Skip to main content

Advertisement

Log in

Frail room temperature ferromagnetism and H2 evolution of ZnS:Er nanoparticles through simple chemical co-precipitation route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnS:Er nanoparticles (NPs) were prepared for the first time, achieving tunable optical, ferromagnetic, and hydrogen production as a function of the Er content. Morphological analyses showed that the synthesized NPs exhibited closed spheroid shapes with an average sizes ranging from 4.4 to 5.2 nm. Structural measurements certified the authentic substitution of Er ions in the host matrix. Reflectance measurements confirmed that Er doping reduced the ZnS bandgap from 3.72 to 3.52 eV. Magnetic measurements revealed that the Er-doped ZnS NPs displayed soft ferromagnetism and became better at higher doping concentrations. The ZnS:Er (4 at%) NPs achieved the maximum hydrogen production rate (21,554.89 µmol g−1 h−1) under simulated solar illumination. Hence, the ZnS:Er NPs are promising materials for spintronics and hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. A.P. Litvin, I.V. Martynenko, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun’ko, J. Mater. Chem. A 5, 13252 (2017)

    Article  CAS  Google Scholar 

  2. P. Sumathi, J. Chandrasekaran, S. Muthukrishnan, J.H. Chang, K. Mohanraj, S. Karthik Kannan, J. Inorg. Organomet. Polym Mater. 32, 63 (2022)

    Article  CAS  Google Scholar 

  3. S.K. Kannan, P. Thirunavukkarasu, R. Marnadu, D. Thangaraju, M. Shkir, H.E. Ali, V.R. Reddy, J. Electron. Mater. 51, 1759 (2022)

    Article  CAS  Google Scholar 

  4. R. Mark Wilson, Phys. Today 71, 17 (2018)

    Article  Google Scholar 

  5. S. Zhang, Bo. Cheng, Z. Jia, Z. Zhao, X. Jin, Z. Zhao, Wu. Guanglei, Adv. Compos. Hybrid Mater. 5, 1658 (2022)

    Article  Google Scholar 

  6. T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187 (2014)

    Article  CAS  Google Scholar 

  7. I.V. Martynenko, A.P. Litvin, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun’ko, J. Mater. Chem. B 5, 6701 (2017)

    Article  CAS  Google Scholar 

  8. A.H. Reshak, Phys. Chem. Chem. Phys. 19, 24915 (2017)

    Article  CAS  Google Scholar 

  9. Y. Wang, X. Liang, E. Liu, Hu. Xiaoyun, J. Fan, Nanotechnol. 26, 375601 (2015)

    Article  Google Scholar 

  10. J.-C. Bünzli, Acc. Chem. Res. 39, 53 (2006)

    Article  Google Scholar 

  11. B. Poornaprakash, S. Ramu, S.H. Park, R.P. Vijayalakshmi, B.K. Reddy, Mater. Lett. 164, 104 (2015)

    Article  Google Scholar 

  12. B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S. Ramu, R.P. Vijayalakshmi, S.-H. Park, Ceram. Int. 42, 8092 (2016)

    Article  CAS  Google Scholar 

  13. B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S.-H. Park, Mater. Lett. 181, 227 (2016)

    Article  CAS  Google Scholar 

  14. B. Poornaprakash, U. Chalapathi, S.-H. Park, J. Mater. Sci. - Mater. Electron. 28, 3672 (2017)

    Article  CAS  Google Scholar 

  15. U.C. Poornaprakash, M. Reddeppa, S.-H. Park, Superlattices Microstruct. 97, 104 (2016)

    Article  CAS  Google Scholar 

  16. B. Poornaprakash, U. Chalapathi, S.V. Youngsuk Suh, M. Prabhakar Vattikuti, S.P. Reddy, S.-H. Park, Ceram. Int. 44, 11724 (2018)

    Article  Google Scholar 

  17. S. Wang, X. Shi, J. Li, RSC Adv. 6, 107865 (2016)

    Article  CAS  Google Scholar 

  18. J. Qi, D. Gao, J. Liu, W. Yang, Appl Phys A 100, 79 (2010)

    Article  CAS  Google Scholar 

  19. B. Poornaprakash, U. Chalapathi, B.P. Reddy, S.P. Vattikuti, M.S. Reddy, S.H. Park, Mater. Res. Express 5, 035018 (2018)

    Article  Google Scholar 

  20. S. Karthik Kannan, P. Thirnavukkarasu, R. Jayaprakash, J. Chandrasekaran, V. Mohanraj, Mater. Sci. Semicond. Process. 50, 31 (2016)

    Article  Google Scholar 

  21. S. Karthik Kannan, P. Thirunavukkarasu, R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, A.M. Ali, M. Shkir, J. Electron. Mater. 50, 3937 (2021)

    Article  CAS  Google Scholar 

  22. B. Poornaprakash, U. Chalapathi, M.C. Sekhar, V. Rajendar, S.P. Vattikuti, M.S. Reddy, Y. Suh, S.H. Park, Superlattices Microstruct. 123, 154 (2018)

    Article  CAS  Google Scholar 

  23. B. Poornaprakash, K. Herie Park, S.V.P. Subramanyam, K.C. Vattikuti, S.H. Devarayapalli, Y.L. Nam, M.S. Kim, P. Reddy, M.G. Hahm, V.R.M. Reddy, Ceram. Int. 47, 26438 (2021)

    Article  CAS  Google Scholar 

  24. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  Google Scholar 

  25. M. Ahmadi, S. Javadpour, A. Khosravi, A. Gharavi, Jpn. J. Appl. Phys. 47, 5089 (2008)

    Article  CAS  Google Scholar 

  26. Li. Lihua, Z. Xiang, Li. Xinli, H. Jinliang, A.A. Volinsky, R. Met, Mater. Eng. 47, 1744 (2018)

    Google Scholar 

  27. J. Trajić, R. Kostić, N. Romčević, M. Romčević, M. Mitrić, V. Lazović, P. Balaž, D. Stojanović, J. Alloys Compd. 637, 401 (2015)

    Article  Google Scholar 

  28. O. Brafman, S.S. Mitra, Phys. Rev. Lett. 17, 931 (1968)

    Google Scholar 

  29. M.S. Sajna, K.A. Sunil Thomas, C.J. AnnMary, P.R. Biju, N.V. Unnikrishnan, J. Lumin. 159, 55 (2015)

    Article  CAS  Google Scholar 

  30. Y. Tong, F. Cao, J. Yang, Xu. Minhong, C. Zheng, X. Zhu, Di. Chen, M. Zhang, F. Huang, J. Zhou, L. Wang, Mater. Chem. Phys. 151, 357 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation Korea funded by the Ministry of Science, ICT and Fusion Research (Grant No: 20201G1A1014959). This work was supported by the Technology development Program (S3038568) funded by the Ministry of SMEs and Startups (MSS, Korea).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

BP: Conceptualization, Methodology, Experimental, Investigation, Graphical Work, and Writing – original draft. UC: Methodology, Investigation, Experimental, Graphical Work, Writing – original draft, Resources. SS: Formal Analysis. YLK: Writing Review, Validation, Editing, and Resources. S-HP: Investigation, Formal Analysis, Editing, Writing Review, and Supervision.

Corresponding authors

Correspondence to Y. L. Kim or Si-Hyun Park.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poornaprakash, B., Chalapathi, U., Sangaraju, S. et al. Frail room temperature ferromagnetism and H2 evolution of ZnS:Er nanoparticles through simple chemical co-precipitation route. J Mater Sci: Mater Electron 34, 278 (2023). https://doi.org/10.1007/s10854-022-09719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09719-z

Navigation