeastern Brazil. Can J Zool 87:699–707

    Article  Google Scholar 

  • Vaz-Silva W, Maciel NM, Nomura F, Morais ARD, Batista VG, Santos DL, Bastos RP (2020) Guia de identificação das espécies de anfíbios (Anura e Gymnophiona) do estado de Goiás e do Distrito Federal, Brasil Central. Sociedade Brasileira de Zoologia, Curitiba. https://doi.org/10.7476/9786587590011

  • Watling JI, Braga L (2015) Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape. Landsc Ecol 30:1449–1459

    Article  Google Scholar 

  • Wells KD (2007) The ecology & behavior of amphibians. University of Chicago Press, Chicago. https://doi.org/10.7208/9780226893334

    Book  Google Scholar 

  • Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • WWF-Brazil, Embrapa Beef Cattle (2011) Water and soil conservation: Beef cattle production in the Cerrado. 1st Edition. WWF-Brazil Embrapa Beef Cattle, P 30

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

PS received a PhD scholarship from CAPES (nº 88882.347104/2019-01) and JSS received a CAPES postdoctoral fellowship and a postdoctoral grant from the São Paulo Research Foundation (FAPESP, project no 2019/09713-6 and 2022/00166-5) to which we gratefully acknowledge. RGC was supported by a Visiting Research fellowship from São Paulo Research Foundation (FAPESP, process no. 2022/10760-1). RGC, NMM and MCR have continuously been supported by productivity grants from CNPq which we gratefully acknowledge. Field work was performed under the license no. 21643-2. MCR thanks to FAPESP (processes #2013/50421-2; #2020/01779-5; #2021/08534-0; #2021/10195-0; #2021/10639-5; #2022/10760-1) and National Council for Scientific and Technological Development - CNPq (processes #442147/2020-1; #440145/2022-8; #402765/2021-4; #313016/2021-6; #440145/2022-8) for their financial support.

Funding

This work was supported by grants to the research network PELD COFA supported by MCT/CNPq/CAPES/ (project no 441278/2016-7), FAPEG (project no. 201710267000331 and 202010267000404), and CAPES/PROCAD (project n° 88881.068425/2014-01).

Author information

Authors and Affiliations

Authors

Contributions

RGC, JSS, FM and MCR conceived the work; PS, NMM, RGC, MCR JSS and FM designed field work methodology; PS, NMM collected the data; RGC funded the work; PS, ELL, and JSS analyzed the data; PS, SI, RGC and JSS wrote the manuscript. NMM, FM and MCR assisted with text revision. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Rosane G. Collevatti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, P., Iop, S., dos Santos, J.S. et al. Amount and isolation of aquatic habitat drive anuran diversity in agricultural landscapes in the Brazilian Cerrado. Landsc Ecol 38, 2261–2275 (2023). https://doi.org/10.1007/s10980-023-01693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01693-z

Keywords

Navigation