Skip to main content

Advertisement

Log in

Fungal fruitbodies and soil macrofauna as indicators of land use practices on soil biodiversity in Montado

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The impacts of land use on soil biodiversity are still poorly understood, although soil fungi and macrofauna are recognized to provide benefits to ecosystems. Here, we tested whether land use practices used to control shrub density influences the fruiting macromycetes (ectomycorrhizal-forming fungi—ECMF—and saprobes) and soil macrofauna diversity and abundance in Montado ecosystems. To address this influence, we conducted a 2-years’ period monitoring of fungi fruitbodies and macrofauna in sixteen experimental plots in Montado landscape in southern Portugal. A total of 4,881 frutibodies (57 taxa of ECMF and 64 taxa of saprobic fungi) and 3,667 soil invertebrates (73 species and morphospecies) were monitored in the experimental plots. There was greater losses in sporocarps production and taxa composition, particularly the ECMF, in plots where shrub density was controlled by permanent grazing (Ca) or involving cutting practices followed by soil tillage (M), in comparison with cutting practices with no soil tillage (Cu) and the control (C). The ECMF Laccaria laccata and Xerocomus subtomentosus exhibited a close relation with C and Cu plots while the saprobes, e.g., Entoloma conferendum, were associated to Ca and M plots. Most species associated to Cu plots were present in C plots during the 2 years, but not in Cu after the cutting practices (in the second year of sampling). Regarding soil macrofauna, higher values of taxa and species richness were observed in C and Cu plots in the first year of sampling. The ant species Aphaenogaster senilis and several Staphylinid morphospecies exhibited a close relation with M plots, whilst most spider families were directly associated to C and Cu plots. After the shrub cutting practices, higher values of taxa and species richness of soil macrofauna were observed in M and Ca plots; the presence of species with a high competitive ability to colonize disturbed areas faster might explain the results. Contrary to the frutibodies production and diversity, species richness and abundance within soil macrofauna were identical between Cu and C in 2004. Thus, fruiting macromycetes and soil macrofauna diversity and abundance in Montado’s, appear highly sensitive to land use and somewhat reflected a trend of severity to the current shrub management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen AN, Sparling GP (1997) Ants as indicators of restoration success: relationship with soil microbial biomass in the Australian seasonal tropics. Restor Ecol 5(2):109–114. doi:10.1111/j.1526-100X.1997.tb00133.x

    Article  Google Scholar 

  • Avis PG, McLaughlin DJ, Dentinger BC, Reich PB (2003) Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol 160:239–253. doi:10.1046/j.1469-8137.2003.00865.x

    Article  Google Scholar 

  • Ayres E, Heath J, Possell M, Black HIJ, Kerstiens G, Bardgett RD (2004) Tree physiological responses to above-ground herbivory directly modify below-ground processes of soil carbon and nitrogen cycling. Ecol Lett 7:469–479. doi:10.1111/j.1461-0248.2004.00604.x

    Article  Google Scholar 

  • Azul AM (2002) Diversity of ectomycorrhizal fungi in Montado’s ecosystems (portuguese). PhD Dissertation, University of Coimbra, Portugal

  • Azul AM, Sousa JP, Agerer R, Martín MP, Freitas H (2010) Land use practices and ectomycorrhizal fungal communities from oak woodlands dominated by Quercus suber L. considering drought scenarios. Mycorrhiza 20(2):73–88. doi:10.1007/s00572-009-0261-2

    Article  PubMed  Google Scholar 

  • Beck L, Rombke J, Breure AM, Mulder C (2005) Considerations for the use of soil ecological classification and assessment concepts in soil protection. Ecotoxicol Environ Saf 62:189–200. doi:10.1016/j.ecoenv.2005.03.024

    Article  PubMed  CAS  Google Scholar 

  • Bergemann SE, Garbelotto M (2006) High diversity of fungi recovered from the roots of mature tanoak (Lithocarpus densiflorus) in northern California. Can J Bot 84:1380–1394. doi:10.1139/B06-097

    Article  CAS  Google Scholar 

  • Blakely JK, Neher DA, Spongberg AL (2002) Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Appl Soil Ecol 21:71–88. doi:10.1016/S0929-1393(02)00023-9

    Article  Google Scholar 

  • Bon M (1988) Guía de campo de los hongos de Europa. Ediciones Omega S.A., Barcelona, España

    Google Scholar 

  • Brasier CM (1996) Phytophothora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann Sci For 53:347–358

    Article  Google Scholar 

  • Brasier CM, Scott JK (2008) European oak decline and global warming: a theoretical assessment with special reference to the activity of Phytophthora cinnamomi. EPPO Bull 24:221–232. doi:10.1111/j.1365-2338.1994.tb01063.x

    Article  Google Scholar 

  • Breure AM, Mulder C, Rombke J, Ruf A (2005) Ecological classification and assessment concepts in soil protection. Ecotoxicol Environ Saf 62:211–229. doi:10.1016/j.ecoenv.2005.03.025

    Article  PubMed  CAS  Google Scholar 

  • Bruyn LALd (1997) The status of soil macrofauna as indicators of soil health to monitor the sustainability of Australian agricultural soils. Ecol Econ 23(2):167–178. doi:10.1016/S0921-8009(97)00052-9

    Article  Google Scholar 

  • Byrd KB, Parker VT, Vogler DR, Cullings KW (2000) The influence of clear-cutting on ectomycorrhizal fungus diversity in a lodgepole pine (Pinus contorta) stand, Yellowstone National Park, Wyoming, and Gallatins National Forest, Montana. Can J Bot 78:149–156. doi:10.1139/cjb-78-2-149

    Google Scholar 

  • Cammell ME, Way MJ, Paiva MR (1996) Diversity and structure of ant communities associated with oak, pine, eucalyptus and arable habitats in Portugal. Insectes Sociaux 43(1):37–46. doi:10.1007/BF01253954

    Article  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth, MN

    Google Scholar 

  • Costa A, Pereira H, Madeira M (2009) Landscape dynamics in endangered cork oak woodlands in southwestern Portugal (1958–2005). Agrofor Syst 77:83–96. doi:10.1007/s10457-009-9212-3

    Article  Google Scholar 

  • Council of Europe (1992) Council Directive 92/43 EEC of 21 May 1992 on the Conservation of Natural Habitats and Wild Fauna and Flora. O.J. European Commission L206/7

  • Courtecuisse R, Duhem B (1995) Mushrooms and toadstools of Britain and Europe. HarperCollins Publishers, London

    Google Scholar 

  • Courty PE, Franc A, Pierrat JC, Garbaye J (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801. doi:10.1128/AEM.01592-08

    Article  PubMed  CAS  Google Scholar 

  • Da Silva PM, Aguiar CAS, Niemelã SJP, Serrano ARM (2008) Diversity patterns of ground-beetles (Coleoptera: Carabidae) along a gradient of land use disturbance. Agric Ecosyst Environ 124:270–274. doi:10.1016/j.agee.2007.10.007

    Article  Google Scholar 

  • Da Silva PM, Aguiar CAS, Niemelä J, Sousa JP, Serrano ARM (2009) Cork-oak woodlands as key-habitats for biodiversity conservation in Mediterranean landscapes: a case study using rove and ground beetles (Coleoptera: Staphylinidae, Carabidae). Biodivers Conserv 18:605. doi:10.1007/s10531-008-9527-9

    Article  Google Scholar 

  • Dauber J, Wolters V (2005) Colonization of temperate grassland by ants. Basic Appl Ecol 6(1):83–91. doi:10.1016/j.baae.2004.09.011

    Article  Google Scholar 

  • Deharveng L, Dalens H, Drugmand D, Simon-Benito JC, Gama MMD, Sousa JP, Gers C, Bedos A (2000) Endemism mapping and biodiversity conservation in western Europe: an Arthropod perspective. Belg J Entomol 2(1):59–75

    Google Scholar 

  • Delbaere B, Pinborg U, Heath M (2002) Biodiversity indicators and monitoring: moving towards implementation. Proceedings of a side event held at CBD/COP6. http://www.ecnc.org/publications/technicalreports/biodiversity-indicators-and-monitoring. Accessed 19 Aug 2009

  • DGRF (2007) Resultados do Inventário Florestal Nacional 2005/06. Inventário Florestal Nacional Direcção-Geral dos Recursos Florestais, Lisboa, Portugal

    Google Scholar 

  • Edwards IP, Cripliver JL, Gillespie AR, Johnsen KH, Scholler M, Turco RF (2004) Nitrogen availability alters macrofungal basidiomycete community structure in optimally fertilized loblolly pine forests. New Phytol 162:755–770. doi:10.1111/j.1469-8137.2004.01074.x

    Article  Google Scholar 

  • EPBRS (2002a) Recommendations of the participants of the European platform for biodiversity research strategy held under the Spanish presidency of the EU in Almeria, Spain. In: European heritage under threat: biodiversity in Mediterranean ecosystems. http://bioplatform.info/decl_almeria.htm. Accessed 14 Sept 2009

  • EPBRS (2002b) Agreement of the participants of the European platform for biodiversity research strategy held under the Danish presidency of the EU in Silkeborg, Denmark. In: Auditing the ark—science based monitoring of biodiversity. http://bioplatform.info/decl_silkeborg.htm. Accessed 14 Sept 2009

  • European Environment Agency (2004) Impacts of Europe’s changing climate. An indicator-based assessment. EEA Report No 2/2004. European Environment Agency, Copenhagen

    Google Scholar 

  • Fernández-Toirán LM, Ágreda T, Olano JM (2006) Stand age and sampling year effect on the fungal fruit body community in Pinus pinaster forests in central Spain. Can J Bot 84(8):1249–1258. doi:10.1139/B06-087

    Article  Google Scholar 

  • Frouz J (1999) Use of soil dwelling Diptera (Insecta, Diptera) as bioindicators: a review of ecological requirements and response to disturbance. Agric Ecosyst Environ 74(1–3):167–186. doi:10.1016/S0167-8809(99)00036-5

    Article  Google Scholar 

  • Grill A, Knoflach B, Cleary DFR, Kati V (2005) Butterfly, spider, and plant communities in different land-use types in Sardinia, Italy. Biodivers Conserv 14(5):1281–1300. doi:10.1007/s10531-004-1661-4

    Article  Google Scholar 

  • Hagerman SM, Jones MD, Bradfield GE, Gillespie M, Durall DM (1999) Effects of clear-cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can J For Res 29:124–134. doi:10.1139/cjfr-29-1-124

    Article  Google Scholar 

  • Hamza MA, Anderson WK (2005) Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil Till Res 82:121–145. doi:10.1016/j.still.2004.08.009

    Article  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn J, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn E, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity in European grasslands. Science 286:1123–1127. doi:10.1126/science.286.5442.1123

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ Manag 35(5):649–666. doi:10.1007/s00267-004-0211-x

    Article  Google Scholar 

  • Jänsch S, Römbke J, Didden W (2005) The use of enchytraeids in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62(2):266–277. doi:10.1016/j.ecoenv.2004.10.025

    Article  PubMed  Google Scholar 

  • Joffre R, Rambal S, Ratte P (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45:57–79. doi:10.1023/A:1006259402496

    Article  Google Scholar 

  • Knoepp JD, Coleman DC, Crossley DA, Clark JS (2000) Biological indices of soil quality: an ecosystem case study of their use. For Ecol Manag 138(1–3):357–368. doi:10.1016/S0378-1127(00)00424-2

    Article  Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie F, Mora P, Rossi J-P (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15. doi:10.1016/j.ejsobi.2006.10.002

    Article  Google Scholar 

  • Lilleskov EA, Bruns TD, Horton TR, Taylor DL, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332. doi:10.1016/j.femsec.2004.04.004

    Article  PubMed  CAS  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton, NJ

    Google Scholar 

  • McAdam J, Sibbald A, Teklehaimanot Z, Eason W (2007) Developing silvopastoral systems and their effects on diversity of fauna. Agrofor Syst 70:81. doi:10.1007/s10457-007-9047-8

    Article  Google Scholar 

  • Moreno G, Garcia Manjón JL, Zugaza A (1986) La Guia de Incafo de los Hongos de la Península Ibérica (Incafo), vol I and II. Madrid, 650 pp

  • Nahmani J, Lavelle P, Rossi J-P (2006) Does changing the taxonomical resolution alter the value of soil macroinvertebrates as bioindicators of metal pollution? Soil Biol Biochem 38:385–396. doi:10.1016/j.soilbio.2005.04.037

    Article  CAS  Google Scholar 

  • New TR (2005) Invertebrate conservation and agricultural ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nickel H, Hildebrandt J (2003) Auchenorrhyncha communities as indicators of disturbance in grasslands (Insecta, Hemiptera)—a case study from the Elbe flood plains (northern Germany). Agric Ecosyst Environ 98:183–199. doi:10.1016/S0167-8809(03)00080-X

    Article  Google Scholar 

  • Nunes MCS, Vasconcelos MJ, Pereira JMC, Dasgupta N, Alldredge RJ, Rego FC (2005) Land cover type and fire in Portugal: do fires burn land cover selectively? Landsc Ecol 20:661–673. doi:10.1007/s10980-005-0070-8

    Article  Google Scholar 

  • O’Dell TE, Ammirati JF, Schreiner EG (1999) Species richness and abundance of ectomycorrhizal basidiomycete sporocarps on a moisture gradient in the Tsuga heterophylla zone. Can J Bot 77(12):1699–1711. doi:10.1139/cjb-77-12-1699

    Article  Google Scholar 

  • Perner J, Malt S (2003) Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agric Ecosyst Environ 98(1–3):169–181. doi:10.1016/S0167-8809(03)00079-3

    Article  Google Scholar 

  • Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79(10):1134–1151. doi:10.1139/cjb-79-10-1134

    Article  Google Scholar 

  • Pinto-Correia T (1993) Threatened landscape in Alentejo, Portugal: the Montado and other agro-silvo pastoril systems. Landsc Urban Plan 24(1–4):43–48. doi:10.1016/0169-2046(93)90081-N

    Article  Google Scholar 

  • Pinto-Correia T, Vos W (2004) Multifunctionality in Mediterranean landscapes—past and future. In: Jongman R (ed) The new dimensions of the European landscape. Wageningen URFrontisSeries Nº4. Springer, Germany, pp 135–164

    Chapter  Google Scholar 

  • Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12(3):487–506. doi:10.1023/A:1022412617568

    Article  Google Scholar 

  • Rego F, Dias S (2000) Monitorização da biodiversidade nas florestas portuguesas. Projecto PAMAF—Medida 4—Estudos estratrégicos. Estação Florestal Nacional, Lisboa, Portugal

    Google Scholar 

  • Retana J, Cerdá X (2000) Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123(3):436–444. doi:10.1007/s004420051031

    Article  Google Scholar 

  • Richard F, Moreau P-A, Selosse M-A, Gardes M (2004) Diversity and fruiting patterns of ectomycorrhizal and litter saprobic fungi in an old-growth Mediterranean forest dominated by Quercus ilex L. Can J Bot 82(12):1711–1729. doi:10.1139/b04-128

    Article  Google Scholar 

  • Rombke J, Jansch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:249–265. doi:10.1016/j.ecoenv.2005.03.027

    Article  PubMed  CAS  Google Scholar 

  • Ruiz Camacho N, Velasquez E, Pando A, Decaëns T, Dubs F, Lavelle P (2009) Indicateurs synthéthiques de la qualité du sol. Étude et Gestion des Sols 16:323–338

    Google Scholar 

  • Sauberer N, Zulka KP, Abensperg-Traun M, Berg H-M, Bieringer G, Milasowszky N, Moser D, Plutzar C, Pollheimer M, Storch C, Trˆstl R, Zechmeister H, Grabherr G (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol Conserv 117(2):181–190. doi:10.1016/S0006-3207(03)00291-X

    Article  Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132(1):97–109. doi:10.1016/S0378-1127(00)00383-2

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith JE, McKay D, Brenner G, McIver J, Spatafora JW (2005) Early impacts of forest restoration treatments on the ectomycorrhizal fungal community and fine root biomass in a mixed conifer forest. J Appl Ecol 42:526–535. doi:10.1111/j.1365-2664.2005.01047.x

    Article  Google Scholar 

  • Sochová I, Hofman J, Holoubek I (2006) Using nematodes in soil ecotoxicology. Environ Int 32(3):374–383. doi:10.1016/j.envint.2005.08.031

    Article  PubMed  Google Scholar 

  • Sousa JP, Vingada JV, Barrocas H, Gama MM (1997) Effects of introduced exotic tree species on Collembola communities: the importance of management techniques. Pedobiologia 41(1–3):145–153

    Google Scholar 

  • Souty-Grosset C, Badenhausser I, Reynolds JD, Morel A (2005) Investigations on the potential of woodlice as bioindicators of grassland habitat quality. Eur J Soil Biol 41:109–116. doi:10.1016/j.ejsobi.2005.09.009

    Article  Google Scholar 

  • Tedersoo L, Koljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165. doi:10.1046/j.0028-646x.2003.00792.x

    Article  CAS  Google Scholar 

  • Ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to CAnoco for Windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca, NY

    Google Scholar 

  • Thorbek P, Bilde T (2004) Reduced numbers of generalist arthropod predators after crop management. J Appl Ecol 41(3):526–538. doi:10.1111/j.0021-8901.2004.00913.x

    Article  Google Scholar 

  • Tischer S (2005) Lumbricids species diversity and heavy metal amounts in lumbricids on soil monitoring sites in Saxony-Anhalt (Germany). Arch Agron Soil Sci 51:391–403. doi:10.1080/03650340500201741

    Article  CAS  Google Scholar 

  • Trudell SA, Rygiewicz PT, Edmonds RL (2004) Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytol 164:317–335. doi:10.1111/j.1469-8137.2004.01162.x

    Article  Google Scholar 

  • van der Heijden MGA, Horton TR (2009) Special feature facilitation in plant communities, socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150. doi:10.1111/j.1365-2745.2009.01570.x

    Article  Google Scholar 

  • Vanbergen AJ, Woodcock BA, Watt AD, Niemelä J (2005) Effect of land-use heterogeneity on carabid communities at the landscape scale. Ecography 28(1):3–16. doi:10.1111/j.0906-7590.2005.03991.x

    Article  Google Scholar 

  • Velasquez E, Lavelle P, Andrade M (2007) GIQS: a multifunctional indicator of soil quality. Soil Biol Biochem 39:3066–3080. doi:10.1016/j.soilbio.2007.06.013

    Article  CAS  Google Scholar 

  • Verdú JR, Moreno CE, Sánchez-Rojas G, Numa C, Galante E, Halffter G (2007) Grazing promotes dung beetle diversity in the xeric landscape of a Mexican Biosphere Reserve. Biol Conserv 140:308–327. doi:10.1016/j.biocon.2007.08.015

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall International, London

    Google Scholar 

Download references

Acknowledgments

Financial support was provided by FCT-MCTES (Portuguese Foundation for Science and Technology) and European fund FEDER, project POCTI/AGG/42349/2001. AM Azul was supported by an individual grant from FCT-MCTES (SFRH7BPD/5560/2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabela Marisa Azul.

Appendix

Appendix

See Appendix Tables 3 and 4.

Table 4 List of soil macrofauna taxa collected in the study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azul, A.M., Mendes, S.M., Sousa, J.P. et al. Fungal fruitbodies and soil macrofauna as indicators of land use practices on soil biodiversity in Montado. Agroforest Syst 82, 121–138 (2011). https://doi.org/10.1007/s10457-010-9359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-010-9359-y

Keywords

Navigation