Skip to main content

Advertisement

Log in

Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In this work, a novel series of ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives were evaluated in vitro on Trypanosoma cruzi trypomastigotes and Leishmania mexicana promastigotes, and cytotoxicity activity in murine macrophages was tested. In silico molecular docking simulations of trypanothione reductase were also done. Three compounds of 33 quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives showed better anti-T. cruzi activity than nifurtimox and beznidazole; two compounds had better anti-leishmanial activity that amphotericin-B, and two compounds showed better activity against both parasites than reference drugs. Compounds M2, M7, M8 and E5, showed low cytotoxic activity on the host cell. The in silico studies suggest that compound M2 is a potential trypanothione reductase inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera-Venegas B, Olea-Azar C, Norambuena E, Aran VJ, Mendizábal F, Lapier M, Maya JD, Kemmerling U, López-Muñoz R (2011) ESR, electrochemical, molecular modeling and biological evaluation of 4-substituted and 1,4-disubstituted 7-nitroquinoxalin-2-ones as potential anti-Trypanosoma cruzi agents. Spectrochim Acta A Mol Biomol Spectrosc 78:1004–1012

    Article  PubMed  Google Scholar 

  • Aguirre G, Cerecetto H, Di Maio R, Gonzalez M, Alfaro ME, Jaso A, Zarranz B, Ortega MA, Aldana I, Monge-Vega A (2004) Quinoxaline N, N′-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi. Structure–activity relationships. Bioorg Med Chem Lett 14:3835–3839

  • Baiocco P, Colotti G, Franceschini S, Ilari A (2009) Molecular basis of antimony treatment in Leishmaniasis. J Med Chem 52:2603–2612

    Article  CAS  PubMed  Google Scholar 

  • Barea C, Pabón A, Castillo D, Zimic M, Quiliano M, Galiano S, Perez-Silanes S, Monge A, Deharo E, Aldana I (2011) New salicylamide and sulfonamide derivatives of quinoxaline 1,4-di-N-oxide with antileishmanial and antimalarial activities. Bioorg Med Chem Lett 21:4498–4502

    Article  CAS  PubMed  Google Scholar 

  • Benítez D, Cabrera M, Hernández P, Boiani L, Lavaggi ML, Di Maio R, Yaluff G, Serna E, Torres S, Ferreira ME, Vera de Bilbao N, Torres E, Perez-Silanes S, Solano B, Moreno E (2011) 3-Trifluoromethylquinoxaline N.N-dioxides as anti-trypanosomatid agents. Identification of optimal anti-T. cruzi agents and mechanism of action studies. J Med Chem 54:3624–3636

    Article  PubMed  Google Scholar 

  • Bocanegra-García V, Villalobos-Rocha JC, Nogueda-Torres B, Lemus-Hernandez ME, Camargo-Ordoñez A, Rosas-García NM, Rivera G (2012) Synthesis and biological evaluation of new sulfonamide derivatives as potential anti-Trypanosoma cruzi agents. Med Chem 6:1039–1044

    Google Scholar 

  • Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WN (1999) Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structures 7:81

    Article  CAS  Google Scholar 

  • Brener Z (1962) Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 4:389–396

    CAS  PubMed  Google Scholar 

  • Cerecetto H, González M (2002) Chemotherapy of Chagas' disease: status and new developments. Curr Top Med Chem 2:1187–1213

    Article  CAS  PubMed  Google Scholar 

  • Cerecetto H, Gonzalez M (2008) Anti-T. cruzi agents: our experience in the evaluation of more than five hundred compounds. Mini Rev Med Chem 8:1355–1383

    Article  CAS  PubMed  Google Scholar 

  • Chung MC, Ferreira EI, Santos JL, Giarolla J, Rando DG, Almeida AE, Bosquesi PL, Menegon RF, Blau L (2007) Pro-drugs for the treatment of neglected diseases. Molecules 13:616–677

    Article  PubMed  Google Scholar 

  • D’ocampo R, Moreno SNJ (1984) Quinoxaline-7-carboxylate 1,4-di-N-oxide as anti-trypanoosomatid agents. In: Pryor WA (ed) Free radicals in biology. Academic, New York, pp 243–288

  • De Souza W (2002) Basic cell biology of Trypanosoma cruzi. Curr Pharm Des 8:269–285

    Article  PubMed  Google Scholar 

  • Dey A, Singh S (2006) Transfusion transmitted leishmaniasis: a case report and review of literature. Indian J Med Microbiol 24:165–170

    CAS  PubMed  Google Scholar 

  • Díaz-Chiguer D, Márquez-Navarro A, Nogueda-Torres B, León-Ávila G, Pérez-Villanueva J, Hernández-Campos A, Castillo R, Ambrosio J, Nieto-Meneses R, Yépez-Mulia L, Hernández-Luis F (2012) In vitro and in vivo trypanocidal activity of some benzimidazole derivatives against two strains of Trypanosoma cruzi. Acta Trop 122(1):108–112

    Article  PubMed  Google Scholar 

  • Duque-Montano BE, Gómez-Caro LC, Sánchez-Sánchez M, Monge A, Hernández-Baltazar E, Rivera G, Torres-Angeles O (2013) Synthesis and in vitro evaluation of new ethyl and methyl quinoxaline-7- carboxylate 1,4-di-N-oxide against Entamoeba histolytica. Bioorg Med Chem 21:4550–4558

    Article  CAS  PubMed  Google Scholar 

  • Estevez Y, Quiliano M, Burguete A, Cabanillas B, Zimic M, Málaga E, Verástegui M, Perez-Silanes S, Aldana I, Monge A, Castillo D, Deharo E (2011) Trypanocidal properties, structure-activity relationship and computational studies of quinoxaline 1,4-di-N-oxide derivatives. Exp Parasitol 127:745–751

    Article  CAS  PubMed  Google Scholar 

  • Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists? Med Chem 31:2235–2246

    Article  CAS  Google Scholar 

  • Gómez-Caro LC, Sánchez-Sánchez M, Bocanegra-García V, Rivera G, Monge A (2011) Synthesis of quinoxaline 1,4-di-N-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures. Quim Nova 34:1147–1151

    Article  Google Scholar 

  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformat 4:17

    Article  CAS  Google Scholar 

  • Hetenyi C, van der Spoel D (2002) Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 11:1729–1737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leeson PD, Davis AM, Steele J (2004) Drug-like properties: guiding principles for design or chemical prejudice? Drug Discov Today 1:189–195

    Article  CAS  Google Scholar 

  • Lima LM, Barreiro EJ (2005) Bioisosterism: a useful strategy for molecular modification and drug design. Curr Med Chem 12:23–49

    Article  CAS  PubMed  Google Scholar 

  • Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141–1152

    Article  CAS  PubMed  Google Scholar 

  • Moncayo A, Ortiz-Yanine MI (2006) An update on Chagas’ disease (human American Tripanosomiasis). Ann Trop Med Parasitol 100:663–677

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:5–91

    Google Scholar 

  • Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in Leishmaniasis. Lancet 366:1561–1577

    Article  CAS  PubMed  Google Scholar 

  • Paulino M, Iribarne F, Dubin M, Aguilera-Morales S, Tapia O, Stoppani AO (2005) The chemotherapy of Chagas’ disease: an overview. Mini Rev Med Chem 5:499–519

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Raaflaub J, Ziegler W (1979) Single-dose pharmacokinetics of the trypanosomicide benznidazole in man. Drug Res 29:1611–1614

    CAS  Google Scholar 

  • Rivera N, Ponce YM, Arán VJ, Martínez C, Malagón F (2013) Biological assay of a novel quinoxalinone with antimalarial efficacy on Plasmodium yoelii yoelii. Parasitol Res 112(4):1523–1527

    Article  PubMed  Google Scholar 

  • Romanha AJ, Castro SL, Soeiro Mde N, Lannes-Vieira J, Ribeiro I, Talvani A, Bourdin B, Blum B, Olivieri B, Zani C, Spadafora C, Chiari E, Chatelain E, Chaves G, Calzada JE (2010) In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61

    CAS  PubMed  Google Scholar 

  • Sephra N (2012) Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12:12347–12360

    Article  Google Scholar 

  • Shimony O, Jaffe C (2008) Rapid fluorescent assay for screening drugs on Leishmania amastigotes. J Microbiol Methods 75:196–200

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Sarkar N, Jagannadham MV, Dubey VK (2008) Modeled structure of trypanothione reductase of Leishmania infantum. India Bio Info Bank 6:444–447

    Google Scholar 

  • Stoppani AOM (1999) Quimioterapia de la enfermedad de Chagas. Academia Nacional de Medicina Simposio Internacional Problemática de la enfermedad de Chagas. Facultad de Medicina Universidad de Buenos Aires Argentina 59(Supl. II):147–165

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • World Health Organization. Chagas Disease: TDR. 2007, http://who.int/tdr/diseases/chagas/

Download references

Acknowledgments

Juan Carlos Villalobos-Rocha is the recipient of a scholarship (228946) from CONACyT, Mexico. Benjamin Nogueda-Torres, Luvia Sánchez-Torres, Virgilio Bocanegra-García, and Gildardo Rivera hold a scholarship from the Comisión de Operación y Fomento de Actividades Académicas (COFAA-Instituto Politécnico Nacional) and the Programa de Estímulos al Desempeño de los Investigadores (EDI-Instituto Politécnico Nacional). Our gratitude to Lilia C. Gómez-Caro, Mario Sánchez-Sánchez, and Jesus Villegas-Mendoza for their support in this project. We wish to express our gratitude to the CONACyT (CB-2010-01, clave 0157358) and the Secretaria de Investigación y Posgrado of Instituto Politecnico Nacional (SIP-20130637 and SIP-20130768) for their financial support of this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gildardo Rivera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalobos-Rocha, J.C., Sánchez-Torres, L., Nogueda-Torres, B. et al. Anti-Trypanosoma cruzi and anti-leishmanial activity by quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives. Parasitol Res 113, 2027–2035 (2014). https://doi.org/10.1007/s00436-014-3850-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3850-8

Keywords

Navigation