Skip to main content

Advertisement

Log in

Transcriptomic profiling of human dental pulp cells treated with tricalcium silicate–based cements by RNA sequencing

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Tricalcium silicate (TCS)–based biomaterials induce differentiation of human dental pulp cells (hDPCs) into odontoblasts/osteoblasts, which is regulated by the interplay between various intracellular pathways and their resultant secretome. The aim of this study was to compare the transcriptome-wide effects by next-generation RNA sequencing of custom-prepared hDPCs stimulated with TCS-based biomaterials: ProRoot white MTA (WMTA) (Dentsply, Tulsa; Tulsa, OK) and Biodentine (Septodont, Saint Maur des Fosses, France).

Methods

Self-isolated hDPCs were seeded in a 6-well plate at a density of 5 × 105 cells per well. ProRoot white MTA and Biodentine were then placed in transwell inserts with a pore size of 0.4 μm and inserted in the well plate. RNA sequencing was performed after 3 and 7 days treatment. For post-validation, RT-PCR analyses were done on some of the RNA samples used for RNA sequencing.

Results

Our RNA sequencing results for the first time identified 7533 differentially expressed genes (DEGs) between different treatments and the number of DEGs in Biodentine was higher than ProRoot WMTA at both 3 and 7 days. Despite their differential gene expression, both the TCS-based biomaterial treatments showed gene expressions mainly involved in odontoblast differentiation, angiogenesis, neurogenesis, dentinogenesis, and tooth mineralization.

Conclusions

The results of the present study illustrate that several important signalling pathways are induced by hDPCs stimulated with TCS-based biomaterials.

Clinical relevance

The differential expression of the genes associated with odontogenesis, angiogenesis, neurogenesis, dentinogenesis, and mineralization may affect the prognosis of teeth treated with Biodentine or ProRoot white MTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC (2014) Tissue engineering in dentistry. J Dent 42(8):915–928. https://doi.org/10.1016/j.jdent.2014.05.008

    Article  PubMed  Google Scholar 

  2. Tu MG, Chen YW, Shie MY (2015) Macrophage-mediated osteogenesis activation in co-culture with osteoblast on calcium silicate cement. J Mater Sci Mater Med 26(12):276. https://doi.org/10.1007/s10856-015-5607-z

    Article  PubMed  Google Scholar 

  3. Hosoya N, Takigawa T, Horie T, Maeda H, Yamamoto Y, Momoi Y, Yamamoto K, Okiji T (2019) A review of the literature on the efficacy of mineral trioxide aggregate in conservative dentistry. Dent Mater J 38(5):693–700. https://doi.org/10.4012/dmj.2018-193

    Article  PubMed  Google Scholar 

  4. Torabinejad M, Parirokh M, Dummer PMH (2018) Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview—part II: other clinical applications and complications. Int Endod J 51(3):284–317. https://doi.org/10.1111/iej.12843

    Article  PubMed  Google Scholar 

  5. Kahler B, Chugal N, Lin LM (2017) Alkaline materials and regenerative endodontics: a review. Materials (Basel) 10(12):1389. https://doi.org/10.3390/ma10121389

  6. Rajasekharan S, Vercruysse C, Martens L, Verbeeck R (2018) Effect of exposed surface area, volume and environmental pH on the calcium ion release of three commercially available tricalcium silicate based dental cements. Materials (Basel) 11(1)123. https://doi.org/10.3390/ma11010123

  7. Rathinam E, Rajasekharan S, Chitturi RT, Martens L, De Coster P (2015) Gene expression profiling and molecular signaling of dental pulp cells in response to tricalcium silicate cements: a systematic review. J Endod 41(11):1805–1817. https://doi.org/10.1016/j.joen.2015.07.015

    Article  PubMed  Google Scholar 

  8. Rathinam E, Rajasekharan S, Chitturi RT, Declercq H, Martens L, De Coster P (2016) Gene expression profiling and molecular signaling of various cells in response to tricalcium silicate cements: a systematic review. J Endod 42(12):1713–1725. https://doi.org/10.1016/j.joen.2016.08.027

    Article  PubMed  Google Scholar 

  9. Seetharaman R, Mahmood A, Kshatriya P, Patel D, Srivastava A (2019) An overview on stem cells in tissue regeneration. Curr Pharm Des 25(18):2086–2098. https://doi.org/10.2174/1381612825666190705211705

    Article  PubMed  Google Scholar 

  10. Peng W, Liu W, Zhai W, Jiang L, Li L, Chang J, Zhu Y (2011) Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. J Endod 37(9):1240–1246. https://doi.org/10.1016/j.joen.2011.05.035

    Article  PubMed  Google Scholar 

  11. Lu X, Li K, Xie Y, Qi S, Shen Q, Yu J, Huang L, Zheng X (2019) Improved osteogenesis of boron incorporated calcium silicate coatings via immunomodulatory effects. J Biomed Mater Res A 107(1):12–24. https://doi.org/10.1002/jbm.a.36456

    Article  PubMed  Google Scholar 

  12. La Noce M, Paino F, Spina A, Naddeo P, Montella R, Desiderio V, De Rosa A, Papaccio G, Tirino V, Laino L (2014) Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent 42(7):761–768. https://doi.org/10.1016/j.jdent.2014.02.018

    Article  PubMed  Google Scholar 

  13. Paranjpe A, Smoot T, Zhang H, Johnson JD (2011) Direct contact with mineral trioxide aggregate activates and differentiates human dental pulp cells. J Endod 37(12):1691–1695. https://doi.org/10.1016/j.joen.2011.09.012

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li Q, Zhang B, Kasoju N, Ma J, Yang A, Cui Z, Wang H, Ye H (2018) Differential and interactive effects of substrate topography and chemistry on human mesenchymal stem cell gene expression. Int J Mol Sci 19(8):2344. https://doi.org/10.3390/ijms19082344

  15. Koch CM, Chiu SF, Akbarpour M, Bharat A, Ridge KM, Bartom ET, Winter DR (2018) A beginner’s guide to analysis of RNA sequencing data. Am J Respir Cell Mol Biol 59(2):145–157. https://doi.org/10.1165/rcmb.2017-0430TR

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    Article  PubMed  PubMed Central  Google Scholar 

  17. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015(11):951–969. https://doi.org/10.1101/pdb.top084970

    Article  PubMed  PubMed Central  Google Scholar 

  19. Palomares MA, Dalmasso C, Bonnet E, Derbois C, Brohard-Julien S, Ambroise C, Battail C, Deleuze JF, Olaso R (2019) Systematic analysis of TruSeq, SMARTer and SMARTer Ultra-Low RNA-seq kits for standard, low and ultra-low quantity samples. Sci Rep 9(1):7550. https://doi.org/10.1038/s41598-019-43983-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sun J, Wang J, Zhang N, Yang R, Chen K, Kong D (2019) Whole transcriptome analysis of chemically induced hepatocellular carcinoma using RNA-sequencing analysis. FEBS Open Bio 9(11):1900–1908. https://doi.org/10.1002/2211-5463.12724

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lab H (2010) Fastx-toolkit. http://hannonlab.cshl.edu/fastx_toolkit/index.html.

  22. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17(1):10–12

    Google Scholar 

  23. Morgan M, Anders S, Lawrence M, Aboyoun P, Pages H, Gentleman R (2009) ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25(19):2607–2608. https://doi.org/10.1093/bioinformatics/btp450

  24. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  PubMed  Google Scholar 

  26. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) the sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  PubMed  Google Scholar 

  28. Risso D, Schwartz K, Sherlock G, Dudoit S (2011) GC-content normalization for RNA-Seq data. BMC Bioinformatics 12:480. https://doi.org/10.1186/1471-2105-12-480

    Article  PubMed  PubMed Central  Google Scholar 

  29. Robinson MD, Smyth GK (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23(21):2881–2887. https://doi.org/10.1093/bioinformatics/btm453

    Article  PubMed  Google Scholar 

  30. Vargas KG, Fuks AB, Peretz B (2016) Pulpotomy techniques: cervical (traditional) and partial. In: Fuks A, Peretz B (eds) Pediatric Endodontics. Springer, Cham, pp IX, 164

  31. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1(6):417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  32. Drennan MB, Govindarajan S, Verheugen E, Coquet JM, Staal J, McGuire C, Taghon T, Leclercq G, Beyaert R, van Loo G, Lambrecht BN, Elewaut D (2016) NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med 213(10):1973–1981. https://doi.org/10.1084/jem.20151065

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kellner M, Steindorff MM, Strempel JF, Winkel A, Kuhnel MP, Stiesch M (2014) Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement. Arch Oral Biol 59(6):559–567. https://doi.org/10.1016/j.archoralbio.2014.02.014

    Article  PubMed  Google Scholar 

  34. Yi Q, Liu O, Yan F, Lin X, Diao S, Wang L, Jin L, Wang S, Lu Y, Fan Z (2017) Analysis of senescence-related differentiation potentials and gene expression profiles in human dental pulp stem cells. Cells Tissues Organs 203(1):1–11. https://doi.org/10.1159/000448026

    Article  PubMed  Google Scholar 

  35. Kutikhin AG, Sinitsky MY, Yuzhalin AE, Velikanova EA (2018) Whole-transcriptome sequencing: a powerful tool for vascular tissue engineering and endothelial mechanobiology. High Throughput 7(1):5. https://doi.org/10.3390/ht7010005

  36. Duarte MA, Martins CS, de Oliveira Cardoso Demarchi AC, de Godoy LF, Kuga MC, Yamashita JC (2007) Calcium and hydroxide release from different pulp-capping materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104(1):e66–e69. https://doi.org/10.1016/j.tripleo.2007.01.024

    Article  PubMed  Google Scholar 

  37. Riddle RC, Taylor AF, Genetos DC, Donahue HJ (2006) MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Phys Cell Physiol 290(3):C776–C784. https://doi.org/10.1152/ajpcell.00082.2005

    Article  Google Scholar 

  38. Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385(6613):260–265. https://doi.org/10.1038/385260a0

    Article  PubMed  Google Scholar 

  39. Simon SR, Berdal A, Cooper PR, Lumley PJ, Tomson PL, Smith AJ (2011) Dentin-pulp complex regeneration: from lab to clinic. Adv Dent Res 23(3):340–345. https://doi.org/10.1177/0022034511405327

    Article  PubMed  Google Scholar 

  40. Chung M, Lee S, Chen D, Kim U, Kim Y, Kim S, Kim E (2019) Effects of different calcium silicate cements on the inflammatory response and odontogenic differentiation of lipopolysaccharide-stimulated human dental pulp stem cells. Materials (Basel) 12(8):1259. https://doi.org/10.3390/ma12081259

  41. Araujo LB, Cosme-Silva L, Fernandes AP, Oliveira TM, Cavalcanti BDN, Gomes Filho JE, Sakai VT (2018) Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 26:e20160629. https://doi.org/10.1590/1678-7757-2016-0629

    Article  PubMed  PubMed Central  Google Scholar 

  42. About I, Laurent-Maquin D, Lendahl U, Mitsiadis TA (2000) Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am J Pathol 157(1):287–295. https://doi.org/10.1016/S0002-9440(10)64539-7

    Article  PubMed  PubMed Central  Google Scholar 

  43. Seo MS, Hwang KG, Lee J, Kim H, Baek SH (2013) The effect of mineral trioxide aggregate on odontogenic differentiation in dental pulp stem cells. J Endod 39(2):242–248. https://doi.org/10.1016/j.joen.2012.11.004

    Article  PubMed  Google Scholar 

  44. Paranjpe A, Zhang H, Johnson JD (2010) Effects of mineral trioxide aggregate on human dental pulp cells after pulp-capping procedures. J Endod 36(6):1042–1047. https://doi.org/10.1016/j.joen.2010.02.013

    Article  PubMed  Google Scholar 

  45. Kitagawa M, Ueda H, Iizuka S, Sakamoto K, Oka H, Kudo Y, Ogawa I, Miyauchi M, Tahara H, Takata T (2007) Immortalization and characterization of human dental pulp cells with odontoblastic differentiation. Arch Oral Biol 52(8):727–731. https://doi.org/10.1016/j.archoralbio.2007.02.006

    Article  PubMed  Google Scholar 

  46. Kim SG, Zhou J, Solomon C, Zheng Y, Suzuki T, Chen M, Song S, Jiang N, Cho S, Mao JJ (2012) Effects of growth factors on dental stem/progenitor cells. Dent Clin N Am 56(3):563–575. https://doi.org/10.1016/j.cden.2012.05.001

    Article  PubMed  Google Scholar 

  47. Zheng L, Amano K, Iohara K, Ito M, Imabayashi K, Into T, Matsushita K, Nakamura H, Nakashima M (2009) Matrix metalloproteinase-3 accelerates wound healing following dental pulp injury. Am J Pathol 175(5):1905–1914. https://doi.org/10.2353/ajpath.2009.080705

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jain A, Bahuguna R (2015) Role of matrix metalloproteinases in dental caries, pulp and periapical inflammation: an overview. J Oral Biol Craniofac Res 5(3):212–218. https://doi.org/10.1016/j.jobcr.2015.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  49. Galler KM (2016) Clinical procedures for revitalization: current knowledge and considerations. Int Endod J 49(10):926–936. https://doi.org/10.1111/iej.12606

    Article  PubMed  Google Scholar 

  50. Edwards PC, Mason JM (2006) Gene-enhanced tissue engineering for dental hard tissue regeneration: (2) dentin-pulp and periodontal regeneration. Head Face Med 2:16. https://doi.org/10.1186/1746-160X-2-16

    Article  PubMed  PubMed Central  Google Scholar 

  51. Song Y, Liu X, Feng X, Gu Z, Gu Y, Lian M, Xiao J, Cao P, Zheng K, Gu X, Li D, He P, Wang C (2017) NRP1 accelerates odontoblast differentiation of dental pulp stem cells through classical Wnt/beta-catenin signaling. Cell Rep 19(5):324–330. https://doi.org/10.1089/cell.2017.0020

    Article  Google Scholar 

  52. Wang Y, Li YP, Paulson C, Shao JZ, Zhang X, Wu M, Chen W (2014) Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed) 19:379–407. https://doi.org/10.2741/4214

    Article  Google Scholar 

  53. Zhao Y, Yuan X, Bellido T, Helms JA (2019) A correlation between Wnt/beta-catenin signaling and the rate of dentin secretion. J Endod 45(11):1357–1364 e1351. https://doi.org/10.1016/j.joen.2019.07.014

    Article  PubMed  Google Scholar 

  54. Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4(8):a008797. https://doi.org/10.1101/cshperspect.a008797

    Article  PubMed  PubMed Central  Google Scholar 

  55. Melin M, Joffre-Romeas A, Farges JC, Couble ML, Magloire H, Bleicher F (2000) Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res 79(9):1689–1696. https://doi.org/10.1177/00220345000790090901

    Article  PubMed  Google Scholar 

  56. Wahl SM (1999) TGF-beta in the evolution and resolution of inflammatory and immune processes. Introduction. Microbes Infect 1(15):1247–1249. https://doi.org/10.1016/s1286-4579(99)00261-0

    Article  PubMed  Google Scholar 

  57. Tziafas D, Papadimitriou S (1998) Role of exogenous TGF-beta in induction of reparative dentinogenesis in vivo. Eur J Oral Sci 106(Suppl 1):192–196. https://doi.org/10.1111/j.1600-0722.1998.tb02175.x

    Article  PubMed  Google Scholar 

  58. Laurent P, Camps J, About I (2012) Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J 45(5):439–448. https://doi.org/10.1111/j.1365-2591.2011.01995.x

    Article  PubMed  Google Scholar 

  59. Li J, Yan M, Wang Z, Jing S, Li Y, Liu G, Yu J, Fan Z (2014) Effects of canonical NF-kappaB signaling pathway on the proliferation and odonto/osteogenic differentiation of human stem cells from apical papilla. Biomed Res Int 2014:319651–319612. https://doi.org/10.1155/2014/319651

    Article  PubMed  PubMed Central  Google Scholar 

  60. Feng X, Feng G, Xing J, Shen B, Li L, Tan W, Xu Y, Liu S, Liu H, Jiang J, Wu H, Tao T, Gu Z (2013) TNF-alpha triggers osteogenic differentiation of human dental pulp stem cells via the NF-kappaB signalling pathway. Cell Biol Int 37(12):1267–1275. https://doi.org/10.1002/cbin.10141

    Article  PubMed  Google Scholar 

  61. Uribe-Etxebarria V, Agliano A, Unda F, Ibarretxe G (2019) Wnt signaling reprograms metabolism in dental pulp stem cells. J Cell Physiol 234(8):13068–13082. https://doi.org/10.1002/jcp.27977

    Article  PubMed  Google Scholar 

  62. Wang L, Cheng L, Wang H, Pan H, Yang H, Shao M, Hu T (2016) Glycometabolic reprogramming associated with the initiation of human dental pulp stem cell differentiation. Cell Biol Int 40(3):308–317. https://doi.org/10.1002/cbin.10568

    Article  PubMed  Google Scholar 

  63. Kim YB, Shon WJ, Lee W, Kum KY, Baek SH, Bae KS (2010) Gene expression profiling concerning mineralization in human dental pulp cells treated with mineral trioxide aggregate. J Endod 36(11):1831–1838. https://doi.org/10.1016/j.joen.2010.08.028

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the VIB Nucleomics Core (www.nucleomics.be) that performed the library preparation, sequencing, and statistical data analysis.

Funding

This research was funded by Septodont, Saint Maur des Faussés, France.

Author information

Authors and Affiliations

Authors

Contributions

Elanagai Rathinam: conceptualization, isolation of stem cells, sample preparation, conducting all experiments, result interpretation, analysis, and writing of original draft; Srinath Govindarajan: devising the methodology, sample preparation, RT-PCR experiments, result analysis, and editing the final draft; Sivaprakash Rajasekharan: result analysis and editing the final draft; Heidi Declercq: RT-PCR experiments and editing the final draft; Dirk Elewaut: RT-PCR experiments, interpretation, and editing the final draft; Peter De Coster: result interpretation, supervision, and editing the final draft; Luc Martens: result interpretation, supervision, and editing the final draft. All authors gave their final approval and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Elanagai Rathinam.

Ethics declarations

Conflict of interest

Dr. Govindarajan holds a post-doctoral fellowship from the Fund for Scientific Research – Flanders (FWO). The research was supported by grants from the Group-ID Multidisciplinary Platform (MRP) of Ghent University (Dr. Elewaut) and Fund for Scientific Research – Flanders (Dr. Elewaut). Dr. Rajasekahran holds a post-doctoral fellowship from the Fund for Scientific Research – Flanders (FWO). The authors would like to report research grants and non-financial support (i.e., cement materials free of charge) from Septodont, France. Outside of the submitted work, Dr. Martens and Dr. Rajasekharan report personal fees (honoraria/lecture fees/educational courses). In addition, Dr. Martens would like to report research grants from Septodont, France, negotiated with the Ghent University. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Ethical approval was obtained from the Ethical Committee of University Hospital, Ghent, Belgium, according to laws of ICH Good Clinical Practice (GE11-LM-go-2006/57).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 1321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinam, E., Govindarajan, S., Rajasekharan, S. et al. Transcriptomic profiling of human dental pulp cells treated with tricalcium silicate–based cements by RNA sequencing. Clin Oral Invest 25, 3181–3195 (2021). https://doi.org/10.1007/s00784-020-03647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03647-0

Keywords

Navigation