Skip to main content

Advertisement

Log in

Vital parameters for biomass, lipid, and carotenoid production of thraustochytrids

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Thraustochytrids have recently gained attention owing to their widespread applications in biodiesel production, biomedicine, and nutraceutical industries. They have a promising capability to produce high amounts of polyunsaturated fatty acids (PUFAs), including health-benefiting docosahexaenoic acid (DHA) and saturated fatty acid (SFA) which are renewable sources of biofuels. Since biofuels are an economical and renewable alternative source of energy to fossil fuels, lipid biofactories have become the centre of attention in the field of industrial biotechnology. Although thraustochytrids are a valuable source of bioenergy and biomedical products, their optimal use has some challenges and limitations to overcome. The originality of the current review lies in the evaluation of relevant literature on the upstream and downstream processing of thraustochytrids to provide background knowledge for future researchers to enhance the growth rate, product synthesis, and scale-up to an industrial level of thraustochytrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arafiles KHV, Alcantara JCO, Cordero PRF, Batoon JAL, Galura FS, Leao EM, Dedeles GR (2011) Cultural optimization of thraustochytrids for biomass and fatty acid production. Mycosphere 2:521–531

    Google Scholar 

  • Armenta RE, Burja A, Radianingtyas H, Barrow CJ (2006) Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q10 from the thraustochytrid strain ONC-T18. J Agric Food Chem 54:9752–9758

    CAS  PubMed  Google Scholar 

  • ASTM DJAI, (2012) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels.ASTM International, West Conshohocken

  • Balint S, Reczey J, Somorai Z, Kadar Z, Dienes D, Reczey K (2009) Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Appl Biochem Biotechnol 153:151–162

    Google Scholar 

  • Bahnweg G (1979) Studies on the physiology of the Thraustochytriales. II. Carbon nutrition of Thraustochytrium spp., Schizochytrium sp., Japonochytrium sp., Ulkenia spp. and Labyrinthuloides spp. Veröff Inst Meeresforsch Bremerh 17:269–273

  • Bowles R, Hunt A, Bremer G, Duchars M, Eaton R (1999) Long-chain n−3 polyunsaturated fatty acid production by members of the marine protistan group the thraustochytrids: screening of isolates and optimisation of docosahexaenoic acid production. J Biotechnol 70:193–202

    CAS  Google Scholar 

  • Byreddy AR, Gupta A, Barrow CJ, Puri M (2015) Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Mar Drugs 13:5111–5127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byreddy AR, Barrow CJ, Puri M (2016) Bead milling for lipid recovery from thraustochytrid cells and selective hydrolysis of Schizochytrium DT3 oil using lipase. Bioresour Technol 200:464–469

    CAS  PubMed  Google Scholar 

  • Byreddy AR, Rao NM, Barrow CJ, Puri M (2017) Evaluation of cell disruption method for lipase extraction from novel thraustochytrids. Algal Res 25:62–67

    Google Scholar 

  • Caamaño E, Loperena L, Hinzpeter I, Pradel P, Gordillo F, Corsini G, Tello M, Lavín P, González AR (2017) Isolation and molecular characterization of Thraustochytrium strain isolated from Antarctic Peninsula and its biotechnological potential in the production of fatty acids. Braz J Microbiol 48:671–679

    PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran K, Roy RK, Chadha A (2018) Docosahexaenoic acid production by a novel high yielding strain of Thraustochytrium sp. of Indian origin: Isolation and bioprocess optimization studies. Algal Res 32:93–100

  • Chang KJL, Dunstan GA, Abell GCJ, Clementson LA, Blackburn SI, Nichols PD, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93:2215–2231

    CAS  Google Scholar 

  • Chang KJL, Dumsday G, Nichols PD, Dunstan GA, Blackburn SI, Koutoulis A (2013) High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Appl Microbiol Biotechnol 97:6907–6918

    CAS  Google Scholar 

  • Chang KJL, Nichols CM, Blackburn SI, Dunstan GA, Koutoulis A, Nichols PD (2014) Comparison of thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide. Mar Biotechnol 16:396–411

    CAS  Google Scholar 

  • Chen CY, Yang YT (2018) Combining engineering strategies and fermentation technology to enhance docosahexaenoic acid (DHA) production from an indigenous Thraustochytrium sp BM2 strain. Biochem Eng J 133:179–185

    CAS  Google Scholar 

  • Chen GQ, Fan KW, Lu FP, Li QA, Aki T, Chen F, Jiang Y (2010) Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. New Biotechnol 27:382–389

    CAS  Google Scholar 

  • Chen C-L, Chang J-S, Lee D-J (2015) Dewatering and drying methods for microalgae. Dry Technol 33:443–454

    CAS  Google Scholar 

  • Chen W, Zhou PP, Zhu YM, Xie C, Ma L, Wang XP, Bao ZD, Yu LJ (2016) Improvement in the docosahexaenoic acid production of Schizochytrium sp S056 by replacement of sea salt. Bioprocess Biosyst Eng 39:315–321

    CAS  PubMed  Google Scholar 

  • Chi ZY, Pyle D, Wen ZY, Frear C, Chen SL (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545

    CAS  Google Scholar 

  • de Mendoza D, Cronan JE Jr (1983) Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem Sci 8:49–52

    Google Scholar 

  • Ganuza E, Anderson AJ, Ratledge C (2008) High-cell-density cultivation of Schizochytrium sp in an ammonium/pH-auxostat fed-batch system. Biotechnol Lett 30:1559–1564

    CAS  PubMed  Google Scholar 

  • Goto M, Kanda H, Machmudah S (2015) Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J Supercrit Fluids 96:245–251

    CAS  Google Scholar 

  • Granata T (2017) Dependency of microalgal production on biomass and the relationship to yield and bioreactor scale-up for biofuels: a statistical analysis of 60+ years of algal bioreactor data. BioEnerg Res 10:267–287

  • Haagsma N, Van Gent C, Luten J, De Jong R, Van Doorn E (1982) Preparation of an ω3 fatty acid concentrate from cod liver oil. J Am Oil Chem Soc 59:117–118

    CAS  Google Scholar 

  • Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121

    CAS  Google Scholar 

  • Harris J, Viner K, Champagne P, Jessop PG (2018) Advances in microalgal lipid extraction for biofuel production: a review. Biofuels Bioprod Biorefin 12:1118–1135

    CAS  Google Scholar 

  • Hinzpeter I, Quilodran B, Stead R, Trujillo L, Vidal J, Shene C (2009) Isolation of thraustochytrid strains in the coastal zone of Puerto Montt, Chile and evaluation of docosahexaenoic acid (22:6n-3, DHA) production. Afinidad 66:482–487

    CAS  Google Scholar 

  • Ho S-H, Chen C-Y, Chang J-S (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

  • Huang J, Aki T, Yokochi T, Nakahara T, Honda D, Kawamoto S, Shigeta S, Ono K, Suzuki O (2003) Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes. Mar Biotechnol 5:450–457

    CAS  PubMed  Google Scholar 

  • Humhal T, Kastanek P, Jezkova Z, Cadkova A, Kohoutkova J, Branyik T (2017) Use of saline waste water from demineralization of cheese whey for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4. Bioprocess Biosyst Eng 40:395–402

    CAS  PubMed  Google Scholar 

  • Jain R, Raghukumar S, Chandramohan D (2004) Enhancement of the production of the polyunsaturated fatty acid, docosahexaenoic acid, in thraustochytrid protists. Mar Biotechnol 6:S59-S65

  • Jakobsen AN, Aasen IM, Josefsen KD, Strom AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80:297–306

    CAS  PubMed  Google Scholar 

  • Jaseera KV, Kaladharan P, Vijayan KK, Sandhya SV, Antony ML, Pradeep MA (2019) Isolation and phylogenetic identification of heterotrophic thraustochytrids from mangrove habitats along the southwest coast of India and prospecting their PUFA accumulation. J Appl Phycol 31:1057–1068

    CAS  Google Scholar 

  • Joannes C, Sipaut CS, Dayou J, Yasir SM, Mansa RF (2015) The potential of using pulsed electric field (PEF) technology as the cell disruption method to extract lipid from microalgae for biodiesel production. Int J Renew Energy Res 5:598–621

    Google Scholar 

  • Ju J-H, Oh B-R, Ko D-J, Heo S-Y, Lee J-J, Kim Y-M, Yang K, Seo J-W, Hong W-K, Kim C-H (2019) Boosting productivity of heterotrophic microalgae by efficient control of the oxygen transfer coefficient using a microbubble sparger. Algal Res 41:101474

    Google Scholar 

  • Juntila DJ, Yoneda K, Suzuki I (2018) Identification of extracellular proteins from Aurantiochytrium sp. 18 W-13a. J Appl Phycol 30:63–69

    CAS  Google Scholar 

  • Leano EM (2001) Straminipilous organisms from fallen mangrove leaves from Panay Island, Philippines. Fungal Divers 6:75–81

    Google Scholar 

  • Leano EM, Gapasin RSJ, Polohan B, Vrijmoed LLP (2003) Growth and fatty acid production of thraustochytrids from Panay mangroves, Philippines. Fungal Divers 12:111–122

    Google Scholar 

  • Leckie F, Scragg AH, Cliffe KC (1991) Effect of bioreactor design and agitator speed on the growth and alkaloid accumulation by cultures of Catharanthus roseus. Enzyme Microb Tech 13:296–305

    CAS  Google Scholar 

  • Lee Chang KJ, Rye L, Dunstan GA, Grant T, Koutoulis A, Nichols PD, Blackburn SI (2015) Life cycle assessment: heterotrophic cultivation of thraustochytrids for biodiesel production. J Appl Phycol 27:639–647

    Google Scholar 

  • Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    CAS  PubMed  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol 1:580–587

    CAS  PubMed  Google Scholar 

  • Leyland B, Leu S, Boussiba S (2017) Are thraustochytrids algae? Fungal Biol 121:835–840

    PubMed  Google Scholar 

  • Liang YN, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn JW (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol 101:3623–3627

    CAS  PubMed  Google Scholar 

  • Lippmeier JC, Crawford KS, Owen CB, Rivas AA, Metz JG, Apt KE (2009) Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids 44:621–630

    CAS  PubMed  Google Scholar 

  • Liu Y, Singh P, Sun Y, Luan SJ, Wang GY (2014) Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China. Appl Microbiol Biotechnol 98:3241–3255

    CAS  PubMed  Google Scholar 

  • Lowrey J, Armenta RE, Brooks MS (2016a) Sequential recycling of enzymatic lipid-extracted hydrolysate in fermentations with a thraustochytrid. Bioresour Technol 209:333–342

    CAS  PubMed  Google Scholar 

  • Lowrey J, Brooks MS, Armenta RE (2016b) Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid. Appl Microbiol Biotechnol 100:4711–4721

    CAS  PubMed  Google Scholar 

  • Ma Z, Tan Y, Cui G, Feng Y, Cui Q, Song X (2015) Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions. Sci Rep 5:14446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood WMAW, Theodoropoulos C, Gonzalez-Miquel M (2017) Enhanced microalgal lipid extraction using bio-based solvents for sustainable biofuel production. Green Chem 19:5723–5733

    Google Scholar 

  • Marchan LF, Chang KJL, Nichols PD, Polglase JL, Mitchell WJ, Gutierrez T (2017) Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production. J Appl Phycol 29:2831–2843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchan LF, Chang KJL, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T (2018) Taxonomy, ecology and biotechnological applications of thraustochytrids: a review. Biotechnol Adv 36:26–46

    Google Scholar 

  • Montalescot V, Rinaldi T, Touchard R, Jubeau S, Frappart M, Jaouen P, Bourseau P, Marchal L (2015) Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Bioresour Technol 196:339–346

    CAS  PubMed  Google Scholar 

  • Ou MC, Yeong HY, Pang KL, Phang SM (2016) Fatty acid production of tropical thraustochytrids from Malaysian mangroves. Bot Mar 59:321–338

    CAS  Google Scholar 

  • Park H, Kwak M, Seo J, Ju J, Heo S, Park S, Hong W (2018) Enhanced production of carotenoids using a thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess Biosyst Eng 41:1355–1370

    CAS  PubMed  Google Scholar 

  • Porter D (1969) Ultrastructure of Labyrinthula. Protoplasma 67:1–19

    Google Scholar 

  • Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163:2–24

    CAS  PubMed  Google Scholar 

  • Qu L, Ren LJ, Huang H (2013a) Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp based on volumetric oxygen-transfer coefficient. Biochem Eng J 77:82–87

    CAS  Google Scholar 

  • Qu L, Ren LJ, Sun GN, Ji XJ, Nie ZK, Huang H (2013b) Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp for producing docosahexaenoic acid. Bioprocess Biosyst Eng 36:1905–1912

    CAS  PubMed  Google Scholar 

  • Quilodran B, Hinzpeter I, Quiroz A, Shene C (2009) Evaluation of liquid residues from beer and potato processing for the production of docosahexaenoic acid (C22:6n-3, DHA) by native thraustochytrid strains. World J Microbiol Biotechnol 25:2121–2128

    CAS  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145

    Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    CAS  PubMed  Google Scholar 

  • Ratledge C (1991) Microorganisms for lipids. Acta Biotechnol 11:429–438

    CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    CAS  PubMed  Google Scholar 

  • Romari K, Le Monnier A, Rols C, Merlet C, Pagliardini J, Calleja P, Gudin C (2016) Production of astaxanthin and docosahexaenoic acid in mixotrophic mode using Schizochytrium. EP Patent 28225631

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    CAS  Google Scholar 

  • Sati H, Mitra M, Mishra S, Baredar P (2019) Microalgal lipid extraction strategies for biodiesel production: A review. Algal Res 38:101413

    Google Scholar 

  • Shabala L, McMeekin T, Shabala S (2009) Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environ Microbiol 11:1835–1843

    CAS  PubMed  Google Scholar 

  • Shahidi F, Wanasundara UN (1998) Omega-3 fatty acid concentrates: nutritional aspects and production technologies. Trends Food Sci Technol 9:230–240

    CAS  Google Scholar 

  • Shimada Y, Sugihara A, Tominaga Y (2001) Enzymatic purification of polyunsaturated fatty acids. J Biosci Bioeng 91:529–538

    CAS  PubMed  Google Scholar 

  • Simopoulos AP (1989) Summary of the NATO advanced research workshop on dietary omega-3 and omega-6 fatty-acids - biological effects and nutritional essentiality. J Nutr 119:521–528

    CAS  PubMed  Google Scholar 

  • Singh A, Wilson S, Ward O (1996) Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 20892. World J Microbiol Biotechnol 12:76–81

    CAS  PubMed  Google Scholar 

  • Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y (2014) Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol 155:204–212

    CAS  PubMed  Google Scholar 

  • Sun X-M, Geng L-J, Ren L-J, Ji X-J, Hao N, Chen K-Q, Huang H (2018) Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. Bioresour Technol 250:868–876

    CAS  PubMed  Google Scholar 

  • Tang S, Qin C, Wang H, Li S, Tian S (2011) Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J Supercrit Fluids 57:44–49

    CAS  Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2009) Influences of culture temperature on the growth, lipid content and fatty acid composition of Aurantiochytrium sp. strain mh0186. Mar Biotechnol 11:368–374

    CAS  PubMed  Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2011) Effects of cold shock treatment on total lipid content and fatty acid composition of Aurantiochytrium limacinum strain mh0186. J Oleo Sci 60:217–220

    CAS  PubMed  Google Scholar 

  • Ugalde V, Armenta RE, Kermanshahi-pour A, Sun Z, Berryman KT, Brooks MS (2018) Improvement of culture conditions for cell biomass and fatty acid production by marine thraustochytrid F24-2. J Appl Phycol 30:329–339

    CAS  Google Scholar 

  • Wang C, Lan CQ (2018) Effects of shear stress on microalgae–a review. Biotechnol Adv 36:986–1002

    PubMed  Google Scholar 

  • Wang D, Li Y, Hu X, Su W, Zhong M (2015) Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans. Int J Mol Sci 16:7707–7722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Sen B, Liu X, He Y, Xie Y, Wang G (2018) Enhanced saturated fatty acids accumulation in cultures of newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. for large-scale biodiesel production. Sci Total Environ 631:994–1004

    PubMed  Google Scholar 

  • Wang Q, Ye H, Xie Y, He Y, Sen B, Wang G (2019) Culturable diversity and lipid production profile of labyrinthulomycete protists isolated from coastal mangrove habitats of China. Mar Drugs 17:268

    CAS  PubMed Central  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    CAS  Google Scholar 

  • Wong MKM, Tsui CKM, Au DWT, Vrijmoed LLP (2008) Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations. Mycoscience 49:266–270

    CAS  Google Scholar 

  • Xie YX, Sen B, Wang GY (2017) Mining terpenoids production and biosynthetic pathway in thraustochytrids. Bioresour Technol 244:1269–1280

    CAS  PubMed  Google Scholar 

  • Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1434

    CAS  Google Scholar 

  • Yang HL, Lu CK, Chen SF, Chen YM, Chen YM (2010) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12:173–185

    CAS  PubMed  Google Scholar 

  • Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76

    CAS  Google Scholar 

  • Zhang L, Zhao H, Lai Y, Wu J, Chen H (2013) Improving docosahexaenoic acid productivity of Schizochytrium sp. by a two-stage AEMR/shake mixed culture mode. Bioresour Technol 142:719–722

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Highest appreciation to the University of Malaya under Research University Grant (RU0003I-2017), Fundamental Research Grant Scheme (FRGS FP066-2018A) awarded to Dr Wan-Mohtar and Faculty Research Grant (GPF016B-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Abd Al Qadr Imad Wan-Mohtar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohedein, M.N.A., Wan-Mohtar, W.A.A.Q.I., Ilham, Z. et al. Vital parameters for biomass, lipid, and carotenoid production of thraustochytrids. J Appl Phycol 32, 1003–1016 (2020). https://doi.org/10.1007/s10811-019-01970-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01970-y

Keywords

Navigation