Skip to main content
Log in

Estimation of monthly global solar irradiation using the Hargreaves–Samani model and an artificial neural network for the state of Alagoas in northeastern Brazil

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The monthly global solar irradiation (H g) was estimated using the Hargreaves–Samani model (HS) with three different approaches for determining the k r coefficient and using an artificial neural network (ANN). The data consisted of long-term climate series measured at eight conventional meteorological stations in the state of Alagoas and its borders in northeastern Brazil. The approaches to determine the k r coefficient of the HS model included (i) the method proposed by Hargreaves (1994) (0.190 and 0.162 for coastal and interior regions, respectively), (ii) a method analogous to the previous except with altitude correction, and (iii) k r fitted with local climatic data. A new spatial interpolation method is also proposed to determine k r as a function of geographical coordinates and altitude. The fitted local values of k r (0.168–0.179 and 0.189–0.231 for interior and coastal stations, respectively) exhibited a strong dependence (r 2 = 0.81) on latitude, longitude, and altitude. The estimates of H g obtained with the HS model using fitted local values of k r and those using the ANN were similar (determination coefficient - r 2 = 0.75 and Willmontt agreement coefficient - d = 0.93) and better than those from the HS model using an altitude-corrected k r (r 2 = 0.68 and d = 0.90) or the values proposed by Hargreaves (1994) (r 2 = 0.57 and d = 0.85). The estimates of H g were less accurate and precise for the coastal stations, where cloudiness and humidity are high and the thermal amplitude is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraha MG, Savage MJ (2008) Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. Agric For Meteorol 148(3):401–416. doi:10.1016/j.agrformet.2007.10.001

    Article  Google Scholar 

  • Allen RG (1995) Evaluation of procedures for estimation means monthly solar radiation from air temperature. FAO, Rome

    Google Scholar 

  • Allen RG (1997) Self-calibration method for estimating solar radiation from air temperature. J Hydrol Eng 2(2):56–67. doi:10.1061/(ASCE)1084-0699(1997)2:2(56)

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO, Rome, 300 p

    Google Scholar 

  • Angström A (1924) Solar and terrestrial radiation. Q J R Meteorol Soc 50(210):121–126. doi:10.1002/qj.49705021008/pdf

    Article  Google Scholar 

  • Annandale JG, Jovanic NZ, Benade N, Allen RG (2002) Software for missing data error analysis of Penman–Monteith reference evapotranspiration. Irrig Sci 21(2):57–67. doi:10.1007/s002710100047

    Article  Google Scholar 

  • Bandyopadhyay A, Bhadra A, Raghuwanshi NS, Singh R (2008) Estimation of monthly solar radiation from measured air temperature extremes. Agric For Meteorol 148(11):1707–1718. doi:10.1016/j.agrformet.2008.06.002

    Article  Google Scholar 

  • Borges VP, Oliveira AS, Coelho-Filho MA, Silva TSM, Pamponet BM (2010) Avaliação de modelos de estimativa da radiação solar incidente em Cruz das Almas, Bahia. Rev Bras Eng Agríc Ambient 14(1):74–80. doi:10.1590/S1415-43662010000100010

    Article  Google Scholar 

  • Bristow KL, Campbell GS (1984) On the relationship between incoming solar radiation and daily minimum and maximum temperature. Agric For Meteorol 31(2):159–166. doi:10.1016/0168-1923(84)90017-0

    Article  Google Scholar 

  • Burman RD, Jensen ME, Allen RG (1987) Thermodynamic factors in evapotranspiration. In: James LG, English MJ (eds) Proc. Irrig. and Drain. Spec. Conf. ASCE, Portland, pp 28–30

    Google Scholar 

  • Demuth HB, Beale MH, Hagan MT (2010) Neural network toolbox 6: user’s guide MATLAB. MathWorks, Natick

    Google Scholar 

  • Donatelli M, Campbell GS (1998) A simple model to estimate global solar radiation. In: Proceedings of Fifth ESA Congress, vol. 2, Nitra, Slovak Republic, 28 June–2 July 1998. The Slovak Agriculture University, Nitra, pp 133–134

    Google Scholar 

  • Elizondo D, Hoogenboom G, McClendon RW (1994) Development of a neural network model to predict daily solar radiation. Agric For Meteorol 71(1):115–132. doi:10.1016/0168-1923(94)90103-1

    Article  Google Scholar 

  • Fletcher AL, Moot DJ (2007) Estimating daily solar radiation in New Zealand using air temperatures. N Z J Crop Hortic Sci 35(1):147–157. doi:10.1080/01140670709510179

    Article  Google Scholar 

  • Fortin JG, Anctil F, Parent L-E, Bolinder MA (2008) Comparison of empirical daily surface incoming solar radiation models. Agric For Meteorol 148(8–9):1332–1340. doi:10.1016/j.agrformet.2008.03.012

    Article  Google Scholar 

  • Gois G, Souza JL, Silva PRT, Oliveira-Júnior JF (2005) Caracterização da Desertificação no Estado de Alagoas Utilizando Variáveis Climáticas. Rev Bras Meteorol 20(3):301–314

    Google Scholar 

  • GRASS (2013) Site of GRASS Project—Geographic Resource and Analysis Support System. http://grass.itc.it. Accessed 23 Aug 2013

  • Hagan MT, Menhaj M (1994) Training feed-forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  Google Scholar 

  • Hargreaves GH (1994) Simplified coefficients for estimating monthly solar radiation in North America and Europe. Utah State University, Utah

    Google Scholar 

  • Hargreaves GH, Samani ZA (1982) Estimation of potential evapotranspiration. J Irrig Drain Div Proc Am Soc Civ Eng 108:223–230

    Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Pearson Education, Delhi, p 823

    Google Scholar 

  • IBGE- Instituto Brasileiro de Geografia e Estatística (2013) Censo Demográfico 2010. http://www.ibge.gov.br. Accessed 12 Oct 2013

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, New York

  • Lyra GB, Oliveira-Júnior JF, Zeri M (2014) Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. Int J Climatol 34(13):3546–3558. doi:10.1002/joc.3926

    Article  Google Scholar 

  • Mahmood R, Hubbard KG (2002) Effect of time of temperature observation and estimation of daily solar radiation for the Northern Great Plains, USA. Agron J 94(4):723–733, http://digitalcommons.unl.edu/natrespapers/39/

    Article  Google Scholar 

  • Mellit A, Kalogirou SA, Hontoria L, Shaari S (2009) Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew Sust Energ Rev 13(2):406–419. doi:10.1016/j.rser.2008.01.006

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment: the state and movement of water in living organisms. Symp Soc Exp Biol 19:205–234

    Google Scholar 

  • Moreno A, Gilabert MA, Martínez B (2011) Mapping daily global solar irradiation over Spain: a comparative study of selected approaches. Energy 85(9):2072–2084. doi:10.1016/j.solener.2011.05.017

    Google Scholar 

  • NASA Jet Propulsion Laboratory (2013) Shuttle Radar Topography Mission: The mission to map the World. http://www2.jpl.nasa.gov/srtm/missionoverview.html. Accessed 23 May 2013

  • Prescott JA (1940) Evaporation from water surface in relation to solar radiation. Trans R Soc S Aust 46(64):114–118

    Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Article  Google Scholar 

  • Rahimikhoob A (2010) Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renew Energy 35(9):2131–2135. doi:10.1016/j.renene.2010.01.029

    Article  Google Scholar 

  • Reddy KS, Manish R (2003) Solar resource estimation using artificial neural and comparison with other correlation. Energy Convers Manag 44(1):2519–2530. doi:10.1016/S0196-8904(03)00009-8

    Article  Google Scholar 

  • Samani Z (2000) Estimating solar radiation and evapotranspiration using minimum climatological data. J Irrig Drain Eng 126(4):265–267. doi:10.1061/(ASCE)0733-9437(2000)126:4(265)

    Article  Google Scholar 

  • Santos CM, Souza JL, Ferreira-Junior RA, Tiba C, Melo RO, Lyra GB, Teodoro I, Lyra GB, Lemes MAM (2014) On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil. Energy 71:388–398. doi:10.1016/j.energy.2014.04.116

    Article  Google Scholar 

  • Sellers WK (1965) Physical climatology. University of Chicago Press, Chicago, p 272

    Google Scholar 

  • Silva CR, Silva VJ, Alves-Júnior J, Carvalho HP (2012) Radiação solar estimada com base na temperatura do ar para três regiões de Minas Gerais. Rev Bras Eng Agríc Ambient 16(3):281–288. doi:10.1590/S1415-43662012000300008

    Article  Google Scholar 

  • Souza JC, Nicácio RM, Moura MAL (2005) Global solar radiation measurements in Maceió, Brazil. Renew Energy 30(8):1203–1220. doi:10.1016/j.renene.2004.09.013

  • Thornton PE, Running SW (1999) An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity and precipitation. Agric For Meteorol 93(4):211–228

    Article  Google Scholar 

  • Tiba C, Gallegos HG, Fraidenraich N, Lyra FJM (1999) Technical note on the development of spatial/temporal solar radiation maps: a Brazilian case study. Renew Energy 18(3):393–408. doi:10.1016/S0960-1481(98)00806-4

    Article  Google Scholar 

  • Weiss A, Hays CJ (2004) Simulation of daily solar irradiance. Agric For Meteorol 123(3–4):187–199. doi:10.1016/j.agrformet.2003.12.002

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194. doi:10.1080/02723646.1981.10642213

  • World Metereological Organization – WMO (2006) Guide to meteorological instruments and methods of observation: preliminary seventh edition. WMO, Geneva, 569 p. (Technical Report 8)

    Google Scholar 

  • Xue Y, Sellers PJ, Kinter JL, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4(3):345–364

    Article  Google Scholar 

  • Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2):83–89. doi:10.1061/(ASCE)0733-9437(2007)133:2(83)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Bastos Lyra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyra, G.B., Zanetti, S.S., Santos, A.A.R. et al. Estimation of monthly global solar irradiation using the Hargreaves–Samani model and an artificial neural network for the state of Alagoas in northeastern Brazil. Theor Appl Climatol 125, 743–756 (2016). https://doi.org/10.1007/s00704-015-1541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1541-8

Keywords

Navigation