Skip to main content

Advertisement

Log in

Rapid fabrication of hierarchical porous SiC/C hybrid structure: toward high-performance capacitive energy storage with ultrahigh cyclability

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured silicon carbide (SiC) materials are expected to have bright prospect in application as high-performance electrode materials with excellent charge–discharge cycling stability. However, the exploration of SiC-based micro-supercapacitors (MSCs) still remains a grand challenge seriously hampered by low areal capacities and complicated multistep production process. Herein, we report that rationally designed SiC/C nanocomposite with hierarchical porous structure and improved electrical conductivity has been realized by a facile and rapid carbothermic reduction using silica sol and sucrose as silicon and carbon source. The amorphous carbon between SiC nanoparticles (NPs) contributes to enlarged surface areas and excellent conductivity, not only ensuring intimate contact between the electrolyte and the electrode but also providing an effective ion highway for electrolyte ions. As a result, MSCs based on SiC/C nanocomposite (Si/C mass ratio of 1:1.5) demonstrate an optimal specific areal capacitance of 11.8 mF cm−2 at 2 mV s−1, outstanding flexibility (104.5% retention of initial capacitance at 180° bending), and superior integration. Most notably, the capacitance remains at 97.3% of the initial value after 50000 charging/discharging cycles, superior to that of most advanced SiC-based MSCs ever reported. This work demonstrates an effective design for hierarchical porous SiC/C nanocomposite for energy storage, which gives significant inspirations on the exploration of high-performance SiC-based MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhang J, Zhang G, Zhou T, Sun S (2020) Recent developments of planar micro-supercapacitors: fabrication, properties, and applications. Adv Funct Mater 30:1910000

    Article  CAS  Google Scholar 

  2. Li X, Wang J (2020) One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat 2:3–32

    Article  CAS  Google Scholar 

  3. Zhang P, Wang F, Yang S, Wang G, Yu M, Feng X (2020) Flexible in-plane micro-supercapacitors: progresses and challenges in fabrication and applications. Energy Storage Mater 28:160–187

    Article  CAS  Google Scholar 

  4. Li H, Liang J (2020) Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv Mater 32:1805864

    Article  CAS  Google Scholar 

  5. Liu L, Zhao H, Lei Y (2019) Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review. InfoMat 1:74–84

    Article  CAS  Google Scholar 

  6. Wang R, Yao M, Niu Z (2020) Smart supercapacitors from materials to devices. InfoMat 2:113–125

    Article  CAS  Google Scholar 

  7. Qi D, Liu Y, Liu Z, Zhang L, Chen X (2017) Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv Mater 29:1602802

    Article  CAS  Google Scholar 

  8. Da Y, Liu J, Zhou L, Zhu X, Chen X, Fu L (2019) Engineering 2D architectures toward high-performance micro-supercapacitors. Adv Mater 31:1802793

    Article  CAS  Google Scholar 

  9. Zheng S, Shi X, Das P, Wu ZS, Bao X (2019) The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv Mater 31:1900583

    Article  CAS  Google Scholar 

  10. Zhang H, Cao Y, Chee MOL, Dong P, Ye M, Shen J (2019) Recent advances in micro-supercapacitors. Nanoscale 11:5807–5821

    Article  CAS  Google Scholar 

  11. Li Z, Cao L, Qin P, Liu X, Chen Z, Wang L, Pan D, Wu M (2018) Nitrogen and oxygen co-doped graphene quantum dots with high capacitance performance for micro-supercapacitors. Carbon 139:67–75

    Article  CAS  Google Scholar 

  12. Xiao H, Wu Z-S, Zhou F, Zheng S, Sui D, Chen Y, Bao X (2018) Stretchable tandem micro-supercapacitors with high voltage output and exceptional mechanical robustness. Energy Storage Mater 13:233–240

    Article  Google Scholar 

  13. Shi X, Zheng S, Wu Z-S, Bao X (2018) Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J Energy Chem 27:25–42

    Article  Google Scholar 

  14. Abdolhosseinzadeh S, Schneider R, Verma A, Heier J, Nüesch F, Zhang C (2020) Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv Mater 32:2000716

    Article  CAS  Google Scholar 

  15. Li X, Liu Q, Chen S, Li W, Liang Z, Fang Z, Yang W, Tian Y, Yang Y (2020) Quasi-aligned SiC@C nanowire arrays as free-standing electrodes for high-performance micro-supercapacitors. Energy Storage Mater 27:261–269

    Article  Google Scholar 

  16. Zhuang H, Yang N, Zhang L, Fuchs R, Jiang X (2015) Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films. ACS Appl Mater Interfaces 7:10886–10895

    Article  CAS  Google Scholar 

  17. Gu L, Wang Y, Fang Y, Lu R, Sha J (2013) Performance characteristics of supercapacitor electrodes made of silicon carbide nanowires grown on carbon fabric. J Power Sources 243:648–653

    Article  CAS  Google Scholar 

  18. Li W, Liu Q, Chen S, Fang Z, Liang X, Wei G, Wang L, Yang W, Ji Y, Mai L (2018) Single-crystalline integrated 4H-SiC nanochannel array electrode: toward high-performance capacitive energy storage for robust wide-temperature operation. Mater Horiz 5:883–889

    Article  CAS  Google Scholar 

  19. Li J, Tian J, Dong L (2000) Synthesis of SiC precursors by a two-step sol-gel process and their conversion to SiC powders. J Eur Ceram Soc 20:1853–1857

    Article  CAS  Google Scholar 

  20. Chang C-H, Hsia B, Alper JP, Wang S, Luna LE, Carraro C, Lu S-Y, Maboudian R (2015) High-temperature all solid-state microsupercapacitors based on SiC nanowire electrode and YSZ electrolyte. ACS Appl Mater Interfaces 7:26658–26665

    Article  CAS  Google Scholar 

  21. Shaikjee A, Coville NJ (2012) The role of the hydrocarbon source on the growth of carbon materials. Carbon 50:3376–3398

    Article  CAS  Google Scholar 

  22. Chen Y, Zhang X, Xie Z (2015) Flexible nitrogen doped SiC nanoarray for ultrafast capacitive energy storage. ACS Nano 9:8054–8063

    Article  CAS  Google Scholar 

  23. Heuser S, Yang N, Hof F, Schulte A, Schönherr H, Jiang X (2018) 3D 3C-SiC/graphene hybrid nanolaminate films for high-performance supercapacitors. Small 14:1801857

    Article  CAS  Google Scholar 

  24. Sun Q, Tu R, Xu Q, Zhang C, Li J, Ohmori H, Kosinova M, Basu B, Yan J, Li S, Goto T, Zhang L, Zhang S (2019) Nanoforest of 3C-SiC/graphene by laser chemical vapor deposition with high electrochemical performance. J Power Sources 444:227308

    Article  CAS  Google Scholar 

  25. Liu Z, Cai Y, Tu R, Xu Q, Hu M, Wang C, Sun Q, Li B-W, Zhang S, Wang C, Goto T, Zhang L (2021) Laser CVD growth of graphene/SiC/Si nano-matrix heterostructure with improved electrochemical capacitance and cycle stability. Carbon 175:377–386

    Article  CAS  Google Scholar 

  26. Liu T, Zhang R, Zhang X, Liu K, Liu Y, Yan P (2017) One-step room-temperature preparation of expanded graphite. Carbon 119:544–547

    Article  CAS  Google Scholar 

  27. Jamshidi A, Tajizadegan H, Torabi O (2016) Potency of different carbon sources in reduction of microsilica to synthesize SiC from mechanically activated powder mixtures. Int J Appl Ceram Technol 13:937–947

    Article  CAS  Google Scholar 

  28. Moshtaghioun BM, Poyato R, Cumbrera F, de Bernardi-Martin S, Monshi A, Abbasi M, Karimzadeh F, Dominguez-Rodriguez A (2012) Rapid carbothermic synthesis of silicon carbide nano powders by using microwave heating. J Eur Ceram Soc 32:1787–1794

    Article  CAS  Google Scholar 

  29. Li X, Tian Y, Gao F, Wang L, Chen S, Yang W (2018) Fabrication of N-doped 3C-SiC nanobelts with selected (1 1 0) top surface and their enhanced transverse piezoresistance behaviours. Ceram Int 44:19021–19027

    Article  CAS  Google Scholar 

  30. Gopalakrishnan A, Raju TD, Badhulika S (2020) Green synthesis of nitrogen, sulfur-co-doped worm-like hierarchical porous carbon derived from ginger for outstanding supercapacitor performance. Carbon 168:209–219

    Article  CAS  Google Scholar 

  31. Bechelany M, Brioude A, Cornu D, Ferro G, Miele P (2007) A Raman spectroscopy study of individual SiC nanowires. Adv Funct Mater 17:939–943

    Article  CAS  Google Scholar 

  32. Zhang J, Liu X, Jia Q, Huang J, Zhang S (2016) Novel synthesis of ultra-long single crystalline β-SiC nanofibers with strong blue/green luminescent properties. Ceram Int 42:4600–4606

    Article  CAS  Google Scholar 

  33. Wasyluk J, Perova TS, Kukushkin SA, Osipov AV, Feoktistov NA, Grudinkin SA (2010) Raman investigation of different polytypes in SiC thin films grown by solid-gas phase epitaxy on Si (111) and 6H-SiC substrates. In: Materials science forum (Vol. 645, pp. 359–362). Trans Tech Publications Ltd

  34. Sarno M, Galvagno S, Piscitelli R, Portofino S, Ciambelli P (2016) Supercapacitor electrodes made of exhausted activated carbon-derived SiC nanoparticles coated by graphene. Ind Eng Chem Res 55:6025–6035

    Article  CAS  Google Scholar 

  35. Mo Y, Ru Q, Song X, Guo L, Chen J, Hou X, Hu S (2016) The sucrose-assisted NiCo2O4@C composites with enhanced lithium-storage properties. Carbon 109:616–623

    Article  CAS  Google Scholar 

  36. Subramanian N, Viswanathan B (2015) Nitrogen-and oxygen-containing activated carbons from sucrose for electrochemical supercapacitor applications. RSC Adv 5:63000–63011

    Article  CAS  Google Scholar 

  37. Kumar R, Soam A, Sahajwalla V (2020) Sucrose-derived carbon-coated nickel oxide (SDCC-NiO) as an electrode material for supercapacitor applications. Mater Adv 1:609–616

    Article  CAS  Google Scholar 

  38. Li H, Li X, Liang J, Chen Y (2019) Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv Energy Mater 9:1803987

    Article  CAS  Google Scholar 

  39. Chang Y, Sun X, Ma M, Mu C, Li P, Li L, Li M, Nie A, Xiang J, Zhao Z, He J, Wen F, Liu Z, Tian Y (2020) Application of hard ceramic materials B4C in energy storage: Design B4C@C core-shell nanoparticles as electrodes for flexible all-solid-state micro-supercapacitors with ultrahigh cyclability. Nano Energy 75:104947. https://doi.org/10.1016/j.nanoen.2020.104947

  40. Niu FX, Wang YX, Ma LR, Fu SL, Abbas I, Qu C, Wang CG (2017) Synthesis and characterization of nano-scale and submicro-scale silicon carbide whiskers on C/C composites. J Alloys Compd 714:270–277

    Article  CAS  Google Scholar 

  41. Niu Q, Gao K, Tang Q, Wang L, Han L, Fang H, Zhang Y, Wang S, Wang L (2017) Large-size graphene-like porous carbon nanosheets with controllable N-doped surface derived from sugarcane bagasse pith/chitosan for high performance supercapacitors. Carbon 123:290–298

    Article  CAS  Google Scholar 

  42. Mathis TS, Kurra N, Wang X, Pinto D, Simon P, Gogotsi Y (2019) Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv Energy Mater 9:1902007

    Article  CAS  Google Scholar 

  43. Deng X, Shi W, Sunarso J, Liu M, Shao Z (2017) A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life. ACS Appl Mater Interfaces 9:16280–16287

    Article  CAS  Google Scholar 

  44. Ko JS, Doan-Nguyen VV, Kim H-S, Petrissans X, DeBlock RH, Choi CS, Long JW, Dunn BS (2017) High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J Mater Chem A 5:18707–18715

    Article  CAS  Google Scholar 

  45. Lin D, Qian O, Huo D, Pan Q, Zhang S, Wang Z, Han F, Wei B (2020) Alternately stacked thin film electrodes for high-performance compact energy storage. Nano Energy 78:105323. https://doi.org/10.1016/j.nanoen.2020.105323

  46. Li W, Liu Q, Fang Z, Wang L, Chen S, Gao F, Ji Y, Yang W, Fang X (2019) All-solid-state on-chip supercapacitors based on free-standing 4H-SiC nanowire arrays. Adv Energy Mater 9:1900073

    Article  CAS  Google Scholar 

  47. Li X, Li W, Liu Q, Chen S, Wang L, Gao F, Shao G, Tian Y, Lin Z, Yang W (2020) Robust High-Temperature Supercapacitors Based on SiC Nanowires. Adv Funct Mater 31:2008901

    Article  CAS  Google Scholar 

  48. Zhang C, Kremer MP, Seral-Ascaso A, Park SH, McEvoy N, Anasori B, Gogotsi Y, Nicolosi V (2018) Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater 28:1705506

    Article  CAS  Google Scholar 

  49. Wang Y, Shi Y, Zhao CX, Wong JI, Sun XW, Yang HY (2014) Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices. Nanotechnology 25:094010. https://doi.org/10.1088/0957-4484/25/9/094010

  50. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Mohana Reddy AL, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427

    Article  CAS  Google Scholar 

  51. Liu WW, Feng YQ, Yan XB, Chen JT, Xue QJ (2013) Superior micro-supercapacitors based on graphene quantum dots. Adv Funct Mater 23:4111–4122

    Article  CAS  Google Scholar 

  52. Liu W, Lu C, Li H, Tay RY, Sun L, Wang X, Chow WL, Wang X, Tay BK, Chen Z, Yan J, Feng K, Lui G, Tjandra R, Rasenthiram L, Chiu G, Yu A (2016) Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. J Mater Chem A 4:3754–3764

    Article  CAS  Google Scholar 

  53. Kurra N, Ahmed B, Gogotsi Y, Alshareef HN (2016) Mxene-on-paper coplanar microsupercapacitors. Adv Energy Mater 6:1601372

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 52002217, 91963115, 11804185, 11974208 and 21905159) and Shandong Provincial Science Foundation (Grant No. ZR2019MA054, 2019KJJ020, ZR2019BA010 and ZR2020YQ05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengdong Ma or Xiaobing Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Sun, R., Li, X. et al. Rapid fabrication of hierarchical porous SiC/C hybrid structure: toward high-performance capacitive energy storage with ultrahigh cyclability. J Mater Sci 56, 16068–16081 (2021). https://doi.org/10.1007/s10853-021-06318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06318-x

Navigation