Skip to main content

Advertisement

Log in

The factors related to the poor ADL in the patients with osteoporotic vertebral fracture after instrumentation surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Osteoporotic vertebral fracture (OVF) with nonunion or neurological deficit may be a candidate for surgical treatment. However, some patients do not show improvement as expected. Therefore, we conducted a nationwide multicenter study to determine the predictors for postoperative poor activity of daily living (ADL) in patients with OVF.

Methods

We retrospectively reviewed the case histories of 309 patients with OVF who underwent surgery. To determine the factors predicting postoperative poor ADL, uni- and multivariate statistical analyses were performed.

Results

The frequency of poor ADL at final follow-up period was 9.1%. In univariate analysis, preoperative neurological deficit (OR, 4.1; 95% CI, 1.8–10.3; P < 0.001), perioperative complication (OR, 3.4; P = 0.006), absence of preoperative bone-modifying agent (BMA) administration (OR, 2.7; P = 0.03), and absence of postoperative recombinant human parathyroid hormone (rPTH) administration (OR, 3.9; P = 0.006) were significantly associated. In multivariate analysis, preoperative neurological deficit (OR, 4.6; P < 0.001), perioperative complication (OR, 3.4; P = 0.01), and absence of postoperative rPTH administration (OR, 3.9; P = 0.02) showed statistical significance.

Conclusions

Preoperative neurological deficit, perioperative complication, and absence of postoperative rPTH administration were considered as predictors for postoperative poor ADL in patients with OVF. Neurological deficits and complications are often inevitable factors; therefore, rPTH is an important option for postoperative treatment for OVF.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steel H (1951) Kümmell’s disease. Am J Surg 81:161–167

    Article  CAS  PubMed  Google Scholar 

  2. Cauley JA, Hochberg MC, Lui L-Y et al (2007) Long-term risk of incident vertebral fractures. JAMA 298:2761–2767

    Article  CAS  PubMed  Google Scholar 

  3. Cummings SR, Black DM, Rubin SM (1989) Lifetime risks of hip, Colles’, or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med 149:2445–2448

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki N, Ogikubo O, Hansson T (2008) The course of the acute vertebral body fragility fracture: its effect on pain, disability and quality of life during 12 months. Eur Spine J 17:1380–1390

    Article  PubMed  PubMed Central  Google Scholar 

  5. Itoi E, Sakurai M, Mizunashi K et al (1990) Long-term observations of vertebral fractures in spinal osteoporotics. Calcif Tissue Int 47:202–208

    Article  CAS  PubMed  Google Scholar 

  6. Hasegawa K, Homma T, Uchiyama S et al (1998) Vertebral pseudarthrosis in the osteoporotic spine. Spine 23:2201–2206

    Article  CAS  PubMed  Google Scholar 

  7. Kanchiku T, Imajo Y, Suzuki H et al (2014) Usefulness of an early MRI-based classification system for predicting vertebral collapse and pseudoarthrosis after osteoporotic vertebral fractures. J Spinal Disord Tech 27:E61–E65

    Article  PubMed  Google Scholar 

  8. Omi H, Yokoyama T, Ono A et al (2014) Can MRI predict subsequent pseudarthrosis resulting from osteoporotic thoracolumbar vertebral fractures? Eur Spine J 23:2705–2710

    Article  PubMed  Google Scholar 

  9. Sugita M, Watanabe N, Mikami Y et al (2005) Classification of vertebral compression fractures in the osteoporotic spine. J Spinal Disord Tech 18:376–381

    Article  PubMed  Google Scholar 

  10. Ho SC, Lau EM, Woo J et al (1999) The prevalence of osteoporosis in the Hong Kong Chinese female population. Maturitas 32:171–178

    Article  CAS  PubMed  Google Scholar 

  11. Lee YL, Yip KM (1996) The osteoporotic spine. Clin Orthop Relat Res 323:91–97

    Article  Google Scholar 

  12. Kaneda K, Taneichi H, Abumi K et al (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79:69–83

    Article  CAS  PubMed  Google Scholar 

  13. Ataka H, Tanno T, Yamazaki M (2009) Posterior instrumented fusion without neural decompression for incomplete neurological deficits following vertebral collapse in the osteoporotic thoracolumbar spine. Eur Spine J 18:69–76

    Article  PubMed  Google Scholar 

  14. Suk S-I, Kim J-H, Lee S-M et al (2003) Anterior-posterior surgery versus posterior closing wedge osteotomy in posttraumatic kyphosis with neurologic compromised osteoporotic fracture. Spine 28:2170–2175

    Article  PubMed  Google Scholar 

  15. Nguyen H-V, Ludwig S, Gelb D (2003) Osteoporotic vertebral burst fractures with neurologic compromise. J Spinal Disord Tech 16:10–19

    Article  PubMed  Google Scholar 

  16. Kashii M, Yamazaki R, Yamashita T et al (2013) Surgical treatment for osteoporotic vertebral collapse with neurological deficits: retrospective comparative study of three procedures—anterior surgery versus posterior spinal shorting osteotomy versus posterior spinal fusion using vertebroplasty. Eur Spine J 22:1633–1642

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ito Y, Oda H, Taguchi T, Inoue H, Kawai S (2003) Results of surgical treatment for lumbar canal stenosis due to degenerative spondylolisthesis: enlargement of the lumbar spinal canal. J Orthop Sci 8:648–656

    Article  PubMed  Google Scholar 

  18. Hirabayashi K, Miyakawa J, Satomi K et al (1981) Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine 6:354–364

    Article  CAS  PubMed  Google Scholar 

  19. Matsumoto T, Hoshino M, Tsujio T et al (2012) Prognostic factors for reduction of activities of daily living following osteoporotic vertebral fractures. Spine 37:1115–1121

    Article  PubMed  Google Scholar 

  20. Peduzzi P, Concato J, Kemper E et al (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379

    Article  CAS  PubMed  Google Scholar 

  21. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  22. Ito Y, Hasegawa Y, Toda K et al (2002) Pathogenesis and diagnosis of delayed vertebral collapse resulting from osteoporotic spinal fracture. Spine J 2:101–106

    Article  PubMed  Google Scholar 

  23. Kanayama M, Ishida T, Hashimoto T et al (2010) Role of major spine surgery using Kaneda anterior instrumentation for osteoporotic vertebral collapse. J Spinal Disord Tech 23:53–56

    Article  PubMed  Google Scholar 

  24. Uchida K, Nakajima H, Yayama T et al (2010) Vertebroplasty-augmented short-segment posterior fixation of osteoporotic vertebral collapse with neurological deficit in the thoracolumbar spine: comparisons with posterior surgery without vertebroplasty and anterior surgery. J Neurosurg Spine 13:612–621

    Article  PubMed  Google Scholar 

  25. Sudo H, Ito M, Kaneda K et al (2013) Anterior decompression and strut graft versus posterior decompression and pedicle screw fixation with vertebroplasty for osteoporotic thoracolumbar vertebral collapse with neurologic deficits. Spine J 13:1726–1732

    Article  PubMed  Google Scholar 

  26. Ito M, Harada A, Nakano T et al (2010) Retrospective multicenter study of surgical treatments for osteoporotic vertebral fractures. J Orthop Sci 15:289–293

    Article  PubMed  Google Scholar 

  27. Kashii M, Yamazaki R, Yamashita T et al (2015) Factors affecting postoperative activities of daily living in patients with osteoporotic vertebral collapse with neurological deficits. J Bone Miner Metab 33:422–431

    Article  PubMed  Google Scholar 

  28. Nakashima H, Imagama S, Yukawa Y et al (2015) Comparative study of 2 surgical procedures for osteoporotic delayed vertebral collapse: anterior and posterior combined surgery versus posterior spinal fusion with vertebroplasty. Spine 40:E120–E126

    Article  PubMed  Google Scholar 

  29. Yasuda T, Kawaguchi Y, Suzuki K et al (2017) Five-year follow up results of posterior decompression and fixation surgery for delayed neural disorder associated with osteoporotic vertebral fracture. Medicine (Baltimore) 96:e9395

    Article  Google Scholar 

  30. Kashii M, Yamazaki R, Yamashita T et al (2013) Surgical treatment for osteoporotic vertebral collapse with neurological deficits: retrospective comparative study of three procedures—anterior surgery versus posterior spinal shorting osteotomy versus posterior spinal fusion using vertebroplasty. Eur Spine J 22:1633–1642

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ciol MA, Deyo RA, Howell E et al (1996) An assessment of surgery for spinal stenosis: time trends, geographic variations, complications, and reoperations. J Am Geriatr Soc 44:285–290

    Article  CAS  PubMed  Google Scholar 

  32. Nakashima H, Imagama S, Yukawa Y et al (2015) Comparative study of 2 surgical procedures for osteoporotic delayed vertebral collapse: anterior and posterior combined surgery versus posterior spinal fusion with vertebroplasty. Spine 40:E120–E126

    Article  PubMed  Google Scholar 

  33. Lyles KW, Colón-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357:1799–1809

    Article  CAS  PubMed  Google Scholar 

  34. Santini D, Martini F, Fratto ME et al (2009) In vivo effects of zoledronic acid on peripheral gammadelta T lymphocytes in early breast cancer patients. Cancer Immunol Immunother 58:31–38

    Article  CAS  PubMed  Google Scholar 

  35. Carbone LD, Warrington KJ, Barrow KD et al (2006) Pamidronate infusion in patients with systemic sclerosis results in changes in blood mononuclear cell cytokine profiles. Clin Exp Immunol 146:371–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colón-Emeric CS, Mesenbrink P, Lyles KW et al (2010) Potential mediators of the mortality reduction with zoledronic acid after hip fracture. J Bone Miner Res 25:91–97

    Article  PubMed  CAS  Google Scholar 

  37. Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  38. Compston JE (2007) Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone 40:1447–1452

    Article  CAS  PubMed  Google Scholar 

  39. Dempster DW, Cosman F, Kurland ES et al (2001) Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res 16:1846–1853

    Article  CAS  PubMed  Google Scholar 

  40. Panico A, Lupoli GA, Marciello F, et al (2011) Teriparatide vs. alendronate as a treatment for osteoporosis: changes in biochemical markers of bone turnover, BMD and quality of life. Med Sci Monit 17:CR442-448

  41. Ohtori S, Inoue G, Orita S et al (2012) Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine 37:E1464–E1468

    Article  PubMed  Google Scholar 

  42. Ohtori S, Inoue G, Orita S et al (2013) Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine 38:E487–E492

    Article  PubMed  Google Scholar 

  43. Ebata S, Takahashi J, Hasegawa T et al (2017) Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: a multicenter, prospective randomized study. J Bone Joint Surg Am 99:365–372

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the medical editors from the Department of International Medical Communications of Tokyo Medical University for editing and reviewing the initial English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Murata.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related directly or indirectly to this study.

Ethical approval

This study was approved by the Ethics Review Committee of all institute involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murata, K., Matsuoka, Y., Nishimura, H. et al. The factors related to the poor ADL in the patients with osteoporotic vertebral fracture after instrumentation surgery. Eur Spine J 29, 1597–1605 (2020). https://doi.org/10.1007/s00586-019-06092-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-019-06092-0

Keywords

Navigation